JPS58143119A - Suction device for engine - Google Patents

Suction device for engine

Info

Publication number
JPS58143119A
JPS58143119A JP57024922A JP2492282A JPS58143119A JP S58143119 A JPS58143119 A JP S58143119A JP 57024922 A JP57024922 A JP 57024922A JP 2492282 A JP2492282 A JP 2492282A JP S58143119 A JPS58143119 A JP S58143119A
Authority
JP
Japan
Prior art keywords
oxygen
valve
engine
passage
supercharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57024922A
Other languages
Japanese (ja)
Inventor
Haruo Okimoto
沖本 晴男
Shogo Watanabe
渡辺 正五
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP57024922A priority Critical patent/JPS58143119A/en
Publication of JPS58143119A publication Critical patent/JPS58143119A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To reduce the loss of operation as well as to make a supercharger and a supercharging system small-sized by supplying the oxygen-rich air enriched in an oxygen-enricher to a supercharging passage as a supercharging air. CONSTITUTION:When the load of an engine is low, an oxygen-concn. controller 26 is operated to control a switch valve 12 to be perfectly closed and an oxygen- concn. control valve 18 to be fully opened, and a switchover valve 32 and a valve selector 34 are kept unoperated. The oxygen-rich air from an oxygen-rich air supply passage 13 is supplied to the engine 1 via a main suction passage 2. When the load of the engine is high, the switch valve 12 is opened, the oxygen- concn. control valve 18 is closed, the switchover valve 32 and the valve selector 34 are operated to connect the oxygen-rich air supply passage 13 with an auxiliary suction passage 27, and an auxiliary suction valve 33 are operated for opening and closing. A suction pump 7 works as a supercharger.

Description

【発明の詳細な説明】 本発明は、エンジンの吸気装置に関し、特に空気中の酸
素含有比率を増大させる酸素濃度富化装置を備えたエン
ジンの吸気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine intake system, and more particularly to an engine intake system equipped with an oxygen concentration enrichment device that increases the oxygen content ratio in the air.

一般に、エンジンは、空気に燃料を所定の空燃比で供給
して燃焼させ、この熱エネルギーを軸出力として取出す
ものである。そして、この燃焼に使用される空気は通常
、酸素が約21チ、窒素が約78チを占め、残シをアル
ゴン、炭酸ガス、水素等の気体が占めている。そのうち
、酸素のみが実質的に燃焼に寄与するものであり、大き
な比率を占める窒素は、逆に、吸熱作用を有するため、
燃焼速度を遅らせ燃焼安定性を悪化させて燃焼を阻害す
る゛働きをするものである。
Generally, an engine supplies fuel to air at a predetermined air-fuel ratio and burns it, and extracts this thermal energy as shaft output. The air used for this combustion usually contains about 21 inches of oxygen, about 78 inches of nitrogen, and the remainder is made up of gases such as argon, carbon dioxide, and hydrogen. Of these, only oxygen substantially contributes to combustion, and nitrogen, which accounts for a large proportion, has an endothermic effect, so
It functions to inhibit combustion by slowing down the combustion speed and worsening combustion stability.

そのため、従来、例えば特開昭56−50253号公報
に開示されているように、空気中の酸素含有比率を増大
させる酸素濃度富化装置をエンジンに備えて、該酸素濃
度富化装置によって富化された酸素リッチ空気をエンジ
ンに供給することにより、吸入空気の酸素含有比率をで
きるだけ高めてエンジンの燃焼性等の改善を図るように
したものが提案されている。尚、上記酸素#度富化装置
の原理手法としては、(イ)上記公報に記載の如くシリ
コン系ゴム膜を多層重ねた酸素透過膜を用い、該酸素透
過膜の一方側から空気を送り他方側から吸引して、この
圧力差による酸素と窒素との溶解速度の差により酸素を
多く透過させて酸素リッチ空気を得るいわゆる酸素透過
方法、および(ロ)ベレット状の合成ゼオライトを充填
した容器に空気を加圧して送り、窒素をゼオライトに多
く吸着させ、浮遊した酸素を取出して酸素リッチ空気を
得るいわゆる窒素吸着方法が主に知られている。
Therefore, conventionally, as disclosed in JP-A No. 56-50253, an engine is equipped with an oxygen concentration enrichment device that increases the oxygen content ratio in the air. It has been proposed to improve the combustion performance of the engine by supplying oxygen-rich air to the engine, thereby increasing the oxygen content ratio of the intake air as much as possible. The principle method of the above-mentioned oxygen concentration enrichment device is as follows: (a) As described in the above-mentioned publication, an oxygen-permeable membrane made of multiple layers of silicone rubber membranes is used, and air is sent from one side of the oxygen-permeable membrane to the other side. The so-called oxygen permeation method obtains oxygen-rich air by suctioning from the side and allowing a large amount of oxygen to permeate due to the difference in dissolution rate between oxygen and nitrogen due to this pressure difference, and (b) a container filled with pellet-shaped synthetic zeolite. A so-called nitrogen adsorption method is mainly known in which air is sent under pressure, a large amount of nitrogen is adsorbed on zeolite, and suspended oxygen is removed to obtain oxygen-rich air.

一方、エンジンに過給機を備えて、該過給機により吸気
を過給して吸気の充填効率を高めることにより、エンジ
ンの出力向上を図るようにすることは知られている。
On the other hand, it is known that an engine is equipped with a supercharger, and the supercharger supercharges intake air to increase the filling efficiency of the intake air, thereby increasing the output of the engine.

しかるに、上記従来の過給機付エンジンでは、過給する
吸入空気は通常の酸素濃度(約21チ)の加圧空気であ
るので、燃焼に実質的に寄与する酸素の含有比率が低く
、その分、出力向上を図るためには比較的多量の過給量
を必要とする。その結果、過給機として大型のものを必
要とするとともに、過給気をエンジンに供給する過給通
路が大径のものとなり、過給システムが大型化し、また
、そのことによシ車載性が悪いとともに駆動損失が太き
いという問題があった。
However, in the above-mentioned conventional supercharged engine, the intake air to be supercharged is pressurized air with a normal oxygen concentration (approximately 21 inches), so the content ratio of oxygen that substantially contributes to combustion is low, and its However, in order to improve output, a relatively large amount of supercharging is required. As a result, a large turbocharger is required, and the supercharging passage that supplies supercharging air to the engine has a large diameter, making the supercharging system larger and making it difficult to mount it on a vehicle. There was a problem that the driving loss was large as well as poor performance.

そこで、本発明は斯かる点に鑑み、上記のような酸素濃
度富化装置を備えたエンジンにおいて、該酸素濃度富化
装置によって富化された酸素リッチ空気を過給気として
利用することにより、過給気の酸素濃度の増大によって
単位過給量当りの過給効果を高めて、その分過給量を少
なくて済むようにし、よって過給機および過給通路等の
過給システムの小型化を図ることを目的とするものであ
る。
In view of this, the present invention provides an engine equipped with an oxygen concentration enrichment device as described above, by utilizing oxygen-rich air enriched by the oxygen concentration enrichment device as supercharging air. By increasing the oxygen concentration of the supercharging air, the supercharging effect per unit supercharging amount is increased, and the amount of supercharging can be reduced by that amount, thereby downsizing the supercharging system such as the supercharger and supercharging passage. The purpose is to achieve this goal.

この目的のため、本発明の構成は、上記の如く酸素濃度
富化装置を備えたエンジンにおいて、エンジンに過給気
を供給する過給通路に上記酸素濃度富化装置によって富
化された酸素リッチ空気を供給するように制御する過給
制御装置を設けるこトニヨリ、酸素リッチ空気を過給気
としてエンジンに供給するようにしたものである。
For this purpose, the configuration of the present invention is such that, in an engine equipped with an oxygen concentration enrichment device as described above, a supercharging passage that supplies supercharging air to the engine is provided with an oxygen-enriched gas enriched by the oxygen concentration enrichment device. By providing a supercharging control device that controls the supply of air, oxygen-rich air is supplied to the engine as supercharging air.

以下、本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

第1図において、1はエンジン、2は一端がエアクリー
ナ5を介して大気に開口し他端がエンジン1に開口して
通常の空気(大気)を吸入空気としてエンジン1に供給
する主吸気通路、4は一端が大気に開口し他端がエンジ
ン1に開口してエンジン1からの排気を排出する排気通
路である。上記主吸気通路2には上流から順に1該主吸
気通路2を流れる吸入空気量を検出する主吸入空気量検
出器5、主吸気通路2を流れる吸入空気量を制御スル主
スロツトルバルブ6、および燃料を主吸気通路2に噴射
する主燃料噴射弁7が配設されており、上記主吸入空気
量検出器5は制御回路8を介して上記主燃料噴射弁7に
接続されている。尚、9は主吸気通路2のエンジン1へ
の開口部を開閉する主吸気弁、10は排夙弁、11は燃
焼室である。
In FIG. 1, 1 is an engine, and 2 is a main intake passage whose one end opens to the atmosphere via an air cleaner 5 and the other end opens to the engine 1 and supplies normal air (atmosphere) to the engine 1 as intake air. Reference numeral 4 designates an exhaust passage that opens to the atmosphere at one end and opens to the engine 1 at the other end to discharge exhaust gas from the engine 1. The main intake passage 2 includes, in order from the upstream, 1 a main intake air amount detector 5 that detects the amount of intake air flowing through the main intake passage 2; a main throttle valve 6 that controls the amount of intake air flowing through the main intake passage 2; A main fuel injection valve 7 for injecting fuel into the main intake passage 2 is provided, and the main intake air amount detector 5 is connected to the main fuel injection valve 7 via a control circuit 8. Note that 9 is a main intake valve that opens and closes the opening of the main intake passage 2 to the engine 1, 10 is an exhaust valve, and 11 is a combustion chamber.

また、上記主吸気通路2の主吸入空気量検出器5上流に
は該主吸気通路2を開閉制御する開閉弁12が配設され
ている一方、上流端が該開閉弁12上流の主吸気通路2
に開口し下流端が開閉弁12下流で主吸入空気量検出器
5上流の主吸気通路2に開口して開閉弁12をバイパス
する酸素リッチ空気供給通路1Sが主吸気通路2に並設
されている。該酸素リッチ空気供給通路15の途中には
、ケース14内に収納された円筒形状の酸素透過膜15
が、その外周部を酸素リッチ空気供給通路15の上流側
に、内周部を酸素リッチ空気供給通路15の下流側に連
通せしめて配設されているとともに、該酸素透過膜15
上流の酸素リッチ空気供給通路15には送給ポンプ16
が、また酸素透過膜15下流の酸素リッチ空気供給通路
16には吸込ポンプ17がそれぞれ介設されている。さ
らに、上記吸込ポンプ17下流の酸素リッチ空気供給通
路16には、該酸素リッチ空気供給通路15を開閉制御
する酸素濃度制御弁18が配設され、該酸素濃度制御弁
18はリンケージ19を介して上記開閉弁12と相反す
る方向に開閉作動するように連動されている。
Further, an on-off valve 12 for controlling the opening and closing of the main intake passage 2 is disposed upstream of the main intake air amount detector 5 of the main intake passage 2, while an upstream end of the main intake passage is located upstream of the on-off valve 12. 2
An oxygen-rich air supply passage 1S is arranged in parallel with the main intake passage 2, and its downstream end opens into the main intake passage 2 downstream of the on-off valve 12 and upstream of the main intake air amount detector 5, bypassing the on-off valve 12. There is. In the middle of the oxygen-rich air supply passage 15, there is a cylindrical oxygen permeable membrane 15 housed in the case 14.
The oxygen permeable membrane 15 is disposed so that its outer circumference is communicated with the upstream side of the oxygen-rich air supply passage 15 and its inner circumference is communicated with the downstream side of the oxygen-rich air supply passage 15.
A feed pump 16 is provided in the upstream oxygen-rich air supply passage 15.
However, suction pumps 17 are interposed in each of the oxygen-rich air supply passages 16 downstream of the oxygen permeable membrane 15. Further, an oxygen concentration control valve 18 for controlling opening and closing of the oxygen-rich air supply passage 15 is disposed in the oxygen-rich air supply passage 16 downstream of the suction pump 17, and the oxygen concentration control valve 18 is connected to the oxygen-rich air supply passage 16 via a linkage 19. It is interlocked so that it opens and closes in the opposite direction to the on-off valve 12.

さらに、上記酸素透過膜15の外周部には、一端が大気
に開口した窒素リッチ空気排出通路20が連通されてい
るとともに、一端が上記酸素リッチ空気供給通路16の
吸込ポンプ17と酸素濃開制御弁18との間に開口し他
端が上記窒素リッチ空気排出通路20の途中に開口する
IJ IJ−フ通路21が設けられ、該リリーフ通路2
1の途中にはリリーフ通路21を開閉するリリーフ弁2
2が介設されており、上記吸込ポンプ17下流の酸素リ
ッチ空気供給通路1Sの圧力が所定圧以上になると、リ
リーフ弁22が開作動してリリーフ通路21を介してリ
リーフし、上記圧力を所定圧に保持するようにしている
Furthermore, a nitrogen-rich air discharge passage 20 whose one end is open to the atmosphere is connected to the outer circumferential portion of the oxygen permeable membrane 15, and one end is connected to the suction pump 17 of the oxygen-rich air supply passage 16 for oxygen concentration opening control. An IJ-F passage 21 is provided which opens between the valve 18 and the other end opens in the middle of the nitrogen-rich air discharge passage 20, and the relief passage 2
1, there is a relief valve 2 that opens and closes the relief passage 21.
2 is interposed, and when the pressure in the oxygen-rich air supply passage 1S downstream of the suction pump 17 exceeds a predetermined pressure, the relief valve 22 opens and provides relief through the relief passage 21, reducing the pressure to a predetermined level. I try to keep it under pressure.

以上により、送給ポンプ16および吸込ポンプ17の作
動により生じる酸素透過膜15の内外周部の圧力差によ
り、該酸素透過膜15を透過する空気のうち酸素を多く
透過させて空気中の酸素含有比率を増大させ、この酸素
リッチ空気を、酸素濃度制御弁18の開作動時に酸素リ
ッチ空気供給通路16を介してエンジン1に供給するよ
うにした酸素濃度富化装置25が構成されている。
As described above, due to the pressure difference between the inner and outer circumferential parts of the oxygen permeable membrane 15 caused by the operation of the feed pump 16 and the suction pump 17, a large amount of oxygen is permeated in the air passing through the oxygen permeable membrane 15, and the oxygen content in the air is increased. The oxygen concentration enrichment device 25 is configured to increase the ratio and supply this oxygen-rich air to the engine 1 via the oxygen-rich air supply passage 16 when the oxygen concentration control valve 18 is opened.

そして、本発明の特徴として、24はエンジンの負荷状
態を主スロツトルバルブ6の開度により□ 検出する負荷検出器、25は主吸気通路2の主吸入空気
量検出器5直上流に配設され吸入空気の酸素含有比率(
酸素濃度)を検出する酸素濃度検出器であって、これら
各検出器24.25は上記制御回路8に入力接続されて
いる。また、26は」二記リンケージ19に連結されて
開閉弁12および酸素濃度制御弁18を作動制御する酸
素濃度制御装置であって、該酸素濃度制御装置26は制
御回路8に接続されている。
As a feature of the present invention, 24 is a load detector that detects the engine load condition by the opening degree of the main throttle valve 6, and 25 is disposed immediately upstream of the main intake air amount detector 5 in the main intake passage 2. and the oxygen content ratio of the intake air (
Each of these detectors 24 and 25 is connected as an input to the control circuit 8. Reference numeral 26 denotes an oxygen concentration control device connected to the linkage 19 to control the operation of the on-off valve 12 and the oxygen concentration control valve 18, and the oxygen concentration control device 26 is connected to the control circuit 8.

さらに、27は上記酸素リッチ空気供給通路15のIJ
 リーフ通路21開口部下流で酸素濃度制御装置18上
流の位置から分岐し他端がエンジン1に開口して過給気
としての酸素リッチ空気をエンジン1に供給する過給通
路を構成する補助吸気通路であって、該補助吸気通路2
7には、上記主吸気通路2と同様に、上流から順に、補
助吸気通路27を流れる吸入空気量(過給量)を検出す
る補助吸入空気量検出器28、補助吸気通路27を流れ
る吸入空気量(過給量)を制御する補助スロットルバル
ブ29、および補助吸気〕Jn路27に燃料を噴射する
補助燃料噴射弁′50が配設されている。
Further, 27 is an IJ of the oxygen-rich air supply passage 15.
An auxiliary intake passage that branches from a position downstream of the opening of the leaf passage 21 and upstream of the oxygen concentration control device 18, and whose other end opens to the engine 1 and constitutes a supercharging passage that supplies oxygen-rich air as supercharging air to the engine 1. The auxiliary intake passage 2
Similarly to the main intake passage 2, auxiliary intake air amount detector 28 detects the intake air amount (supercharging amount) flowing through the auxiliary intake passage 27 in order from upstream; An auxiliary throttle valve 29 for controlling the amount (supercharging amount) and an auxiliary fuel injection valve '50 for injecting fuel into the auxiliary intake Jn path 27 are provided.

上記補助スロットルバルブ29は、主スロツトルバルブ
6にリンケージ61を介して連動され、主スロツトルバ
ルブ6が所定開度に開かれるまで(エンジンの低負荷時
)は閉じたままで、主スロツトルバルブ6が所定開度以
上開かれると(エンジンの高負荷時)開作動するように
構成されている。
The auxiliary throttle valve 29 is linked to the main throttle valve 6 via a linkage 61, and remains closed until the main throttle valve 6 is opened to a predetermined opening degree (during low engine load). 6 is opened to a predetermined opening degree or more (when the engine is under high load).

また、上記補助吸入空気量検出器28は制御回路8を介
して補助燃料噴射弁50に接続されている。
Further, the auxiliary intake air amount detector 28 is connected to an auxiliary fuel injection valve 50 via a control circuit 8.

加えて、上記酸素リッチ空気供給通路16の補助吸気通
路27との分岐部には、該分岐部上流の酸素リッチ空気
供給通路15を分岐部下流の酸素リッチ空気供給通路1
5又は補助吸気通路27に選択的に連通せしめるよう切
替える切替バルブ62が介設され、該切替バルブ52の
作動時、分岐部上流の酸素リッチ空気供給通路16と補
助吸気通路27とを連通せしめるようにしている。一方
、補助吸気通路27のエンジン1への開口部には該補助
吸気通路27を開閉する補助吸気弁′55が配設され、
該補助吸気弁65にはバルブセレクタ64を介して動弁
機構65が連結されておシ、該パルプセレクタ54の作
動時、動弁機構55により補助吸気弁65を開閉作動せ
しめるようにしている。そして、上記切替バルブ52お
よびパルプセレクタ64はそれぞれ制御回路8に接続さ
れている。
In addition, at the branch of the oxygen-rich air supply passage 16 with the auxiliary intake passage 27, the oxygen-rich air supply passage 15 upstream of the branch is connected to the oxygen-rich air supply passage 1 downstream of the branch.
5 or the auxiliary intake passage 27 is interposed, and when the switching valve 52 is operated, the oxygen-rich air supply passage 16 upstream of the branch portion and the auxiliary intake passage 27 are made to communicate with each other. I have to. On the other hand, an auxiliary intake valve '55 for opening and closing the auxiliary intake passage 27 is disposed at the opening of the auxiliary intake passage 27 to the engine 1.
A valve operating mechanism 65 is connected to the auxiliary intake valve 65 via a valve selector 64, and when the pulp selector 54 is activated, the valve operating mechanism 55 opens and closes the auxiliary intake valve 65. The switching valve 52 and pulp selector 64 are each connected to the control circuit 8.

上記制御回路8は、第2図に示すように、主および補助
吸入空気量検出器5および28からの各検出信号に基づ
いて基本噴射量信号をパルス信号として出力する基本噴
射量決定回路56と、該基本噴射量決定回路66からの
基本噴射量信号に応じて主および補助燃料噴射弁7およ
び!10を駆動制御し、後述の第2比較器45からの高
負荷時信号を受けていないとき(低負荷時)には主燃料
噴射弁7のみを駆動し、高負荷時信号を受けたとき(高
負荷時)には両燃料噴射弁7,60を駆動する燃料噴射
弁駆動回路57とを備え、エンジンの低負荷時には主吸
気通路2の吸入空気量に応じた量の燃料を主燃料噴射弁
7から噴射し、エンジンの高負荷時には主および補助吸
気通路2および27の吸入空気量に応じた量の燃料を主
および補助燃料噴射弁7および60から噴射するように
している。
As shown in FIG. 2, the control circuit 8 includes a basic injection amount determining circuit 56 that outputs a basic injection amount signal as a pulse signal based on each detection signal from the main and auxiliary intake air amount detectors 5 and 28. , the main and auxiliary fuel injection valves 7 and ! according to the basic injection amount signal from the basic injection amount determining circuit 66. 10, and when not receiving a high load signal from a second comparator 45 (described later) (during low load), only the main fuel injector 7 is driven, and when receiving a high load signal ( When the engine is under low load, the main fuel injection valve is provided with a fuel injection valve drive circuit 57 that drives both the fuel injection valves 7 and 60. When the engine is under high load, fuel is injected from the main and auxiliary fuel injection valves 7 and 60 in an amount corresponding to the amount of intake air in the main and auxiliary intake passages 2 and 27.

また、上記制御回路8には、直荷検出器24からの検出
信号に基づいてエンジンの負荷状態に相当する負荷状態
信号を出力する負荷状態検出回路!+8と、該負荷状態
検出回路68からの負荷状態信号に応じて酸素濃度制御
装置26を駆動制御する駆動信号を出力する駆動回路6
9と、上記負荷状態検出回路38からの負荷状態信号に
基づいてエンジンの負荷状態に応じた目標酸素濃度に相
当する基準値信号を設定する基準値設定回路40と、該
基準値設定回路40からの基準値信号と酸素濃度検出器
25からのフィードバック信号としての検出信号とを比
較して両者の偏差に相当する偏差信号を出力する第1比
較器41と、該第1比較器41からの偏差信号を受けて
上記駆動回路69の駆動信号を補正して酸素濃度制御装
置26に出力する補正回路42と、上記負荷検出器24
からの検出信号と基準値とを比較してエンジンの高負荷
時に高負荷時信号を切替バルブ32およびバルブセレク
タ54並びに上記燃料噴射弁駆動回路57に出力する第
2比較器46とが具備されている。
The control circuit 8 also includes a load state detection circuit that outputs a load state signal corresponding to the engine load state based on the detection signal from the direct load detector 24! +8, and a drive circuit 6 that outputs a drive signal for driving and controlling the oxygen concentration control device 26 in accordance with the load state signal from the load state detection circuit 68.
9, a reference value setting circuit 40 that sets a reference value signal corresponding to a target oxygen concentration according to the load state of the engine based on the load state signal from the load state detection circuit 38; a first comparator 41 that compares a reference value signal of 1 with a detection signal as a feedback signal from the oxygen concentration detector 25 and outputs a deviation signal corresponding to the deviation between the two; a correction circuit 42 that receives a signal, corrects the drive signal of the drive circuit 69, and outputs the corrected signal to the oxygen concentration control device 26; and the load detector 24.
A second comparator 46 is provided, which compares the detection signal from the engine with a reference value and outputs a high-load signal to the switching valve 32, the valve selector 54, and the fuel injection valve drive circuit 57 when the engine is under high load. There is.

そして、上記基準値設定回路40での目標酸素濃度はエ
ンジンの低負荷時には大で、エンジン負荷が増大するに
従って減少し、高負荷時には通常の空気の酸素濃度(約
21係)になるように設定されている。よって、エンジ
ンの低負荷時に1ハ、酸素濃度制御装置26を作動制御
して開閉弁12を全閉に閉作動させ酸素濃度制御弁18
を全開に開作動させるとともに、切替バルブ52および
バルブセレクタ34を非作動状態にすることにより、酸
素リッチ空気供給通路15からの酸素リッチ空気を主吸
気通路2を介してエンジン1に供給し、エンジン負荷が
増大するに従って酸素1.浸度制御装置26によりリン
ケージ19を図で右方へ移動させて開閉弁12を全閉か
ら開作動させ酸素濃度制御弁18を全開から閉作動させ
て、酸素リッチ空気供給通路1!1からの酸素リッチ空
気を主吸気四路2からの通常の空気で希釈してエンジン
1に供給する一方、エンジンの高負荷時には、酸素濃度
制御装置26により開閉弁12を全開に開作動坏せ酸素
一度制御弁18を全開に閉作動させるとともに、切替バ
ルブ62およびバルブセレクタS4を作動させて酸素リ
ッチ空気供給通路15と補助吸気通路27とを連通せし
めかつ補助吸気弁6!1を開閉作動させることにより、
主吸気通路2を介して通常の空気をエンジン1に供給す
るとともに、吸込ポンプ17が過給機として働いて酸素
リッチ空気供給通路13からの酸素リッチ空気を補助吸
気通路27を介してエンジン1に過給するように制御す
る過給制御装置44が構成されている。
The target oxygen concentration in the reference value setting circuit 40 is set to be high when the engine load is low, decrease as the engine load increases, and become the oxygen concentration of normal air (approximately 21 units) when the engine load increases. has been done. Therefore, when the load of the engine is low, the operation of the oxygen concentration control device 26 is controlled to fully close the on-off valve 12 and the oxygen concentration control valve 18 is activated.
By fully opening the switching valve 52 and the valve selector 34, the oxygen-rich air from the oxygen-rich air supply passage 15 is supplied to the engine 1 through the main intake passage 2, and the engine As the load increases, oxygen 1. The immersion level control device 26 moves the linkage 19 to the right in the figure, operates the on-off valve 12 from fully closed to open, and operates the oxygen concentration control valve 18 from fully open to closed, thereby controlling the flow of air from the oxygen-rich air supply passage 1!1. Oxygen-rich air is diluted with normal air from the main intake 4-way 2 and supplied to the engine 1, while when the engine is under high load, the oxygen concentration control device 26 fully opens the on-off valve 12 to control oxygen once. By fully opening and closing the valve 18, operating the switching valve 62 and valve selector S4 to communicate the oxygen-rich air supply passage 15 and the auxiliary intake passage 27, and opening and closing the auxiliary intake valve 6!1.
Normal air is supplied to the engine 1 through the main intake passage 2, and the suction pump 17 works as a supercharger to supply oxygen-rich air from the oxygen-rich air supply passage 13 to the engine 1 through the auxiliary intake passage 27. A supercharging control device 44 is configured to control supercharging.

したがって、上記実施例においては、燃焼性の比較的悪
いエンジンの低負荷時には、酸素濃度制御装置26の作
動制御により酸素濃度富化装置26によって富化された
酸素リッチ空気が主吸気通路2を介してエンジン1に供
給されることにより、吸入空気の酸素濃度が増大して、
低負荷時の燃焼性を向上させることができる。
Therefore, in the above embodiment, when the engine with relatively poor combustibility is under low load, the oxygen-rich air enriched by the oxygen concentration enrichment device 26 is routed through the main intake passage 2 by the operation control of the oxygen concentration control device 26. As a result, the oxygen concentration of the intake air increases,
Combustibility under low load can be improved.

一方、エンジンの高負荷時には、酸素濃度制御装置26
の作動制御により通常の空気が主吸気通路2を介してエ
ンジン1に供給されるとともに、酸素濃度富化装置25
によって富化された酸素リッチ空気は、過給制御装置4
4の作動により、過給通路としての補助吸気通路27を
介してエンジン1に過給されることにより、出力が要求
され石高負荷時の出力性能を向上させることができる。
On the other hand, when the engine is under high load, the oxygen concentration control device 26
Normal air is supplied to the engine 1 through the main intake passage 2 by the operation control of the oxygen concentration enrichment device 25.
The oxygen-rich air enriched by the supercharging control device 4
4, the engine 1 is supercharged via the auxiliary intake passage 27 serving as a supercharging passage, thereby increasing output and improving output performance under high engine loads.

その際、過給気として酸素濃度の高い酸素リンチ空気を
過給しているため、出力向上のだめの過給効果が高いの
で、その分過給欧が少なくて済み、それに伴って過給機
(吸込ポンプ17)が小型のものでよく、また過給通路
(補助吸気通路27)が小径のものでよく、過給システ
ムの小型化をし]ることかできる。また、そのことによ
り、過給/ステムの車載性を向上させることができると
ともに、駆動損失を低減させることができ、ひいてに出
力および燃費の向上に寄与することができる。
At that time, since oxygen lynch air with a high oxygen concentration is used as supercharging air, the supercharging effect for improving output is high. The suction pump 17) may be small, and the supercharging passage (auxiliary intake passage 27) may be small in diameter, allowing the supercharging system to be downsized. Furthermore, this makes it possible to improve the on-vehicle compatibility of the supercharger/stem, reduce drive loss, and contribute to improvements in output and fuel efficiency.

また、上記実施例では、酸素濃度富化装置26の吸込ポ
ンプ17を過給機として兼用しているので、上記効果を
より一層発現することができる。
Further, in the above embodiment, since the suction pump 17 of the oxygen concentration enrichment device 26 is also used as a supercharger, the above effects can be further exhibited.

尚、本発明は上記実施例に限定されるものでrしなく、
その他種々の変形例をも包含するものである。例えば、
上記実施例では、酸素濃度富化装置2!1として酸素透
過法によるものについて述べたが、窒素吸着法によるも
のに対しても適用できるのは勿論である。
It should be noted that the present invention is not limited to the above embodiments,
It also includes various other modifications. for example,
In the above embodiment, the oxygen concentration enrichment device 2!1 is based on an oxygen permeation method, but it is of course applicable to a device using a nitrogen adsorption method.

また、上記実施例では、エンジンの高負荷時にのみ酸素
リッチ空気を過給したいわゆる部分過給システムについ
て述べたが、エンジンの全負荷時に亘って酸素リッチ空
気を過給するいわゆる全過給システムに対しても適用で
きるのは勿論である。
Furthermore, in the above embodiment, a so-called partial supercharging system was described in which oxygen-rich air was supercharged only when the engine was under high load, but a so-called full supercharging system in which oxygen-rich air was supercharged during full engine load Of course, it can also be applied to

以上説明したように、本発明によれば、酸素濃度富化装
置を備えたエンジンにおいて、該酸素濃度富化装置によ
って富化された酸素リッチ空気を過給気として過給通路
に供給するようにしたので、過給機および過給システム
を小型化することができ、過給システムの車載性の向上
および駆動損失の低減化を図ることができるものである
As explained above, according to the present invention, in an engine equipped with an oxygen concentration enrichment device, oxygen-rich air enriched by the oxygen concentration enrichment device is supplied to the supercharging passage as supercharging air. Therefore, the supercharger and the supercharging system can be downsized, and it is possible to improve the on-vehicle compatibility of the supercharging system and reduce driving loss.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体概略構成図
、第2図は制御口絡めブロック図である。 1・・エンジン、2・・主吸気通路、5・・主吸入空気
量検出器、6・・主スロツトルバルブ、7・・主燃料噴
射弁、8・・制御回路、9・・主吸気弁、12・・開閉
弁、16・・酸素リッチ空気供給通路、15・・酸素透
過膜、16・・送給ポンプ、17・・吸込ポンプ、18
・・酸素濃度制御弁、25・・酸素濃度富化装置、24
・・負荷検出器、25・・酸素濃度検出器、26・・酸
素濃度制御装置、27・・補助吸気通路、28・・補助
吸入空気量検出器、29・・補助スロットルバルブ、5
0・・補助燃料噴射弁、52・・切替バルブ、66・・
補助吸気弁、64・・バルブセレクタ、55・・動弁機
構、66・・基本噴射軟決定回路、57・・燃料噴射弁
駆動回路、58・・負荷状態検出回路、59・・駆動回
路、40・・基準値設定回路、41・・第1比較器、4
2・・補正回路、45・・第2比較器、44・・過給制
御装置。
The drawings show an embodiment of the present invention, with FIG. 1 being a general schematic diagram and FIG. 2 being a control port interlocking block diagram. DESCRIPTION OF SYMBOLS 1...Engine, 2...Main intake passage, 5...Main intake air amount detector, 6...Main throttle valve, 7...Main fuel injection valve, 8...Control circuit, 9...Main intake valve , 12...Opening/closing valve, 16...Oxygen-rich air supply passage, 15...Oxygen permeable membrane, 16...Feeding pump, 17...Suction pump, 18
...Oxygen concentration control valve, 25...Oxygen concentration enrichment device, 24
...Load detector, 25..Oxygen concentration detector, 26..Oxygen concentration control device, 27..Auxiliary intake passage, 28..Auxiliary intake air amount detector, 29..Auxiliary throttle valve, 5
0...Auxiliary fuel injection valve, 52...Switching valve, 66...
Auxiliary intake valve, 64... Valve selector, 55... Valve mechanism, 66... Basic injection soft decision circuit, 57... Fuel injection valve drive circuit, 58... Load state detection circuit, 59... Drive circuit, 40 ...Reference value setting circuit, 41...First comparator, 4
2. Correction circuit, 45. Second comparator, 44. Supercharging control device.

Claims (1)

【特許請求の範囲】[Claims] fil  空気中の酸素含有比率を増大させる酸素濃度
富化装置を備えたエンジンにおいて、エンジンに過給気
を供給する過給通路に上記酸素濃度富化装置によって富
化された酸素リッチ空気を供給するように制御する過給
制御装置を設けたことを特徴とするエンジンの吸気装置
fil In an engine equipped with an oxygen concentration enrichment device that increases the oxygen content ratio in air, oxygen-rich air enriched by the oxygen concentration enrichment device is supplied to a supercharging passage that supplies supercharging air to the engine. 1. An engine intake system characterized by being provided with a supercharging control device that performs control as follows.
JP57024922A 1982-02-17 1982-02-17 Suction device for engine Pending JPS58143119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57024922A JPS58143119A (en) 1982-02-17 1982-02-17 Suction device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024922A JPS58143119A (en) 1982-02-17 1982-02-17 Suction device for engine

Publications (1)

Publication Number Publication Date
JPS58143119A true JPS58143119A (en) 1983-08-25

Family

ID=12151627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024922A Pending JPS58143119A (en) 1982-02-17 1982-02-17 Suction device for engine

Country Status (1)

Country Link
JP (1) JPS58143119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639675A (en) * 1986-06-30 1988-01-16 Hino Motors Ltd Start assisting device for internal combustion engine
JPS63113116A (en) * 1986-04-30 1988-05-18 Hino Motors Ltd Air blowing device in enging cylinder
JPH01195926A (en) * 1988-02-01 1989-08-07 Shinnenshiyou Syst Kenkyusho:Kk Oxygen-rich air supply engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113116A (en) * 1986-04-30 1988-05-18 Hino Motors Ltd Air blowing device in enging cylinder
JPS639675A (en) * 1986-06-30 1988-01-16 Hino Motors Ltd Start assisting device for internal combustion engine
JPH01195926A (en) * 1988-02-01 1989-08-07 Shinnenshiyou Syst Kenkyusho:Kk Oxygen-rich air supply engine

Similar Documents

Publication Publication Date Title
JPH08254161A (en) Supercharging type internal combustion engine
JPS58143119A (en) Suction device for engine
JPS6158935A (en) Secondary air supply device of supercharged engine
JPS59115459A (en) Intake air device of engine
JPS58158317A (en) Combustion accelerating device of engine with supercharger
JPS58144659A (en) Air-intake apparatus for engine
JPS6318177A (en) Suction system for internal combustion engine
JP2639000B2 (en) Oxygen-enriched air control device for oxygen-enriched engine
JPS6385237A (en) Failure diagnosis method for air-fuel ratio control system
JPS58152121A (en) Suction device for engine
JPS58187573A (en) Combustion promoting device for engine
JPS58158362A (en) Air suction device for engine
JPS58160527A (en) Combustion accelerating device of engine
JPS58138239A (en) Suction device of engine
JPH03115735A (en) Controller of engine with supercharger
JPS58140451A (en) Intake apparatus for engine
JPS6380033A (en) Trouble diagnostics for air-fuel ratio control system
JPS6095150A (en) Air-fuel ratio control device for internal-combustion engine
JPS60173362A (en) Suction device for diesel engine
JPH03145546A (en) Oxygen-enriched air feeder
JPS597747A (en) Engine with controlled number of operating cylinder
JP3433409B2 (en) Engine fuel vapor treatment system
JPS58187574A (en) Combustion promoting device for engine controlled in number of operating cylinders
JPS59162349A (en) Air-fuel ratio control method for super charging engine
JPS58155242A (en) Combustion promoting device for engine