JPS6385237A - Failure diagnosis method for air-fuel ratio control system - Google Patents
Failure diagnosis method for air-fuel ratio control systemInfo
- Publication number
- JPS6385237A JPS6385237A JP22846386A JP22846386A JPS6385237A JP S6385237 A JPS6385237 A JP S6385237A JP 22846386 A JP22846386 A JP 22846386A JP 22846386 A JP22846386 A JP 22846386A JP S6385237 A JPS6385237 A JP S6385237A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- fuel
- control system
- upper limit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 115
- 238000003745 diagnosis Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 15
- 238000010926 purge Methods 0.000 claims abstract description 20
- 238000001179 sorption measurement Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 239000002828 fuel tank Substances 0.000 abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 230000005856 abnormality Effects 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
- F02M25/0809—Judging failure of purge control system
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は内燃機関の空燃比制御システムの故障診断方法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fault diagnosis method for an air-fuel ratio control system for an internal combustion engine.
排気ガス中の有害成分HC、Co及びNOxを同時に低
減できる三元触媒は、機関シリンダ内に供給される混合
気の空燃比が理論空燃比となったときに最も浄化率が高
くなる。従ってこの三元触媒を用いた場合、機関シリン
ダ内に供給される混合気の空燃比を理論空燃比に一致さ
せる必要がある。A three-way catalyst that can simultaneously reduce harmful components HC, Co, and NOx in exhaust gas has the highest purification rate when the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder reaches the stoichiometric air-fuel ratio. Therefore, when using this three-way catalyst, it is necessary to make the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder coincide with the stoichiometric air-fuel ratio.
このために混合気の空燃比を制御するための補助空気供
給制御弁を有し、排気通路内に設けられた排気ガスセン
サの出力信号に基いて補助空気供給制御弁をフィードバ
ック制御することにより補助空気量を制御し、これによ
り混合気の空燃比を理論空燃比に一致させるようにした
空燃比制御装置が公知である。For this purpose, an auxiliary air supply control valve is provided to control the air-fuel ratio of the air-fuel mixture, and the auxiliary air supply control valve is feedback-controlled based on the output signal of an exhaust gas sensor installed in the exhaust passage. An air-fuel ratio control device is known that controls the air-fuel ratio of air-fuel mixture to match the stoichiometric air-fuel ratio.
一方、主に燃料タンク内の蒸発燃料が大気に放出される
の°を阻止するために蒸発燃料を一度薄発燃料吸着装置
内に吸着させ、次いで機関運転時にこの蒸発燃料を大気
と共に吸気通路内に供給するようにした蒸発燃料吸着装
置が公知である。On the other hand, mainly to prevent the evaporated fuel in the fuel tank from being released into the atmosphere, the evaporated fuel is first adsorbed in a thin fuel adsorption device, and then this evaporated fuel is transferred into the intake passage along with the atmosphere during engine operation. A vaporized fuel adsorption device that supplies vaporized fuel to fuel vapor is known.
さて、空燃比制御装置と蒸発燃料吸着装置を同時に設け
た内燃機関において、空燃比制御システムが正常で1あ
っても、機関運転条件によっては蒸発燃料゛咬着装置が
蒸発燃料を吸気通路内に放出し、これにより空燃比がリ
ッチ状態になって空燃比制御システムにおけるフィード
バック量が上限値をとり続けることとなり、混合気を理
論空燃比に制御できな(なる場合がある。この状態にお
いて空燃比制御システムの故障診断を行なうと、フィー
ドバック量が上限値を維持するために誤診断をしてしま
う。Now, in an internal combustion engine that is equipped with an air-fuel ratio control device and an evaporative fuel adsorption device at the same time, even if the air-fuel ratio control system is normal, depending on the engine operating conditions, the evaporative fuel trapping device traps evaporative fuel into the intake passage. As a result, the air-fuel ratio becomes rich and the feedback amount in the air-fuel ratio control system continues to be at the upper limit value, making it impossible to control the air-fuel mixture to the stoichiometric air-fuel ratio. When a control system is diagnosed for failure, a misdiagnosis is made in order to maintain the feedback amount at the upper limit value.
蒸発燃料の影響を受けることなく空燃比制御システムの
故障診断を行なう方法として、本出願人は特願昭61−
144782号において、空燃比のフィードバック量が
実質的に上限値に達した時、蒸発燃料吸着装置のパージ
制御用開閉弁を所定時間閉弁し、その後、フィードバッ
ク量が実質的に上限値に達していれば空燃比制御システ
ムが故障していると判断する故障診断方法を提案した。As a method for diagnosing the failure of an air-fuel ratio control system without being affected by evaporated fuel, the applicant has proposed
In No. 144782, when the feedback amount of the air-fuel ratio substantially reaches the upper limit value, the purge control on-off valve of the evaporative fuel adsorption device is closed for a predetermined period of time, and then the feedback amount substantially reaches the upper limit value. We proposed a fault diagnosis method to determine that the air-fuel ratio control system is malfunctioning.
この提案方法において、燃料蒸気の蒸発量が多い時故障
診断のためにパージ制御用開閉弁を閉弁すると、空燃比
がリーン状態になるのでフィードバック量が叙少してい
くが、この減少の速さがそれほど大きくないため、空燃
比は一時的にオーバーリーン状態になり、機関の運転性
が一時的に悪化するという問題がある。In this proposed method, when the purge control on-off valve is closed for fault diagnosis when the amount of fuel vapor evaporation is large, the air-fuel ratio becomes lean, so the feedback amount decreases, but the speed of this decrease is Since this is not so large, the air-fuel ratio temporarily becomes over-lean, which causes a problem in that the engine's drivability temporarily deteriorates.
また頻繁にパージ制御用開閉弁を閉弁すると、蒸発燃料
吸着装置から燃料蒸気が大気中へ放出される可能性が高
くなり、エバポエミッションが悪化するおそれを生じる
という問題がある。Furthermore, if the purge control on-off valve is frequently closed, there is a problem in that there is a high possibility that fuel vapor will be released into the atmosphere from the evaporative fuel adsorption device, which may worsen evaporative emissions.
上記問題点を解決するため、本発明に係る故障診断方法
は、空燃比がリーン状態になってもエンジンの運転性に
影響を及ぼさない状態にある時、パージ制御用開閉弁を
閉弁して故障診断を行なうことを特徴としている。In order to solve the above problems, the fault diagnosis method according to the present invention closes the purge control on-off valve when the air-fuel ratio is in a lean state without affecting engine operability. The feature is that it performs failure diagnosis.
以下図示実施例により本発明を説明する。 The present invention will be explained below with reference to illustrated embodiments.
第2図において、11は機関本体、12は吸気マニホル
ド、13は気化器、14は排気マニホルド、15はディ
ストリビュータ、16は機関冷却水温を検出する水温セ
ンサ、17は吸気マニホルド内の負圧を検出する負圧セ
ンサ、18は排気マニホルド14内の排気通路内に設置
された酸素濃度検出器からなる排気ガスセンサ、19は
ディストリビュータ15に取付けられた回転数センサ、
21は燃料タンク、22はチャコールキャニスタからな
る蒸発燃料吸着装置、41は電子制御ユニットを夫々示
す。気化器13のメイン燃料通路23内にはエアブリー
ド管24が開口し、このエアブリード管24内には補助
空気制J’ll用電磁弁25が挿入される。電磁弁25
が開弁すると補助空気がエアブリード管24を介してメ
イン燃料通路23内に供給され、それによってメイン燃
料通路23から供給される燃料量が変化するために機関
シリンダ内に供給される混合気の空燃比が変化する。従
ってエアブリード管24は空燃比制御用補助空気の供給
路を形成している。空燃比を制御するためには気化器ス
ロットル弁後流の吸気通路内に補助空気を供給するよう
にしてもよく、この場合供給路は気化器スロットル弁後
流の吸気通路内に連結される。In Fig. 2, 11 is the engine body, 12 is the intake manifold, 13 is the carburetor, 14 is the exhaust manifold, 15 is the distributor, 16 is the water temperature sensor that detects the engine cooling water temperature, and 17 is the negative pressure inside the intake manifold. 18 is an exhaust gas sensor consisting of an oxygen concentration detector installed in the exhaust passage in the exhaust manifold 14; 19 is a rotation speed sensor attached to the distributor 15;
21 is a fuel tank, 22 is an evaporated fuel adsorption device consisting of a charcoal canister, and 41 is an electronic control unit. An air bleed pipe 24 opens in the main fuel passage 23 of the carburetor 13, and an auxiliary air control J'll solenoid valve 25 is inserted into the air bleed pipe 24. Solenoid valve 25
When the valve opens, auxiliary air is supplied into the main fuel passage 23 through the air bleed pipe 24, thereby changing the amount of fuel supplied from the main fuel passage 23, thereby reducing the amount of air-fuel mixture supplied into the engine cylinder. Air/fuel ratio changes. Therefore, the air bleed pipe 24 forms a supply path for auxiliary air for air-fuel ratio control. In order to control the air-fuel ratio, auxiliary air may be supplied into the intake passage downstream of the carburetor throttle valve, in which case the supply passage is connected to the intake passage downstream of the carburetor throttle valve.
一方、蒸発燃料吸着装置22は一方では蒸発燃料導管2
6を介して燃料タンク21に連結され、他方では蒸発燃
料導管27を介して吸気マニホルド12内に連結される
。この蒸発燃料導管27内にはパージ制御用電磁弁28
が挿入される。蒸発燃料吸着装置22はその内部に活性
炭29を内蔵しており、燃料タンク21内で発生した燃
料蒸気はこの活性炭29に吸着される。電磁弁28が開
弁すると活性炭29を通して大気が蒸発燃料導管27内
に送り込まれ、このとき活性炭29に吸着された燃料蒸
気が活性炭29から脱離して大気と共に蒸発燃料導管2
7内に送り込まれる。次いで燃料蒸気は吸気マニホルド
12内に供給され、従って蒸発燃料導管27は蒸発燃料
パージ通路を形成する。On the other hand, the evaporated fuel adsorption device 22 is connected to the evaporated fuel conduit 2 on the other hand.
6 to the fuel tank 21 and, on the other hand, to the intake manifold 12 via an evaporated fuel conduit 27 . A solenoid valve 28 for purge control is provided in this evaporated fuel conduit 27.
is inserted. The evaporated fuel adsorption device 22 has activated carbon 29 built therein, and the fuel vapor generated within the fuel tank 21 is adsorbed by the activated carbon 29. When the electromagnetic valve 28 opens, the atmosphere is sent into the evaporated fuel conduit 27 through the activated carbon 29, and at this time, the fuel vapor adsorbed by the activated carbon 29 is desorbed from the activated carbon 29 and flows into the evaporated fuel conduit 2 together with the atmosphere.
Sent into 7. Fuel vapor is then fed into the intake manifold 12, such that the evaporated fuel conduit 27 forms a evaporated fuel purge passage.
電子制御ユニット(ECU) 41は、マイクロプロセ
ッシングユニット42と、メモリ43と、入力ボート4
4と、出力ポート45とを備え、これらはバス46によ
り相互に接続される。水温センサ16、負圧センサ17
、排気ガスセンサ18、回転数センサ19、スロットル
弁31に連結されたスロットルセンサ32、およびチョ
ーク弁33に連結されたチョークセンサ34は、それぞ
れ入力ボート44に接続され、これらのセンサの出力信
号は入力ボート44を介してメモリ43に格納される。An electronic control unit (ECU) 41 includes a microprocessing unit 42, a memory 43, and an input board 4.
4 and an output port 45, which are interconnected by a bus 46. Water temperature sensor 16, negative pressure sensor 17
, the exhaust gas sensor 18, the rotation speed sensor 19, the throttle sensor 32 connected to the throttle valve 31, and the choke sensor 34 connected to the choke valve 33 are each connected to an input boat 44, and the output signals of these sensors are inputted. It is stored in the memory 43 via the port 44.
電磁弁25 、28のソレノイドは出力ポート45に接
続され、出力ポート45から出力される指令信号に基い
て消励磁され、これにより電磁弁25 、28を開閉さ
せる。The solenoids of the electromagnetic valves 25, 28 are connected to the output port 45, and are deenergized based on a command signal output from the output port 45, thereby opening and closing the electromagnetic valves 25, 28.
排気ガスセンサ18は、排気ガスの空燃比(A/F)に
応じて第3図に示すような電圧信号を出力する。The exhaust gas sensor 18 outputs a voltage signal as shown in FIG. 3 depending on the air-fuel ratio (A/F) of the exhaust gas.
すなわち空燃比がリッチ状態のとき高圧信号(リッチ信
号)、リーン状態のとき低電圧信号(リーン信号)、理
論空燃比のとき例えば0.45V程度の電圧信号を出力
する。ECU 41は、水温、エンジン回転数、吸気マ
ニホルド12内の負圧、およびスロットル弁31の開度
等の情報に基いて、エンジンの運転状態が混合気を理論
空燃比にすべく空燃比制御システムをフィードバック制
御する状態にあるか否か判断する。もし運転状態がフィ
ードバック制御する状態にあれば、fICO41は、第
4図に示すように、排気ガスセンサ18の出力信号に応
じて、混合気が理論空燃比になるように補正値■、を算
出する。補正値V、は混合気の空燃比がリッチ状態にな
るほど大きくなり、所定値以上のリッチ状態になると上
限値1tmax、所定値以下のリーン状態になると下限
値1ainをとる。しかしてECU 41は、この補正
値vFに基いて気化器13の電磁弁25の開度を調節し
、エアブリード量を変化させて吸気通路内への燃料供給
量を制御する。That is, a high voltage signal (rich signal) is output when the air-fuel ratio is in a rich state, a low voltage signal (lean signal) is output when the air-fuel ratio is in a lean state, and a voltage signal of, for example, about 0.45 V is output when the air-fuel ratio is in a stoichiometric state. The ECU 41 controls an air-fuel ratio control system to adjust the operating state of the engine to bring the air-fuel mixture to the stoichiometric air-fuel ratio based on information such as water temperature, engine speed, negative pressure in the intake manifold 12, and opening degree of the throttle valve 31. Determine whether or not the system is in a state of feedback control. If the operating state is in a feedback control state, the fICO 41 calculates a correction value ■, according to the output signal of the exhaust gas sensor 18, so that the air-fuel mixture becomes the stoichiometric air-fuel ratio, as shown in FIG. . The correction value V becomes larger as the air-fuel ratio of the air-fuel mixture becomes richer, and takes an upper limit value 1tmax when the air-fuel ratio becomes richer than a predetermined value, and takes a lower limit value 1ain when the air-fuel ratio becomes leaner than a predetermined value. The ECU 41 then adjusts the opening degree of the solenoid valve 25 of the carburetor 13 based on this correction value vF, changes the amount of air bleed, and controls the amount of fuel supplied into the intake passage.
またECU 41は、エンジンの運転状態および補正値
v2の大きさによって、次に述べるように空燃比制御シ
ステムの故障診断を行なう。Furthermore, the ECU 41 performs failure diagnosis of the air-fuel ratio control system, as described below, based on the operating state of the engine and the magnitude of the correction value v2.
第1図は故障診断ルーチンのフローチャートを示す、こ
のルーチンは例えば200m5e(毎に割込み処理され
る。FIG. 1 shows a flowchart of a fault diagnosis routine. This routine is interrupted, for example, every 200 m5e.
ステップ101では、エンジンの運転状態が故障診断を
行なうための条件を満足しているか否かを判断する。す
なわち、チョーク弁33の開度が所定値以上であり、エ
ンジン回転数が所定範囲内(例えば2000〜4000
rpm)にあり、かつ吸気負圧が所定範囲内(例えば−
350〜−150sdg)にある時、診断条件を満足し
ていると判断してステップ102以下へ進み、診断条件
を満足し−ていないと判断した場合、ステップ113へ
進んで電磁弁28を開放する指令を行ない、このルーチ
ンを終了する。ステップ102および103ではフィー
ドバックの補正値■、すなわちフィードバック11が正
常範囲L〜■2の間にあるか否かを判断する。この正常
範囲II 〜1.は、下限値loginと上限値Ima
xの間の範囲よりも若干狭く、すなわち正常範囲の最低
値11は下限値1IIIinよりも大きく、正常範囲の
最高値I2は上限値Imaxよりも小さい。しかして補
正値VFが正常範囲■1〜■2の間にない場合、故障診
断を行なうべくステップ104以下へ進み、正常範囲1
+〜■2の中にある場合、故障診断を行なう必要がない
のでステップ113へ進んで電磁弁28を開放する指令
を行ない、このルーチンを終了する。In step 101, it is determined whether the operating state of the engine satisfies the conditions for fault diagnosis. That is, the opening degree of the choke valve 33 is greater than or equal to a predetermined value, and the engine speed is within a predetermined range (for example, 2000 to 4000).
rpm) and the intake negative pressure is within a predetermined range (for example -
350 to -150 sdg), it is determined that the diagnostic conditions are satisfied and the process proceeds to step 102. If it is determined that the diagnostic conditions are not satisfied, the process proceeds to step 113 and the solenoid valve 28 is opened. Issue the command and exit this routine. In steps 102 and 103, it is determined whether the feedback correction value (2), that is, the feedback 11, is within the normal range L to (2). This normal range II ~1. is the lower limit value login and the upper limit value Ima
x, that is, the lowest value 11 of the normal range is greater than the lower limit 1IIIin, and the highest value I2 of the normal range is smaller than the upper limit Imax. However, if the correction value VF is not within the normal range ■1 to ■2, the process proceeds to step 104 and subsequent steps for fault diagnosis, and the normal range 1
If the value is between + and ■2, there is no need to perform a failure diagnosis, so the process advances to step 113, where a command is issued to open the solenoid valve 28, and this routine is ended.
故障診断に際し、まずステップ102においてリーン異
常か否か、すなわち補正値vFが最低値■。When diagnosing a failure, first, in step 102, it is determined whether there is a lean abnormality or not, that is, the correction value vF is the lowest value ■.
以下か否かを判断し、補正値V、が最低値I、以下であ
ればステップ105へ進み、補正値vFが最低値1.よ
りも大きければステップ103へ進み、リッチ異常(補
正値■、がが最高値I2以上)か否かを判断する。補正
値VFが最高値11以上の場合、リッチ故障を起こして
いるおそれがあり、次にリッチ故障の診断をするに先立
ち、ステップ104において現在車両が減速中か否かを
判断する。It is determined whether the correction value V is equal to or less than the minimum value I, and if the correction value V is equal to or less than the minimum value I, the process proceeds to step 105, and the correction value vF is equal to or less than the minimum value 1. If it is larger than , the process proceeds to step 103, where it is determined whether or not there is a rich abnormality (the correction value ■ is greater than or equal to the maximum value I2). If the correction value VF is greater than or equal to the maximum value 11, there is a possibility that a rich fault has occurred, and before diagnosing the rich fault, it is determined in step 104 whether or not the vehicle is currently decelerating.
例えばエンジン回転数が200Orpmより大きく、か
つ吸気負圧が一300mm)Igより小さい場合、減速
中であると判断される。減速中、空燃比がリーン状態に
なっても、エンジンの運転性はほとんど影響を受けない
ので、次にリッチ故障の診断をすべ(ステップ106へ
進んでパージ制御用電磁弁28を閉じ、ステップ107
においてタイマの時刻tを0にクリアする。、減速中で
はない時、空燃比がり−ンー状態になるとエンジンの運
転性が悪化するのでパージ!制御用電磁弁28を閉弁す
べきではなく、ステップ113において電磁弁28を開
放する指令を行ない、このルーチンを終了する。For example, if the engine speed is higher than 200 rpm and the intake negative pressure is lower than 1300 mm), it is determined that the engine is decelerating. Even if the air-fuel ratio becomes lean during deceleration, engine drivability is hardly affected, so the next step is to diagnose the rich fault (proceed to step 106, close the purge control solenoid valve 28, and step 107).
In this step, the time t of the timer is cleared to 0. When the air-fuel ratio is not decelerating, the engine's drivability will deteriorate, so purge! The control solenoid valve 28 should not be closed, but a command to open the solenoid valve 28 is issued in step 113, and this routine ends.
ステップ102において補正値■7が最高値12以上で
はない場合、補正値■、は最低値■、以下であるので次
にリーン故障の診断がされることとなる。リーン故障の
診断の場合、電磁弁28を閉弁することにより空燃比が
大きくリーン側にずれることがないのでステップ104
を実行する必要はなく、ステップ105へ進む。In step 102, if the correction value (7) is not greater than the maximum value 12, the correction value (2) is less than or equal to the minimum value (2), so a diagnosis of a lean failure will be made next. In the case of diagnosing a lean failure, closing the solenoid valve 28 prevents the air-fuel ratio from shifting too much toward the lean side, so step 104 is performed.
There is no need to execute , and the process advances to step 105.
故障診断に際し、まずステップ106においてパージ制
御用電磁弁28を閉弁し、ステップ107においてタイ
マの時刻tを0にクリアする。ステップ108では時刻
tが所定値以上になったか否か判断する。すなわち、電
磁弁28を閉弁してから所定の診断待時間Tだけ経過し
ていなければステップ112において時刻tに1を加算
してこのルーチンを終了し、逆に診断待時間T−t−経
過していれば、ステップ109において補正値V、が正
常か否か、すなわち補正値■、が上記正常範囲1.−1
2の間にあるか否か判断する。しかして補正値vFが正
常範囲内にあればステップ113においてパージ制御用
電磁弁28を開放する。また正常範囲内になければステ
ップ110に進み、時刻tが異常を判断するのに必要な
時間すなわち診断時間T′を経過しているか否かを判断
する。診断時間T′を過ぎていなければ、ステップ11
2へ進んで時刻tに1を加算してこのルーチンを終了す
る。逆に診断時間T′を過ぎていればステップ111に
おいて異常フラグをセットした後ステップ119におい
て電磁弁28を開放し、このルーチンを終了する。異常
フラグがセットされると、運転席に設けられた図示しな
い警報ランプが点灯するようになっている。このように
してこの診断ルーチンを終了する。When diagnosing a failure, first, in step 106, the purge control solenoid valve 28 is closed, and in step 107, the time t of the timer is cleared to 0. In step 108, it is determined whether time t has exceeded a predetermined value. That is, if the predetermined diagnostic waiting time T has not elapsed since the solenoid valve 28 was closed, 1 is added to the time t in step 112 and this routine is ended, and conversely, the diagnostic waiting time T-t-elapsed If so, it is determined in step 109 whether or not the correction value V is normal, that is, the correction value ■ is within the normal range 1. -1
Judge whether it is between 2 or not. If the correction value vF is within the normal range, the purge control solenoid valve 28 is opened in step 113. If it is not within the normal range, the process proceeds to step 110, where it is determined whether the time t has passed the time required to determine an abnormality, that is, the diagnostic time T'. If the diagnosis time T' has not passed, step 11
2, 1 is added to time t, and this routine ends. Conversely, if the diagnostic time T' has passed, an abnormality flag is set in step 111, and then the solenoid valve 28 is opened in step 119, and this routine is ended. When the abnormality flag is set, a warning lamp (not shown) provided on the driver's seat lights up. This concludes this diagnostic routine.
なおこの診断ルーチンは、空燃比制御システムが故障し
ているか否かを一度判断すると、その走行においてはそ
の後再度判断しないようにしてもよい。すなわち、−走
行中、−度だけ故障診断するようにしてもよい。Note that once this diagnostic routine has determined whether or not the air-fuel ratio control system is malfunctioning, it may not be determined again during that run. In other words, the fault diagnosis may be performed only - times while the vehicle is running.
第5図は第1図に示す故障診断ルーチンによる故障診断
時における補正値V、および空燃比A/Fの時間的変化
を示し、この図示例は空燃比制御システムが正常の場合
である。FIG. 5 shows temporal changes in the correction value V and the air-fuel ratio A/F at the time of fault diagnosis using the fault diagnosis routine shown in FIG. 1, and this illustrated example is for a case where the air-fuel ratio control system is normal.
補正値vFは電磁弁28を閉じたことにより上限値1o
+axから傾きK11でいったん下降し、上昇(傾きK
t)および下降(傾きK11)を繰返しながら上下限値
Imax 、 lm1nの中間の値に近づいていく。こ
の時、空燃比は電磁弁28を閉じたことによりリッチ状
態から一時的にリーン状態となり(斜iHで示す)、そ
の後フィードバック制御により理論空燃比(λ=1)に
落着く。このように電磁弁28の閉弁により急にリーン
状態になるのは、を磁弁28を閉じても補正値V、の追
従が遅いために空燃比制御システムがまだ若干リッチ状
態であると判断して空燃比がリーン状態になるように気
化器13の電磁弁25を制御するからである。しかして
パージ制御用電磁弁28の閉弁後部合気がリッチ状態か
ら急にリーン状態になるが、このように補正値Vvが上
限値In+axになったことにより故障診断を行なう場
合、エンジンが減速中であるため、空燃比がリーン状態
になってもエンジンの運転性が損なわれることはない。The correction value vF is set to the upper limit value 1o by closing the solenoid valve 28.
From +ax, it descends once at a slope of K11, and then rises (slope of K11).
t) and descending (inclination K11), it approaches the intermediate value between the upper and lower limit values Imax and lm1n. At this time, the air-fuel ratio temporarily changes from a rich state to a lean state (indicated by diagonal iH) by closing the electromagnetic valve 28, and then settles to the stoichiometric air-fuel ratio (λ=1) by feedback control. The reason why the solenoid valve 28 suddenly becomes lean when the solenoid valve 28 is closed is because the correction value V is slow to follow even when the solenoid valve 28 is closed, so the air-fuel ratio control system determines that the air-fuel ratio control system is still in a slightly rich state. This is because the solenoid valve 25 of the carburetor 13 is controlled so that the air-fuel ratio becomes lean. However, when the purge control solenoid valve 28 is closed, the air flow suddenly changes from a rich state to a lean state, but when performing a fault diagnosis because the correction value Vv has reached the upper limit In+ax, the engine decelerates. Even if the air-fuel ratio becomes lean, engine drivability will not be impaired.
なお上記実施例の説明中、第1図のステップ105では
エンジンが減速中であるか否かを判別するとしたが、空
燃比がリーン状態になっても運転性に影響を及ぼさない
状態を検知すればよく、したがってエンジン負荷が所定
値以下か否かを判別するとしてもよい。In the explanation of the above embodiment, it was assumed that in step 105 of FIG. 1 it was determined whether the engine was decelerating or not, but it is also necessary to detect a state that does not affect drivability even if the air-fuel ratio becomes lean. Therefore, it may be determined whether the engine load is less than or equal to a predetermined value.
以上のように本発明によれば、エンジンの運転性を悪化
させることなく故i診断を行なうことができ、またパー
ジ制御用開閉弁を閉弁させる頻度が減少するので薄光燃
料吸着装置から燃料蒸気が大気中へ放出されることが減
り、エバポエミッションの悪化を防止することができる
。As described above, according to the present invention, it is possible to perform a fault i diagnosis without deteriorating the engine drivability, and since the frequency of closing the purge control on-off valve is reduced, fuel is removed from the dim light fuel adsorption device. The amount of steam released into the atmosphere is reduced, and deterioration of evaporative emissions can be prevented.
第1図は本発明の一実施例に係る故障診断のルーチンの
フローチャート、
第2図は本発明を適用した内燃機関を示す概略図、
第3図は空燃比と排気ガスセンサの出力信号の関係を示
すグラフ、
第4図は空燃比とフィードバックの補正値の関係を示す
グラフ、
第5図は一実施例における空燃比と補正値の時間的変化
を示すグラフである。
14・・・排気通路、 18・・・排気ガスセンサ、
22・・・蒸発燃料吸着装置、
27・・・蒸発燃料パージ通路、
28・・・パージ制御用開閉弁。
リーン−A/F−リッチ
第5図Fig. 1 is a flowchart of a fault diagnosis routine according to an embodiment of the present invention, Fig. 2 is a schematic diagram showing an internal combustion engine to which the present invention is applied, and Fig. 3 shows the relationship between the air-fuel ratio and the output signal of the exhaust gas sensor. FIG. 4 is a graph showing the relationship between the air-fuel ratio and the feedback correction value, and FIG. 5 is a graph showing the temporal change in the air-fuel ratio and the correction value in one embodiment. 14... Exhaust passage, 18... Exhaust gas sensor,
22... Fuel vapor adsorption device, 27... Fuel vapor purge passage, 28... Purge control on-off valve. Lean-A/F-Rich Figure 5
Claims (1)
パージ通路内にパージ制御用開閉弁が設けられ、かつ排
気通路内に配設された排気ガスセンサの出力信号に基い
て混合気の空燃比をフィードバック制御すべく構成され
た空燃比制御システムにおいて、空燃比のフィードバッ
ク量が実質的に上限値に達し、かつエンジン負荷が小さ
い時、上記パージ制御用開閉弁を所定時間閉弁し、その
後フィードバック量が実質的に上限値に達していれば空
燃比制御システムが故障していると判断することを特徴
とする空燃比制御システムの故障診断方法。1. A purge control on-off valve is provided in the evaporated fuel purge passage that connects the evaporated fuel adsorption device and the intake passage, and the air-fuel ratio of the air-fuel mixture is controlled based on the output signal of the exhaust gas sensor installed in the exhaust passage. In an air-fuel ratio control system configured to feedback-control the air-fuel ratio, when the feedback amount of the air-fuel ratio substantially reaches the upper limit and the engine load is small, the purge control on-off valve is closed for a predetermined period of time, and then the feedback control is performed. 1. A failure diagnosis method for an air-fuel ratio control system, comprising determining that the air-fuel ratio control system is malfunctioning if the amount has substantially reached an upper limit value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22846386A JPS6385237A (en) | 1986-09-29 | 1986-09-29 | Failure diagnosis method for air-fuel ratio control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22846386A JPS6385237A (en) | 1986-09-29 | 1986-09-29 | Failure diagnosis method for air-fuel ratio control system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6385237A true JPS6385237A (en) | 1988-04-15 |
Family
ID=16876877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22846386A Pending JPS6385237A (en) | 1986-09-29 | 1986-09-29 | Failure diagnosis method for air-fuel ratio control system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6385237A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63138445U (en) * | 1987-03-02 | 1988-09-12 | ||
JPH0233443A (en) * | 1988-07-22 | 1990-02-02 | Toyota Motor Corp | Failure diagnosis device for air-fuel ratio control group |
US5251477A (en) * | 1990-02-26 | 1993-10-12 | Nippondenso Co., Ltd. | Self-diagnosis apparatus in a system for prevention of scattering of fuel evaporation gas |
JPH0642382A (en) * | 1992-07-24 | 1994-02-15 | Honda Motor Co Ltd | Abnormality detecting device for fuel feed to internal combustion engine |
US5419299A (en) * | 1992-11-30 | 1995-05-30 | Nippondenso Co., Ltd. | Self-diagnosis apparatus and method for fuel evaporative emission |
JP5661779B2 (en) * | 2010-09-03 | 2015-01-28 | 本田技研工業株式会社 | Internal combustion engine diagnostic device and internal combustion engine diagnostic method |
-
1986
- 1986-09-29 JP JP22846386A patent/JPS6385237A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63138445U (en) * | 1987-03-02 | 1988-09-12 | ||
JPH0526282Y2 (en) * | 1987-03-02 | 1993-07-02 | ||
JPH0233443A (en) * | 1988-07-22 | 1990-02-02 | Toyota Motor Corp | Failure diagnosis device for air-fuel ratio control group |
US5251477A (en) * | 1990-02-26 | 1993-10-12 | Nippondenso Co., Ltd. | Self-diagnosis apparatus in a system for prevention of scattering of fuel evaporation gas |
JPH0642382A (en) * | 1992-07-24 | 1994-02-15 | Honda Motor Co Ltd | Abnormality detecting device for fuel feed to internal combustion engine |
US5419299A (en) * | 1992-11-30 | 1995-05-30 | Nippondenso Co., Ltd. | Self-diagnosis apparatus and method for fuel evaporative emission |
JP5661779B2 (en) * | 2010-09-03 | 2015-01-28 | 本田技研工業株式会社 | Internal combustion engine diagnostic device and internal combustion engine diagnostic method |
US9488123B2 (en) | 2010-09-03 | 2016-11-08 | Honda Motor Co., Ltd. | Internal combustion engine diagnostic device and internal combustion engine diagnostic method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH034742B2 (en) | ||
JPH08226355A (en) | Evaporative fuel processing device of internal combustion engine | |
JPH0932658A (en) | Function diagnostic device in evaporation purge device of internal combustion engine | |
JPH05240116A (en) | Evaporating fuel controller of internal combustion engine | |
JPS6385237A (en) | Failure diagnosis method for air-fuel ratio control system | |
JPH06249087A (en) | Vaporized fuel controller | |
JP3539325B2 (en) | Evaporative fuel treatment system for internal combustion engine | |
JPS6380033A (en) | Trouble diagnostics for air-fuel ratio control system | |
JP3235158B2 (en) | Evaporative fuel control system for vehicles | |
JPH0754108B2 (en) | Failure diagnosis method for air-fuel ratio control system | |
JPH10184465A (en) | Evaporated fuel control unit of internal combustion engine | |
JPH05180095A (en) | Vaporized fuel control device for vehicle | |
JPS6329050A (en) | Trouble diagnostics for air-fuel ratio control system | |
JP2003042013A (en) | Fuel evaporating gas treatment device | |
JP3621285B2 (en) | Evaporative fuel processing device and failure diagnosis device for internal combustion engine | |
JPH04330358A (en) | Abnormality detecting device for evaporation purge system | |
JP3147416B2 (en) | Purge control device | |
JPH05332207A (en) | Air-fuel ratio controller of internal combustion engine | |
JPH06229294A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH03124942A (en) | Failure diagnostic device for engine | |
JPH06167253A (en) | Evaporated fuel controller | |
JP2913835B2 (en) | Fuel evaporative emission control system | |
JPH06101579A (en) | Purge air control unit | |
JPH03260365A (en) | Diagnostic device for evaporation fuel device | |
JPH08151964A (en) | Failure diagnostic device for fuel evaporative emission control system |