JPS58142152A - Solar energy utilizing device - Google Patents

Solar energy utilizing device

Info

Publication number
JPS58142152A
JPS58142152A JP57023973A JP2397382A JPS58142152A JP S58142152 A JPS58142152 A JP S58142152A JP 57023973 A JP57023973 A JP 57023973A JP 2397382 A JP2397382 A JP 2397382A JP S58142152 A JPS58142152 A JP S58142152A
Authority
JP
Japan
Prior art keywords
compound
collector
heat
hot water
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57023973A
Other languages
Japanese (ja)
Other versions
JPS6124621B2 (en
Inventor
Manabu Ishizuka
学 石塚
Hiroshi Nakano
中野 弘
Hiroshi Ogawa
洋 小川
Yasuro Shigemitsu
靖郎 重光
Tadao Mikami
三上 忠雄
Kozo Kimura
興造 木村
Shoichi Suzuki
鈴木 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Takenaka Komuten Co Ltd
Original Assignee
Kawamura Institute of Chemical Research
Takenaka Komuten Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Takenaka Komuten Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP57023973A priority Critical patent/JPS58142152A/en
Publication of JPS58142152A publication Critical patent/JPS58142152A/en
Publication of JPS6124621B2 publication Critical patent/JPS6124621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve the efficiency of utilization of optical energy by a method wherein a heat adsorbing and heat radiating material such as water from a sunlight collector is supplied to a storage vessel and heated due to the thermal reactions of a highly distortional chemical compound from an optical energy storing chemical compound circulation type collector against a catalyst. CONSTITUTION:When the water in a hot water storage tank 22 is supplied to a water circulating heat collector section 24 of the solar heat collector 20, the water is heated mainly by the long-wave length rays of sunlight and is returned to the hot water storage tank 22 via a pipe 46. At the same time, a chemical compound circulating collector section 26 of the optical energy storing chemical compound circulating collector is subjected to the short-wave length rays of sunlight so that the optical energy storing chemical substance is converted into a Q-substance (a highly distortional chemical compound). The Q-substance is then stored in a Q-substance storage tank 64 through the switching opration of a three-way valve 58 and after that, it is supplied to a heat generating coil 68 within the hot water storage tank 22 by means of a pump 66 so that it comes into contact with the catalyst 76 to enable thermal reactions to take place. As a result, the Q-substance is converted into a N-substance (a chemical compound capable of being highly distorted) and at the same time, it heats additionally the hot water in the hot water storage tank 22.

Description

【発明の詳細な説明】 本発明は太1&8光エネルギ全集光してIF1″絨J−
る太1場エネルギ利用装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention focuses all of the optical energy of thick 1 & 8 beams into an IF 1''
This invention relates to a device that utilizes field energy.

従来の一般的な太陽エネルギ利用装置は、第1図に示さ
れる如く水備堤バイゾ10が流過するコレクター2で得
られる温水を貯湯槽14へ導いて光熱するようになって
いる。この貯湯槽14にはヒーター6が設けられておシ
、必要に応じて温水全力[1熱した後に給湯部18へ送
り出している。
As shown in FIG. 1, in a conventional general solar energy utilization device, hot water obtained from a collector 2 through which a water dike visor 10 flows is guided to a hot water storage tank 14 to be heated by light. This hot water storage tank 14 is provided with a heater 6, which heats the hot water to full power and then sends it out to the hot water supply section 18 as needed.

ところがこの↓うな太陽エネルギ利用装置では蓄熱材が
水であるため貯湯槽14からの放熱が大きく、長時間の
蓄熱は不i」−能である。またこの太陽エネルギオリ用
装置では太陽光のうち長波長域の元エネルギが比較的効
率よく集熱可能であシ、短波長域(0,17〜0.35
μm)の光エネルギはあまり効率よく集熱されておらず
集熱部にふ・いても限られた効率となっている。
However, in this solar energy utilization device, since the heat storage material is water, a large amount of heat is radiated from the hot water storage tank 14, making it impossible to store heat for a long time. In addition, with this solar energy registrar, the original energy in the long wavelength range of sunlight can be collected relatively efficiently, and the short wavelength range (0.17 to 0.35
The light energy (μm) is not collected very efficiently, and even if it is distributed to the heat collecting part, the efficiency is limited.

本発明は上記事実を考慮し、太陽光のうちよ勺広い波長
域に亘って光エネルギを利用口」能である太陽エイルギ
、+′U用装置會得ることが目的である。
In consideration of the above facts, the present invention aims to provide a device for solar energy, which is capable of utilizing light energy over a wider wavelength range of sunlight.

、′1 本発明に係る太陽エネルギ利用装置は主として長波長城
の九エネルギを集熱する水等の吸放熱材循環太陽光コレ
クタと、短波長光の元エネルギにより高歪可能化合物を
高歪化合物に変化させる光エネルギ貯蔵化合物循環太陽
光コレクタと葡設けて太陽光のより広い波長域に亘って
光エネルギケ収集し、これらのコレクタからの吸放熱伺
及び高歪化合物は共に貯湯槽等の吸放熱拐貯留容器に導
くと共にこの貯留容器内には高歪化合物を高歪可能化合
物へ変化させて熱反応を生じさせる触iht備えること
VCより光エネルギ貯蔵化合物で貯留容器内の吸放熱材
を加熱できるようになっている。
,'1 The solar energy utilization device according to the present invention mainly consists of a solar collector that circulates a heat absorbing and dissipating material such as water that collects the energy of long wavelength light, and a highly strainable compound that is converted into a highly strained compound using the original energy of short wavelength light. Changing the circulation of light energy storage compounds Solar collectors and plants are installed to collect light energy over a wider wavelength range of sunlight, and the heat absorption and radiation from these collectors and the high strain compounds are both transferred to the heat absorption and radiation absorption in hot water storage tanks, etc. The light energy storage compound is introduced into a storage container, and the storage container is provided with a catalyst that changes a high strain compound into a high strain capable compound to cause a thermal reaction. It has become.

以下本発明の実施例を図面に従い説ψjする。Embodiments of the present invention will be described below with reference to the drawings.

第2図に示される如く本実施例に係る太陽エネルギ利用
装瀘では太陽光コレクタ20が複数の配管によp吸放熱
材貯w谷器である貯湯+1122と連通されている。こ
の太陽光コレクタ20は吸放熱材循環太陽光コレクタと
しての水伽環太陽光コレクタ部24と光エネルギ貯賊化
合物備埋太陽元コ4レクタ都26とを有している。(以
下それぞれ水循環コレクタ部、化合物循環コレクタ部と
称する。)この太陽光コレクタ20は各種の形状が考え
られるが、この実施例では一例として第3図に4くされ
る具体的構i8が用いられている。この構造會詳[2〈
説明すると、図示しない構築物の屋上等へ設置されるI
III」定ベース28へ軸支される垂直軸30には水平
塵量7レーム32が固着されて垂直軸と共に旋回可能と
なっている。この水平旋回フレーム32から立設された
一対のブラケット34には水平軸36が軸支されており
、この水平IMII 36へ垂直旋1川フレーム38が
II!Il看されて水平軸と共に塵量可能となっている
As shown in FIG. 2, in the solar energy utilization system according to this embodiment, the solar collector 20 is communicated with the hot water storage +1122, which is a heat absorbing and dissipating material storage device, through a plurality of pipes. This solar light collector 20 has a water-ring solar collector section 24 as a heat absorbing and dissipating material circulation solar collector section and a solar collector section 26 with a light energy storage compound embedded therein. (Hereinafter, they will be referred to as a water circulation collector section and a compound circulation collector section, respectively.) Various shapes can be considered for this sunlight collector 20, but in this embodiment, a specific structure i8 shown in FIG. 3 is used as an example. . Details of this structure [2
To explain, an I installed on the roof of a structure (not shown), etc.
A horizontal dust frame 32 is fixed to a vertical shaft 30 which is rotatably supported on a fixed base 28, so that it can rotate together with the vertical shaft. A horizontal shaft 36 is pivotally supported by a pair of brackets 34 erected from this horizontal swing frame 32, and a vertical swing frame 38 is connected to this horizontal IMII 36! The amount of dust can be measured along with the horizontal axis.

垂直旋回フレーム38は天井部が透明なフレネルプリズ
ム40とされた箱型であり、7レネルプリズム40の梁
九部に循環)Rイノ42,44が複数本設けられている
。ここに循環パイプ42は第2図の水循環コレクタ部2
4に、循環/、uイゾ44は第2図の化合物循環コレモ
ノ都26にそれぞれ相当する。この循環・ゼイズ44は
集光部のほぼ中央部に設けられ、この循環パイグ440
両側部に佑榎バイズ42が配置されており、儂糧パイノ
42Vこは水が、循環バイソ′44には光エネルギ貯蔵
化合物がrIH環されるようになっている。抛埋パイゾ
42は必要に応じて2重管とし、内管内に水金循環させ
内外背量は真空状態とすることができる。
The vertically rotating frame 38 has a box shape with a transparent Fresnel prism 40 on the ceiling, and a plurality of circulating) R inos 42 and 44 are provided on the nine beams of the seven Fresnel prisms 40. Here, the circulation pipe 42 is connected to the water circulation collector section 2 in FIG.
4, circulation/, uiso 44 respectively correspond to compound circulation collection 26 in FIG. This circulation pipe 440 is provided approximately at the center of the light collecting section, and this circulation pipe 440
Yuen vises 42 are disposed on both sides, water is supplied to the pyno 42, and a light energy storage compound is irH-ringed to the circulation vitreous 44. The recessed pizo 42 can be made into a double tube if necessary, and water and metal can be circulated in the inner tube to create a vacuum state between the inner and outer backs.

この2抽類の循環ノゼイゾ42.44には7レネルプリ
ズム40會通過した太陽光が照射゛さ11る〃ζ太陽光
は光の成分の波長によシ加折率が異るので異る波長の光
が循環ノ々イブ42.44へ照射されるようになってい
る。すなわち太陽光tよ7レネルプリズム40を透過し
て屈折した後スペクトルに分れるのでこの分散スペクト
ルの帝状部分の上に波長域に合致した受光体である循環
ノセイプ42゜44が配置されておシ、循環パイプ44
は7レネルプリズム40で比較的大きな屈折をする短波
艮光會受光し、水m#Xノぞイゾ42は比較的大きな屈
折會しない長波長光を受光するようVcなっていもこの
結果この太陽光コレクタ20け7レネルプリズム40で
太陽−X’e効率よく集光分光し全波fjC域の光エネ
ルギkj131(集できるようになっている、。
This two-class circulation noise 42.44 is irradiated with sunlight that has passed through 40 7-Lesnel prisms. Light is irradiated onto the circulating nobubes 42 and 44. In other words, sunlight is transmitted through the Rennel prism 40 and refracted, and then split into spectra, so a circulating nosape 42° 44, which is a photoreceptor matching the wavelength range, is placed above the dispersion spectrum. , circulation pipe 44
As a result, this solar collector The 20 x 7 Lennel prism 40 efficiently condenses and spectrally separates the sun's X'e light and collects light energy in the full-wave fjC range kj131.

なお第3図に示される垂直軸30及び水平軸36は図示
しない駆動装置で回転して太陽光コレクタ20を常に太
陽光に追尾させることかでtl、この追尾制御手段とし
ては太陽元位置センサー、太陽元位置MIL憶装置等を
用いることができる。
The vertical axis 30 and the horizontal axis 36 shown in FIG. 3 are rotated by a drive device (not shown) so that the sunlight collector 20 always tracks sunlight, and the tracking control means include a solar source position sensor, A solar source position MIL storage device or the like can be used.

循環バイズ44内會bIr、れる光エネルギ貯蔵化合物
として不実施レリでは第4図に示されるノルボルナジェ
ン(以下N体と称する)が用いられていもこのN体は常
温で流動性を・有する尚歪司能化合物でるシ、紫外線領
域の短波長光を照射すると光異性化反応により置市化合
物であるクシトリシクレン(以下9体と称する9に変化
する性質を有しており、このQ体は触媒(コバルトテト
シンエニルボリフイリン錯体やコバルト7タロ7アニン
銘体)8内金通過させると、触媒熱反応を生じてN体の
状態に決る性質がある。この時に22 KOat/Mo
l =24008’/y機度の熱発生を伴う。従って太
陽光のうち生として短波長光會蓄槓し、必要に応じて熱
エネルギとして放出可能でおる。
Although norbornadiene (hereinafter referred to as N-isomer) shown in FIG. 4 is used as a light energy storage compound in Circulation Bize 44, this N-isomer has fluidity and strain at room temperature. When irradiated with short-wavelength light in the ultraviolet region, it has the property of changing into the Okiichi compound xitricyclene (hereinafter referred to as 9-form) through a photoisomerization reaction, and this Q-form is catalyzed by a catalyst (cobalt tetate). When metal is passed through the inner gold (such as a synenylborifylline complex or a cobalt-7-talo-7-anine complex), a catalytic thermal reaction occurs and the state is determined to be in the N-form.At this time, 22 KOat/Mo
It is accompanied by heat generation of l=24008'/y degrees. Therefore, it is possible to store short-wavelength light as raw sunlight and release it as thermal energy when necessary.

第2図に基いて太1射光コレクタ20とIlf湯槽22
との間の配管を説明する。水循環コレクタ部24は下流
側が配′u46を介して、上流側が配管50を介して貯
湯槽22のト端部付近へと連通されている。この配管5
0の中間部にはボンゾ52が設けられて水循環コレクタ
部24で加熱された温水を貯湯槽22へ送p込むように
なっている。
Based on FIG.
Explain the piping between. The water circulation collector section 24 is connected to the vicinity of the top end of the hot water storage tank 22 via a pipe 50 on the downstream side and through a pipe 50 on the upstream side. This piping 5
A bonzo 52 is provided in the middle of the water circulation collector part 24 to send hot water heated by the water circulation collector part 24 to the hot water tank 22.

−力比合vtJ備環コレクタ部26の一端は配゛g75
6を介して三方弁58により配管60.62へ連通され
ている。配管62はQ体計部槽64、ボンゾロ6會介し
て貯湯槽22内の発熱コイル68の上流端へ連通されて
いる。この発熱コイル68の下流端は配管69.N体計
部槽70及び三方弁72ケ介して配管60及び74と連
通されている。貯湯J422内の発熱コイル68にはそ
の上流ll1tl AM鄭KM媒76(この実施例では
コバルトフタロ/アニン錯体が用いられる)が設けられ
て配管62からのQ体に光異性化反応を生じさせるよう
になっている。この発熱コイル68は配管46 、50
の貯湯槽22へ連通部よシも上カヘ配置uされている。
- One end of the force ratio vtJ ring collector section 26 is arranged as g75.
6 through a three-way valve 58 to a pipe 60,62. The piping 62 is connected to the upstream end of the heating coil 68 in the hot water storage tank 22 via the Q body meter tank 64 and the Bonzoro 6 connection. The downstream end of this heating coil 68 is a pipe 69. It is communicated with pipes 60 and 74 via an N-body meter tank 70 and 72 three-way valves. The heating coil 68 in the hot water storage J422 is provided with an AM Zheng KM medium 76 (a cobalt phthalo/anine complex is used in this embodiment) upstream thereof to cause a photoisomerization reaction to occur in the Q form from the pipe 62. It has become. This heating coil 68 connects to the piping 46, 50
The communication part to the hot water storage tank 22 is also arranged in the upper part.

また三方弁72へ接続された配管74仁よ小℃/シフ8
を介して化合物循環コレクタ都26の他蛤1へ連通され
ておシ、配管56.60と共に抛I績/髪イフ44への
循環路全構成している。青お化21ヌuCおいて太陽光
コレクタ20と貯湯槽22との間の配管で破線は温水、
実線はN体、一点鎖線はQ体の流路を示している1゜ 筐た貯湯槽22の下部には給水配管80が連通されて図
示しない給水諒からの水を貯湯槽F gas Th介し
て配管50へ込り込む工9になっておシ、上部には給湯
配管82が連通されて加熱後の温水全給湯部84及び図
示しない暖房装置jitsa房装置等へ込り出すように
なっている。給水配管80は貯湯槽22會介することな
く、直接配管50と連通ずることもできる。また貯湯槽
22には必要に応じてヒータを設けることができる。
Also, the pipe 74 connected to the three-way valve 72 is small ℃/Schiff 8
It communicates with the compound circulation collector 26 as well as the shell 1 through the pipes 56 and 60, and together with the pipes 56 and 60, it constitutes the entire circulation path to the pipe/hair pipe 44. In the blue sky 21 uC, the broken line indicates hot water,
The solid line shows the flow path of the N body, and the dashed-dot line shows the flow path of the Q body.A water supply pipe 80 is connected to the lower part of the hot water storage tank 22, which is enclosed by 1°, to supply water from a water supply pipe (not shown) through the hot water storage tank F gas Th. A hot water supply pipe 82 is connected to the upper part of the pipe 50 so that hot water after heating flows out to a hot water supply section 84 and a heating device (not shown). . The water supply pipe 80 can also be directly communicated with the pipe 50 without intervening the hot water tank 22. Further, a heater can be provided in the hot water tank 22 as necessary.

次に本実施例の作動′fr説明する。Next, the operation 'fr of this embodiment will be explained.

給水配管80からの水は配管50全通って太陽光コレク
タ20へ送られ、太陽光のうち主として長波長光の照射
により加熱され、配管46を通って貯湯槽22内へ注入
される。この温水は必要に応じて配管50、太陽光コレ
クタ20へと再循環させで^温水を得ることができる。
Water from the water supply pipe 80 is sent to the solar collector 20 through the entire pipe 50, heated by irradiation with mainly long-wavelength sunlight, and then injected into the hot water storage tank 22 through the pipe 46. This hot water can be recirculated to the piping 50 and the solar collector 20 as needed to obtain hot water.

−力比合物循環コレクタs26は太陽光のうち短波長光
を勺・けて九エネルギ貯賦化6物ヶQ体に変化させるが
、元方に元エネルギt&槓ざゼるためにN体を循環輸送
する。すなわち二方プf58゜72の切俟えによp配v
56,60.74ケ理辿状態として循環路を形成しボン
178の駆動で飴埠バイゾ44内へN体を被数回流ガ■
lさぜ九分にプγ′。
- The power ratio compound circulation collector s26 extracts short-wavelength light from the sunlight and changes it into 6 Q bodies that store 9 energy, but in order to return the original energy to be transported in a circular manner. In other words, if the two-way plane is f58°72, the p distribution is
56, 60.74 A circulation path is formed in the state where the N body is flowed several times into the Amebo Viso 44 by driving the bong 178.■
l Saze 9 minutes γ′.

異性化反応をさせる。Causes an isomerization reaction.

その後三方弁58”e′!/l換えて配管56と62店
を連通ずれば1%歪化合物となった(シ体t」、(2体
計bi僧64内へ貯賀される。このQ体#4j貿)’1
’ff li 4ビ」のQ体は年独ではN体Vこ−Qj
lり+ilすることt、1ないので熱損失がなく、−1
熱拐靜も不安で長ルj間の−〔−不ルギ貯斌がgJ能で
ある。
After that, by changing the three-way valve 58"e'!/l and connecting the pipes 56 and 62, a 1% strain compound was created (Shi body t", (total of 2 bodies stored in bi monk 64. This Q body#4jtrade)'1
The Q-body of 'ff li 4bi' is N-body Vko-Qj in Germany in 2017.
Since there is no +il + t, 1, there is no heat loss, and -1
I'm worried about the heat, and I can't keep up with the long periods of time.

必賛時KQ体計首慴64内のQ体はポンノ′6【iの駆
動によ、!、I貯湯惰22内の発熱コイル68−\と込
られる。この発熱コイル680人1−1で触媒76と接
触して触縁熱反応虻生じ元のへ体にOI加−J−石と共
に熱発生して発熱コイル68 倉Daれる向Vこ貯湯槽
22内の温水と熱交換するので貯湯槽22内の温水は延
らに力日熱される。従ってjtJ″を藪4曹22からの
給湯部84は水頭場末陽元コレクタ24で加熱された温
水のみならず必要に応じてさらに発熱コイル68でも加
熱されて高温となった温水も取シ出すことができ、広い
範囲の給湯、冷暖房に使用可能である。
The Q body in the KQ body scale head 64 is driven by Ponno'6 [i! , I is included in the heating coil 68-\ in the hot water storage tank 22. This heating coil 680 person 1-1 contacts the catalyst 76 and generates OI on the body of the origin, generating heat together with the stone and heating coil 68. Since the hot water in the hot water storage tank 22 exchanges heat with the hot water, the hot water in the hot water storage tank 22 is continuously heated by the sun. Therefore, the hot water supply section 84 from the Yabu 4 So 22 takes out not only the hot water heated by the head field end collector 24, but also the hot water heated by the heating coil 68 and heated to a high temperature as necessary. It can be used for a wide range of hot water supply, air conditioning and heating applications.

発熱コイル68でN本に復帰した光エネルギ貯蔵化合物
は配I769 全通ってN体計部槽70へ蓄積され、必
要に応じて三方弁72の切侯えて配管74を通って+i
A環ノセイゾ44へと戻される。
The light energy storage compound, which has been restored to N in number by the heating coil 68, passes through the distribution I769 and is accumulated in the N-body metering tank 70, and if necessary passes through the three-way valve 72 and the pipe 74 to the +i.
Returned to A-ring noseizo44.

上d己実施例では光エネルギ貯賦化合物としてノルホル
ナジエン全便用したが不発uAtよ目]逆的光異性化反
応によって九エネルギの吸収と熱エネルギの放出全反復
し得る流動性の元エネルギ貯蔵化合物であれば全て通用
口」能であり%アゼピン等の他の化合物も使用可能であ
る。このアゼピンは短波長光を受けて同歪比合物でおる
ジクロブテノジヒドロビロールに変化し、触媒の存在下
で書び尚全0J能化合物であるアゼピン1に省帰すると
共に熱兄生會伴うようになっている。またその池水発明
では光エネルギ貯蔵化合物をスラリー状としても使用で
き、流動性會有する状態であれば全て適用可能である。
In the above embodiments, norfornadiene was used as a light energy storage compound, but it failed to emit UAt] Absorption of energy and release of thermal energy through reverse photoisomerization reaction. Other compounds, such as % azepine, can also be used. When this azepine is exposed to short wavelength light, it changes to dichlorobutenodihydrobyrol, which is a compound with the same strain ratio, and in the presence of a catalyst, it returns to azepine 1, which is an all-0J functional compound, and undergoes thermal conversion. It's starting to come with me. Furthermore, in the Ikemizu invention, the light energy storage compound can also be used in the form of a slurry, and can be applied to any state as long as it has fluidity.

上ml実施例で吸放熱材として水を用いたが、これは純
水に限らず、肋錆創、凍結肋I−剤等の遍r目:の添加
剤がよまれたものでもよい。また吸放熱刊は水板外にも
太陽光エネルギ會熱エネルギとして吸収放出するもので
あれば全て適用可能で、グリコール類、炭化水素禾、ハ
ロゲン化炭化水素等でもよい。
Although water was used as the heat absorbing and dissipating material in the above ml example, it is not limited to pure water, but may be one containing additives such as rib rust wound, frozen rib I-agents, etc. In addition, the heat absorbing and discharging material can be applied to anything other than the water plate as long as it absorbs and releases solar energy as hygrothermal energy, and may be glycols, hydrocarbons, halogenated hydrocarbons, etc.

上記実施例中、Q体計首憎64.N体計部槽70を用い
ることによりエネルギの長期貯蔵がi* yi:となる
が1本発明は貯留槽に眠らf実買的に元工オルギ化合物
會貯留できる貯狛□十段であれはよい、1以上説明した
如く本発明に係る太陽エネルギ利用装置は吸放熱材循環
太陽光コレクタからの吸放熱材を吸放熱拐貯宙容器へ供
給すると共K 、冗エネルギ貯敵化合物循環コレクタか
らのi!f+ 虫化は物を吸放熱伺貯留容器内の発熱コ
イルへ4きこの)6熱コイルに設けた触媒と触媒熱反応
音生じさせるので、太陽光の全波長域の九エネルギ葡有
効にΔす用1−ることができる俊社友幼未葡有する。
In the above example, Q body weight 64. By using the N body measurement tank 70, long-term storage of energy becomes i * yi: However, the present invention does not lie in the storage tank. As explained above, the solar energy utilization device according to the present invention supplies the heat absorption and radiation material from the heat absorption and radiation material circulation solar collector to the heat absorption and radiation storage container, and also supplies the heat absorption and radiation material from the heat absorption and radiation material circulation solar collector to the heat absorption and radiation storage container. i! f+ Insectization generates a catalytic thermal reaction sound with the catalyst installed in the heat coil (4) and the heat coil in the heat absorption/release storage container, so it effectively absorbs 9 energy in the entire wavelength range of sunlight. Use 1 - I have a Shunsya Yumi grape that can be used.

4 図面のtM直+Lia明 第1図は匠米の太陽エネルギ利用装置紫示す糸杭図、第
2図tJ: ’!発ゆjの太陽エネルギ利用装置の実施
例會示す、、+、統図、第3図は太陽光コレクタをボす
一部破断斜祝図、第4図は本実施列に用いる光エイルギ
貯緘化合物を示す化学反応式である。
4 Drawings tM + Lia Akira Figure 1 is a thread pile diagram showing Takumi's solar energy utilization device purple, Figure 2 tJ: '! Figure 3 is a partially cut-away oblique diagram showing the solar collector, and Figure 4 shows the solar energy storage compound used in this implementation. This is a chemical reaction formula showing

20・・・太陽光コレクタ、22・・・貯湯槽、24・
・・水備環太陽元コレクタ部、26・・・光エネルギ化
合物循環太陽光コレクタ郡、42・44・・・抛庫パイ
ゾ、64・・・Q体計部槽、68・・・発熱コイル% 
70・・・N体lf部槽、76・・・触媒。
20... Solar collector, 22... Hot water tank, 24...
・・Suibikan solar collector part, 26 ・Photo energy compound circulation solar collector group, 42・44 ・Pazo Paizo, 64 ・Q body meter tank, 68 ・Heating coil %
70...N body lf section tank, 76...Catalyst.

Claims (1)

【特許請求の範囲】 (lJ熱エイルギの吸収と放出全反復し得る流動性の吸
放熱材を太陽光で加熱する吸放熱材循環太陽光コレクタ
と、高歪可能化合物全太陽光で高歪化合物に変化させる
元エネルギ貯蔵化合切瀝環コレクタと、前記吸放熱材循
環人陽光コレクタと連通されて那島後の吸放熱材が供帖
さする吸放熱付貯留容器と、この吸放熱付貯留容器へ内
蔵され前記元エネルギ貯蔵化合物循環コレクタへ連通さ
れると共に高歪化合物と接触して高歪可能化合物へ変化
させる熱反応を生じさせる触媒が設けられる発熱コイル
と、全有する太陽エネルギ利用装置。 (2)  前記発熱コイルは放熱コイルよシも上方へ配
置されること′f、荷徴とした前記特許請求の範囲第1
項に記載の太陽エネルギ利用装置。 (3)  熱エネルギの吸収と放出を反俵し侍る流動性
の吸放熱材を太陽光で加熱する吸放熱材曙環太陽光コレ
クタと、高歪可能化合物を太陽光で高歪化合物に変化さ
せる光エネルギ貯蔵化合物循環コレクタと、前Iピ吸放
熱材循埠太陽光コレクタと連通されて加熱後の吸放熱材
が供給される吸放熱材貯留谷器と、この吸放熱付貯留容
器へ内蔵され高歪化合物と接触して高歪可能化合物へ変
化させる熱反応を生じさせる触媒が設けられる発熱コイ
ルと、この発熱コイルの上流側と前dピ九エネルギ貯賊
化合物循環コレクタとの間で介在される尚φ化合物貯留
手段と、i11記発熱コイルの下流111!lと前記A
、エイルギ貯蔵化合物循環コレクタとの間−\介在さ扛
る高歪01龍化合物貯留手段と、會南する太1−エネル
ギ利用装置。 (4) 前記高歪化合物貯留手段及び尚歪LIJ能化合
物貯留手段はそれぞれ高全化合物貯首槽及び−重重」能
化合物貯首槽でめることを特許としたl:lJ MC付
lト請求の範囲第3項に員ピ載の太陽エネルギ利用装置
[Scope of Claims] (lJ) A heat absorbing and discharging material circulation solar collector that heats a fluid heat absorbing and discharging material that can be repeatedly absorbed and released by sunlight; a storage container with heat absorption and radiation, which is connected to the heat absorption and radiation material circulation solar collector, and into which the heat absorption and radiation material after Najima is supplied; a solar energy utilization device comprising: a heating coil that is built-in and communicated with the source energy storage compound circulation collector and is provided with a catalyst that contacts the high strain compound to produce a thermal reaction that converts it into a high strain capable compound; ) The heat generating coil is also arranged above the heat dissipating coil.
The solar energy utilization device described in . (3) Shuan solar collector, which uses sunlight to heat a fluid heat absorption and radiation material that absorbs and releases heat energy, and converts a highly strainable compound into a highly strained compound using sunlight. A light energy storage compound circulation collector, a heat absorption/dissipation material storage valley connected to the solar collector and supplied with heated heat absorption/dissipation material, and a heat absorption/dissipation material storage valley built in the heat absorption/dissipation storage container. A heating coil is provided with a catalyst that contacts the highly strained compound to produce a thermal reaction that converts it into a highly strainable compound, and is interposed between the upstream side of the heating coil and the front energy storage compound circulating collector. In addition, the φ compound storage means and the downstream 111 of the heating coil i11! l and the above A
, between the energy storage compound circulation collector and the intervening high strain 01 dragon compound storage means, and the ta 1 energy utilization device. (4) The above-mentioned high-strain compound storage means and low-strain LIJ-ability compound storage means are patented as being stored in a high-total compound neck storage tank and a heavy-duty LIJ-ability compound neck storage tank, respectively. Solar energy utilization devices listed in item 3 of the scope.
JP57023973A 1982-02-17 1982-02-17 Solar energy utilizing device Granted JPS58142152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57023973A JPS58142152A (en) 1982-02-17 1982-02-17 Solar energy utilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57023973A JPS58142152A (en) 1982-02-17 1982-02-17 Solar energy utilizing device

Publications (2)

Publication Number Publication Date
JPS58142152A true JPS58142152A (en) 1983-08-23
JPS6124621B2 JPS6124621B2 (en) 1986-06-11

Family

ID=12125487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57023973A Granted JPS58142152A (en) 1982-02-17 1982-02-17 Solar energy utilizing device

Country Status (1)

Country Link
JP (1) JPS58142152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151359A (en) * 2018-01-02 2018-06-12 重庆大学 A kind of two level heat accumulating type domestic solar utilizes system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151359A (en) * 2018-01-02 2018-06-12 重庆大学 A kind of two level heat accumulating type domestic solar utilizes system
CN108151359B (en) * 2018-01-02 2020-06-02 重庆大学 Domestic solar energy utilization system of second grade heat accumulation formula

Also Published As

Publication number Publication date
JPS6124621B2 (en) 1986-06-11

Similar Documents

Publication Publication Date Title
George et al. Concentrated photovoltaic thermal systems: A component-by-component view on the developments in the design, heat transfer medium and applications
CN101091900B (en) Solar energy photocatalytic reactor based on condenser of composite paraboloid
Wang et al. Status and challenges for molecular solar thermal energy storage system based devices
TWI545257B (en) Multi-purpose apparatus of combined heat and power
WO2020206883A1 (en) Solar photothermal coupling hydrogen-production device based on frequency division technology
CN104884874A (en) Coupled chemical-thermal solar power system and method
CN103499230A (en) Solar thermochemistry energy storage heat absorber and heat absorbing method thereof
AU2009334275B2 (en) Hydrogen permeable pipe
US4335706A (en) Energy collector and transfer apparatus
Sui et al. Experimental investigation of methanol decomposition with mid‐and low‐temperature solar thermal energy
CN113124575B (en) Parabolic trough type baffling type integrated photo-thermal synergistic reaction device
JPS58142152A (en) Solar energy utilizing device
JPS58142150A (en) Solar energy utilizing device
Mortadi et al. Solar thermal systems: applications, techno-economic assessment, and challenges
CN111953292B (en) Solar energy frequency division type electric heat allies oneself with supplies device
CN104964461B (en) Solar water-working-medium cavity-type heat absorber
CN114538375B (en) Methanol liquid phase reforming hydrogen production device and method and power supply system
CN115418247B (en) Mars in-situ synthesis hydrocarbon fuel system for solar full spectrum utilization
WO2023061426A1 (en) Solar energy storage and power generation system
JPS648257B2 (en)
TWI834069B (en) Solar energy storage system
Aldaher et al. Structure of Parabolic Trough Collector Model for Local Heating and Air Conditioning
CN211822631U (en) Heating system for storing energy by combining optical heterogeneous material and thermal heterogeneous material
Stein Concentrating solar thermal power
Xu et al. Progress of phase change materials in solar water desalination system: A review