JPS58140336A - Manufacture of base material for optical fiber - Google Patents

Manufacture of base material for optical fiber

Info

Publication number
JPS58140336A
JPS58140336A JP2072082A JP2072082A JPS58140336A JP S58140336 A JPS58140336 A JP S58140336A JP 2072082 A JP2072082 A JP 2072082A JP 2072082 A JP2072082 A JP 2072082A JP S58140336 A JPS58140336 A JP S58140336A
Authority
JP
Japan
Prior art keywords
sintered body
silica
melting
optical fiber
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2072082A
Other languages
Japanese (ja)
Other versions
JPS631254B2 (en
Inventor
Kiyoshi Yokogawa
清 横川
Keitaro Fukui
啓太郎 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2072082A priority Critical patent/JPS58140336A/en
Publication of JPS58140336A publication Critical patent/JPS58140336A/en
Publication of JPS631254B2 publication Critical patent/JPS631254B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To provide uniform characteristics to a sintered porous silica body formed by a vapor axial deposition method all over the length by melting the sintered body from the lower part where the silica deposited surface shows a convex shape toward the concave surface under prescribed conditions to uniformalize the ununiform state. CONSTITUTION:A silicon compound or a silicon compound contg. a dopant is subjected to flame oxidation and/or hydrolysis to form a sintered porous doped silica body consisting of fine silica particles. The sintered body is put in a furnace attaining to stationary melting conditions, and it is successively melted from the lower part where the silica deposited surface shows a convex shape toward the concave surface at a constant rate under the same conditions all over the length. By the melting the sintered body is vitrified to give a base material for an optical fiber free from residual bubbles, causing no abnormality in the refractive index and no shift of the deposited layers, and having uniform characteristics all over the length.

Description

【発明の詳細な説明】 本発明は光フアイバー用母材の製造方法、特には気榴軸
付法で作−した多孔質ガラス焼結体の工業的に有利な透
明ガラス化方法に関するものtある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a base material for optical fibers, and more particularly, to an industrially advantageous transparent vitrification method for a porous glass sintered body produced by a pneumatic crystal attachment method. .

光フアイバー用母材の製造については四塩化けい素(8
1C14)で代表されるけい素化合物とガラス屈折率を
コントロールするためのドープ剤、例えばG o CI
4 、P OCl B、BBr、などとを酸水素炎で燃
焼させてt/9に微粒子を発生させ、これを回転してい
る耐火性標的、例えば石英棒の下端部に吹きつけて多孔
質ガラス焼結体として順次堆積させ、これを上部軸方向
に引上げながら円柱状に成長させたのち、この多孔質シ
リカ焼結体を高温加熱炉の下側から導入し、焼結体の上
部から順次溶解して透明なガラス母材とする方法が公知
とされている。
For the production of optical fiber base materials, silicon tetrachloride (8
1C14) and a dopant for controlling the glass refractive index, such as G o CI
4, P OCl B, BBr, etc. are burned in an oxyhydrogen flame to generate fine particles at t/9, and these are blown onto a rotating refractory target, such as the lower end of a quartz rod, to form porous glass. The porous silica sintered body is sequentially deposited as a sintered body and grown into a columnar shape while being pulled up in the upper axial direction.The porous silica sintered body is then introduced from the bottom of the high-temperature heating furnace and melted sequentially from the top of the sintered body. There is a known method for producing a transparent glass base material.

しかし、この多孔質シg力焼結体はそれ自体多量のガス
を含む密度の小さいものであり、これは密度の小さいも
のほど熱伝導率がわるく、シかも強度が低く、非1tに
もろいものになるということから、これを高温加熱炉中
で加熱すると、炉の構造、熱の輻射、対流などにもとづ
く熱移動の非対称によって、このりリカ焼結体における
溶解収縮比率が変わるため、これをその上部から溶解す
る場合にはそのわずかな収縮速度のずれによってもそれ
が非対称的に収縮して曲がり、81図に示すようにこの
焼結体全体が下方において傾き、集中応力を受けた点か
らこれが破断するか、炉の内壁にぶつかって破壊すると
いう事故が多発する。また、との破断、破壊は加熱炉の
内壁と焼結体間のクリヤランスが少ない場合、この焼結
体がその製造開始時や条件装動じよって生じる生成条件
の変動などで、密度変化をもつものであったり、その形
状が非対称的とされている場合には殆んどの場合におい
て起るということも知られている。そのため、このV9
力焼結体を加熱するための昇温速度を小さくし、例えば
その表面部と内部中心部との温度差が10℃以下となる
ようにゆっくり昇温させるという方法も行なわれている
が、これではシリカ焼結体を溶解温度にまで加熱するだ
けで2〜4時間が必要となるため生産効率が非常に低下
してしまう不利がある。また、これにはシリカ焼結体を
固定炉中に静止状態に保持し、全体を昇温させて溶解す
るという方法も軸台されているが、この場合には炉の加
熱部がヒーターの全体のほぼ中央部から島せられるので
このシリカ焼結体にはどうしても温度分布がつき、その
全長にわたって熱履歴が臂るので、例えばこの溶解と脱
水処理とを同時に行なう場合には熱の移動方向、速度が
各部位で興なることとなり、結果において内部でのドー
プ剤としてのG e OsやPと反応剤との反応率やそ
の移動、脱離などが不均一となり、目的とする透明な光
ファイバー用録材がその全長にわたって同−脱水状態、
同一の屈折率になり離いという不利がある。
However, this porous sintered body itself has a low density and contains a large amount of gas, and this means that the lower the density, the lower the thermal conductivity, the lower the strength, and the more fragile it is. Therefore, when this material is heated in a high-temperature heating furnace, the melting and shrinkage ratio in this amorphous sintered body changes due to the asymmetry of heat transfer due to the furnace structure, heat radiation, convection, etc. When it melts from the top, even a slight deviation in its shrinkage speed causes it to shrink and bend asymmetrically, causing the entire sintered body to tilt downward, as shown in Figure 81, and to move away from the point where it received concentrated stress. There are many accidents where this breaks or hits the inner wall of the furnace and is destroyed. In addition, rupture and destruction of the sintered body may occur if there is little clearance between the inner wall of the heating furnace and the sintered body, or if the sintered body has density changes due to changes in the production conditions at the start of production or due to changes in conditions. It is also known that this occurs in most cases when the shape is asymmetric. Therefore, this V9
Another method is to reduce the temperature increase rate for heating the force-sintered body, for example, to slowly raise the temperature so that the temperature difference between the surface and the center of the body is 10°C or less. However, since it takes 2 to 4 hours just to heat the silica sintered body to the melting temperature, the production efficiency is disadvantageously reduced. This also includes a method in which the silica sintered body is held stationary in a fixed furnace and the entire body is heated and melted, but in this case, the heating part of the furnace is heated to the entire surface of the heater. Since the silica sintered body is islanded from approximately the center, the silica sintered body inevitably has a temperature distribution and has a thermal history along its entire length. As a result, the reaction rate between G e Os and P as a dopant and the reactant, their movement, and desorption become non-uniform, making it difficult to use for the purpose of transparent optical fiber. The recording material is in the same dehydrated state over its entire length,
The disadvantage is that they have the same refractive index and are far apart.

つぎ−二、このνす1IIII結体の溶解による透明光
ファイバー用役割の製造に当っては、このシリカ焼結体
のりリカ堆積面が第2図に示したように上に凹となるよ
うに堆積されているので、G・0.やpoai、などで
ドープした屈折率分布1M!tyW力焼結体な813図
に示したようにそのりリカ堆積が凹となっている上部か
ら溶解すると、この堆積体には各層毎に焼結度の粗密が
できているので内部のガスや移動性のゲルマニウム、リ
ンなどは自白に動けず、これらは2層間にはさまれた低
密度層を遥って焼結体の中心部に向けて移動するので、
これがガスや屈折率の異常を示す線図となる。そして、
特に屈折率分布をもったりリカ焼結体の移動溶解を行な
うときには、この溶解がν9i1焼結体の中心部からも
進行するので、堆積層間のガスが第4図書;示したよう
に中心部からズした位置に濃縮1j15I!され、これ
によって同心円状に異常が発生する。
Next, when producing a role for transparent optical fiber by melting this νS1III compact, the silica sintered compact is deposited so that the silica deposited surface is concave upward as shown in Figure 2. Therefore, G.0. Refractive index distribution 1M doped with , poai, etc. As shown in Figure 813 of a tyW force sintered body, when the liquefied sintered body is melted from the concave upper part, the internal gas and Mobile germanium, phosphorus, etc. do not move, and they move far toward the center of the sintered body through the low-density layer sandwiched between the two layers.
This becomes a diagram showing abnormalities in gas and refractive index. and,
In particular, when performing moving melting of a LiCa sintered body with a refractive index distribution, this dissolution also proceeds from the center of the ν9i1 sintered body, so the gas between the deposited layers flows from the center as shown in Figure 4. Concentrate 1j15I in the position where you left it! This causes anomalies to occur in concentric circles.

また、この気相軸付法で作った多孔質シリカ焼結体の密
度は、その中心部と外鳩部とで相違するため、これを溶
解するときにはその堆積面のU字状に開いている方向か
ら閉じるため、第S図に示したようにその堆I11面が
ズレることになり、これらの異常によって目的とする光
フアイバー用母材から作られた光ファイバーの伝送特性
、特に伝送帯域中を興常直=劣化させるということが艶
出された。
In addition, the density of the porous silica sintered body made by this vapor phase axial attachment method is different between the center and the outer dovetail, so when it is melted, the U-shaped opening on the stacked surface is different. Since the fiber is closed from the same direction, the I11 plane of the fiber will be misaligned as shown in Figure S. These abnormalities will affect the transmission characteristics of the optical fiber made from the target optical fiber base material, especially in the transmission band. It was highlighted that honesty = deterioration.

本発明はこのような不利を解決したシリカ焼結体からの
光フアイバー用母材の製造方法に関するもので、これは
多孔質ガラス焼結体をそのりリカ堆積面が凸状を示す方
向から凹状面に向けて、定常溶解条件に達した炉内にお
いて、一定速度でその全長に同一条件で順次溶解し、ガ
ラス化することを特徴とするものである。
The present invention relates to a method for manufacturing an optical fiber base material from a sintered silica body that solves these disadvantages. It is characterized by sequentially melting and vitrifying the entire length under the same conditions at a constant speed in a furnace that has reached steady melting conditions.

これを説明すると1本発明者らは気相軸付法により製造
した多孔質シリカ焼結体からの光フアイバー用母材の製
造方法について薯々検討の結果、必要に応じ各種のドー
プ剤を含有するけい素化合物を火焔酸化および/または
加水分解して得たりツカ微粉子を堆積させて得た多孔質
のりリカ焼結体は下向きに凸状部な形成した曲面体とな
るが、その焼結体を形成するνす力場積層の縦断面はど
の層も         −凹状となることから、この
溶解ガラス化に当ってこれをその末端の凸状部から各堆
積層のU字状の凹部に向って加熱溶解すれば上記した不
利が解決されることを艶出すと共に、このV9力焼結体
の溶解加熱を予かじめ定常溶解条件とした加熱炉内にこ
の凸状部から導入し、その全長を一定の同一条件で順次
溶解すれば上記した熱の輻射、対流などによる熱移動の
非対称による不利があっても、シリカ焼結体の変形、破
壊が起らず、気泡の残貿、屈折率の異常、堆積層のズレ
がなく、また全長にわたって均一か特性をもつ光フアイ
バー用母材の得られることを確認して本発明を完成させ
た。
To explain this, 1. As a result of various studies on the method of manufacturing optical fiber base materials from porous silica sintered bodies manufactured by the vapor phase axial method, the present inventors found that various dopants may be added as needed. Porous glue sintered bodies obtained by flame oxidation and/or hydrolysis of silicon compounds or by depositing tsuka fine powder become curved bodies with downward convex parts. Since the vertical cross section of the force field stack forming the body is concave in all layers, during this melting and vitrification, the layers are moved from the convex part at the end to the U-shaped concave part of each deposited layer. In addition to highlighting that the above-mentioned disadvantages can be solved by heating and melting this V9 force sintered body, the melting and heating of this V9 force sintered body is introduced from this convex part into a heating furnace that has been set in advance as a steady melting condition, and its entire length is If the silica sintered bodies are sequentially melted under the same conditions, the silica sintered body will not be deformed or destroyed, and the refractive index and residual bubbles will not occur, even if there is the disadvantage of asymmetric heat transfer due to heat radiation and convection. The present invention was completed by confirming that it was possible to obtain an optical fiber base material with no abnormalities or deviations in the deposited layer and with uniform characteristics over the entire length.

本発明の方法を実施するための多孔質シリカ焼結体は、
各種のけい素化合物またはドープ剤を含有するけい素化
合物を酸水素炎などで燃焼させて、これを回転しつつあ
る耐火性標的としての石英棒に吹きつけて、ここに15
Eしたシリカ徽粒子を堆積させ、この石英棒を順次上部
に引上げて棒状のシリカ焼結体とするという、いわゆる
気相軸付法によって作ることができる。この方法で得ら
れる多孔質シリカ焼結体は多量のガスを含有する非晶質
シリカの集合体であることから純白色のものであり、そ
の形状は酸水素炎の広がりや温度分布、標的上へのシリ
カの吹付は方向 *料ガスの組成、反応率、拡散状況、
シg力の一′−舘度などの諸条件によって変化するが、
いづれの場合も軸中心部での堆積量が周辺部にくらべて
多く、熱量も多いことから、中心部で密度やドープ剤濃
度の高い凸状体となる。しかし、このシリカ焼結体を構
成する各堆積層の形状は堆積底−と一様に下方に凸の曲
1状となり、この縦方向切断向はどの方向シ;切っても
U字状となる。なお、とのシリカ焼結体の取得について
はその気相軸付法について説明したが、これはそれに限
定されるものではなく、シリカを多層積層させて多孔質
V9カ焼結体を得る他のいずれの方法で作成したもので
あってもよい。
The porous silica sintered body for carrying out the method of the present invention is
Various silicon compounds or silicon compounds containing dopants are burned in an oxyhydrogen flame, and then blown onto a rotating quartz rod as a refractory target.
It can be produced by the so-called vapor phase sintering method, in which silica particles are deposited and the quartz rods are successively pulled upward to form a rod-shaped silica sintered body. The porous silica sintered body obtained by this method is pure white because it is an aggregate of amorphous silica containing a large amount of gas, and its shape depends on the spread of the oxyhydrogen flame, temperature distribution, and the target surface. The direction of spraying silica on
Although it varies depending on various conditions such as the strength of the force,
In either case, the amount deposited at the center of the shaft is greater than that at the periphery, and the amount of heat is also greater, resulting in a convex body with higher density and dopant concentration at the center. However, the shape of each deposited layer constituting this silica sintered body is a downwardly convex curved shape that is uniformly similar to the bottom of the deposit, and no matter which direction the vertical cutting direction is taken, it becomes a U-shape. . Although we have explained the vapor phase axial method for obtaining silica sintered bodies, this is not limited to this method, and other methods for obtaining porous V9 sintered bodies by laminating multiple layers of silica have been described. It may be created using any method.

本発明の方法は上記のようにして得た下方に凸状部をも
つ多孔質νり力焼結体をその&9力堆積面が凸状を示す
方向から凹状面に向けて順次溶解して、これを透明なガ
ラス状物とするのであるが、この加熱炉は内熱式、外熱
式のいずれでもよく、これはまた浮遊帯m51m法に準
じた加熱コイルによる加熱方式のものとしてもよい。さ
らにこの加熱溶融に当っては炉内に塩業ガスを導入して
νす力焼結体中のOHIを取り除く公知の手法を併用さ
せてもよい。しかし、この加熱溶解はこの加熱炉をシリ
カ焼結体を導入する前に予じめ加熱してその炉内温度が
所定の定常状態に達し、内部におけるガス流、脱水剤な
ども定常状態に達するまではここにシリカ焼結体を導入
せず、これをそれが脱水反応′をしたり、その中に含ま
れているドープ剤などが離脱しない温度に保っておく必
要がある。
The method of the present invention involves sequentially melting the porous ν force sintered body having a downwardly convex portion obtained as described above from the direction in which the &9 force deposited surface shows a convex shape toward the concave surface. This is made into a transparent glass-like material, and the heating furnace may be of either an internal heating type or an external heating type, and may also be of a heating type using a heating coil according to the floating zone m51m method. Further, during this heating and melting, a known method for removing OHI in the sintered body by introducing a salt gas into the furnace may be used in combination. However, in this heating melting process, the heating furnace is preheated before the silica sintered body is introduced, so that the temperature inside the furnace reaches a predetermined steady state, and the gas flow and dehydrating agent inside also reach a steady state. Until then, the silica sintered body must not be introduced here, and it must be kept at a temperature that will not cause a dehydration reaction or release of the dopant contained therein.

本発明の方法はこのようにして定常状態に達した加熱炉
に上記したシリカ焼結体ケ導入し、これをその全長にわ
たって一定の条件下で溶解してガラス化するのであるが
、これには上記した4にようにシリカ焼結体をそのν9
iI堆積面が凸状を示す方向からその凹状面に向けて順
次溶解しなければならない。これには@6因に示すよう
に、νす力焼結体を炉上部から挿入して下降させて、こ
れを絞気、脱水、収縮させ、溶解させればよい。このよ
うにしてシリカ焼結体を溶解すると、このνり力焼結体
はその下端の凸状部−の中心から溶解をるシリカ堆積面
が0字状に開いているため、この堆積−間には閉じ込め
られていた空気や水、11P#lJ性の物質、例えば揮
発性のGo、Oなとのドープ剤は順次この層【通じて外
側−二押し出されるが、この溶解がその内外周がほぼ同
一水平面で行なわれるので、ガスを閉じこめることはな
い。また、この収縮は堆積面のU5Pg:沿って順次行
なわれるのでこれによるズレも発生しない、そして、こ
の方法ではその全長が同じ熱噌歴となるように溶解され
るので炉内の不均一状1が等化され、連続体5:ありが
ちな長さ方向での特性変化が抑えられる。
In the method of the present invention, the above-described sintered silica is introduced into the heating furnace that has reached a steady state in this way, and is melted and vitrified over its entire length under constant conditions. As described in 4 above, the silica sintered body is
iI must be sequentially dissolved from the direction in which the deposited surface exhibits a convex shape toward its concave surface. To do this, as shown in @6, a v-force sintered body is inserted from the upper part of the furnace and lowered, and the body is strangled, dehydrated, shrunk, and melted. When the silica sintered body is melted in this way, the silica deposited surface is opened in a 0-shape, which melts from the center of the convex portion at the lower end of the ν force sintered body. Air, water, and doping agents such as volatile substances such as volatile Go and O are sequentially extruded through this layer. Since it is carried out in almost the same horizontal plane, there is no trapping of gas. In addition, this shrinkage is performed sequentially along the U5Pg of the deposition surface, so no deviation occurs due to this.In addition, in this method, the entire length is melted so that the same heat history is achieved, so there is no unevenness in the furnace. are equalized, and continuum 5: typical changes in characteristics in the length direction are suppressed.

したがって、これC;よればシリカ焼結体中−二含まれ
ていた空気など6;よる不利が除去されるほか、ドープ
剤の移動、脱離の不均一もなくすことができ、結果にお
いて目的とする光フアイバー用母材を破断、破#Aなど
のおそれなしく−、シリカ堆積層が何の乱れもなく正常
に分布され、しかもそのドープ剤wM折率分布やコア侵
が実質的−二均一なものとして容易に取得することがで
きる(第8図参照)。
Therefore, according to this method, the disadvantages caused by the air contained in the silica sintered body can be eliminated, and the non-uniform movement and desorption of the dopant can also be eliminated, so that the desired result can be achieved. There is no fear of breaking or breaking the base material for optical fiber, the silica deposit layer is normally distributed without any disturbance, and the dopant wM refractive index distribution and core erosion are substantially uniform. It can be easily obtained as a standard (see Figure 8).

本発明方法で#まシリカ焼結体の溶畔速Ift従来公知
の方法にくらべて、その10〜20倍であるlO〜20
鴎/分の速さで行なうことも可能であり、これはまたド
ープ剤Y多瞳にt有する高NA−ファイバー、グランド
層t’ft1lさせたシングルモードファイバー、ステ
ップ型分布、大口径の悦結型母鉢などのガラス化にも適
用することかでS。
With the method of the present invention, the melting speed of silica sintered body Ift is 10 to 20 times that of the conventionally known method.
It is possible to perform the process at speeds of 1/min, and this also applies to high NA-fibers with dopant Y multipupils, single-mode fibers with ground layers t'ft1l, step-type distributions, and large diameter fibers. It can also be applied to vitrification of mold mother pots, etc.

これによればそれらのs何も均−C@解ガラスすること
ができるし、これはまた従来その加熱溶解時にHける変
形、破断を防止するために必要とされていた気相軸付法
により得られるシリカ焼結体+7)密ffl’0.15
F/ccf1.60.03 g7acr=1テ低下させ
ることができるということも6I認された。
According to this, it is possible to homogenize any of those materials, and this also eliminates the vapor phase axial method, which was conventionally required to prevent deformation and breakage during heating and melting. Obtained silica sintered body +7) Densityffl'0.15
It was also recognized that F/ccf1.60.03 g7acr=1te can be lowered.

つぎd二本発明方法の実権例tあげる・実施例1 四塩化けい素1:@大屈折率が1%3二なる置の四塩化
ゲνマニウム(Gaol、)と三塩化りん酸(Pool
、)V添加した混合ガスvf11水素炎中で火炎加水分
解し、これを回転しつつある石英棒上I−吹きつけてシ
リカ微粉末χ堆櫂し、直4465txs、長さ300U
、平均艶かけ密度が0.t3*o、01#/ccである
円柱状の多孔質ドープg9力場結体を同一条件で5本作
成した。
Next, we will give two practical examples of the method of the present invention.Example 1 Silicon tetrachloride 1: @ large refractive index 1% 3 Gemanium tetrachloride (Gaol) and phosphoric acid trichloride (Pool
,) Flame hydrolyze the mixed gas added with VF11 in a hydrogen flame and spray it onto a rotating quartz rod to deposit fine silica powder.
, the average glazing density is 0. Five cylindrical porous doped G9 force field bodies with t3*o and 01#/cc were created under the same conditions.

ついで、炉内I:H・ガスと0.21/分の01  が
雪 ス′Ik−流して透明ガラス化と共(二貌ボ処理を行な
うようにした縦型環状炉5二、この5本のりリカ焼結体
をそれぞれつぎの条件で挿入して光フアイバー用母材を
つく・ハこれから光ファイバーをつくり、この伝送損失
を測定したところ、各試料≦二ついてつぎの第111に
示す結果が得られた。
Next, the I:H gas and 0.21/min 01 in the furnace were flowed to produce transparent vitrification. A base material for an optical fiber was made by inserting the glue sintered body under the following conditions. When optical fibers were made from this and the transmission loss was measured, the results shown in the following No. 111 were obtained for each sample ≦ 2. It was done.

(処理条件) 1)m#速度1閣/分で炉のド部からりリカ焼結体な導
入し、上方に引りげた。
(Processing conditions) 1) A sintered body was introduced from the bottom of the furnace at a speed of 1 m/min and pulled upward.

2)炉の加熱部に<79力焼結体を静止させ、常温から
1600℃まで3時間刀為iすて昇温させ、側面から溶
解 3)シリカ焼結体Y炉7J]#I%部のJ:部まで引上
げ、これtそのド端が昇温中にや一収縮する種間の位置
に保ち、炉内が定常状鴨C二なってからこれを炉内弧;
【速で引Fげて溶解 4)シリカ焼結体ンその下端が昇温中も全く収縮が起ら
ない、tl[l:4で炉上郡ζ;引上げ、炉内が定常状
自になってから、これを炉内(;定速で引Fげて溶解 5)上記4)における引ドげ速lfv早くして溶解 (実験結果) 実施例2 前例と同一条件で作成した6本の多孔質ドープシリカ焼
結体vHe ガスt’151!した縦型加熱炉内でこの
シリカ焼結体の内部i1!度が1650℃になるようC
I、たリングヒーターY用いて溶解することとし、この
場合の溶解な炉のF側から(/9力焼結体を導入し、f
s解しながら上方向d二引上げる従来法と、これY炉の
ヒ部から挿入し、シリカ焼結体の凸状をした底部から先
に溶解するようにしてこれt下方−二引Fげるという本
発明の方法によって、このガラス化を行なわせたところ
、その方向、移動速度響二よって第2表C=示したとg
りの結果が得られた。
2) Place the sintered body in the heating section of the furnace with <79 force, raise the temperature from room temperature to 1600°C for 3 hours, and melt from the side 3) Silica sintered body Y Furnace 7J] #I% part 2.Pull it up to J: and keep it in a position where its end contracts slightly during temperature rise, and after the inside of the furnace reaches a steady state, raise it to the arc inside the furnace;
[4) The lower end of the silica sintered body does not shrink at all even when the temperature is rising. When the sintered silica body is pulled up and the furnace reaches a steady state at tl[l:4] Then, it was melted in the furnace (drawing F at a constant speed and melting 5) by increasing the drawing speed lfv in 4) above (experimental results). Doped silica sintered body vHe gas t'151! The inside of this silica sintered body i1! C so that the temperature is 1650℃
In this case, the sintered body is introduced from the F side of the melting furnace, and the f
The conventional method is to insert the silica sintered body from the hole in the Y furnace and melt it from the convex bottom of the silica sintered body first. When this vitrification was carried out by the method of the present invention, the direction and moving speed were as shown in Table 2 C = g
The following results were obtained.

142fi 実施例3 実施例1と同じ方法でIl!径70&lφ、長さ350
騙、平均密!0.09±0.1N/ccのドープされた
多孔質シリカ焼結体2本Y作り、これvlI!1例番二
おける属6の引上げ法(ただし、魔6は変形が激しいの
でスタート時は47の条件で行ない、安定してから46
の方法!適用)および48の引下げ法で溶解してガラス
化したのち、紡糸してファイバーとし、これら1ついて
の伝送特性3に一、0.84μ慝の測定波長C:よって
その伝送帯域中ン周波数掃引はで比較したところ、$3
fiに示すとおりの結果が得られた。
142fi Example 3 Il! in the same manner as Example 1. Diameter 70&lφ, length 350
Deception, average density! I made two pieces of 0.09±0.1N/cc doped porous silica sintered body Y, this is vlI! How to raise genus 6 in example number 2 (however, since magic 6 is severely deformed, start with 47 conditions, and then move to 46 after stabilizing)
the method of! After melting and vitrifying using the pull-down method of 48 and 48, the fibers are spun into fibers, and the transmission characteristics of these 1 to 0.84 μm are measured at wavelength C: Therefore, the frequency sweep in the transmission band is When compared with $3
The results shown in fi were obtained.

丁なわち、ガラスファイバーの伝送特性はその内部イレ
ギュラーの程度に影響されるのであるが、本発明の方法
(/%8)で溶解ガラス化したものから作ったファイバ
ーは内部イレギュラーが少なく、比較例こした/i66
による方法でガラス化し、ファイバーとしたもの(二く
らべて丁ぐれた伝送特性!示した。
In other words, the transmission characteristics of glass fibers are affected by the degree of internal irregularities, but fibers made from glass melted by the method of the present invention (%8) have fewer internal irregularities. Comparative example Koshita/i66
It was vitrified and made into a fiber using the method of

113    表 実権例4 四塩化けい素ガス’i’1.III料として気相軸付法
で直径65φ、長さ200m、平均見かけ密度0.04
1/l−の低慴度シリカ焼結体を作り、これ11650
℃の温度で4丘げ法により溶解したところ、変形して正
常なガラス1に:4ることができなかったが、このシリ
カ焼結体t一度を部まで引上げてから引Fげ法で溶解さ
せたところ、201117分の両速でも変形が起らず、
透明な光ファイバー用母材ン得ることができ、この温I
fン1750℃まで昇温して1紀の引下げ法を通用した
場合6=は50鵡/分の速イでのガラス化が可能であっ
た。
113 Actual example 4 Silicon tetrachloride gas 'i'1. As III material, diameter 65φ, length 200m, average apparent density 0.04 by vapor phase axis method.
A 1/l-low-polarity sintered silica was made, and this was 11650.
When melted using the 4-hill method at a temperature of 1:4 °C, it was deformed and could not be made into a normal glass 1:4, but this silica sintered body was pulled up to a temperature of 1:4 and then melted using the 4-hill method. As a result, no deformation occurred even at both speeds of 201117 minutes.
A transparent base material for optical fibers can be obtained, and this temperature I
When the temperature was raised to 1,750° C. and the first-stage pull-down method was applied, vitrification of 6= was possible at a rate of 50 parrots/min.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法−二よるシリカ焼結体の破断状を示す縦
断面略図、第2図はシリカ@結体の堆横状av示す縦断
面略図、第3図は従来法C;よるνす力焼結体形成およ
びその溶解6二よる光フアイバー母材の書法を示す縦断
面略図%#!4図は従来法にょろりリカ焼結体中の溶解
時におけるガスやドープ剤の移動状況な示す縦断面略図
%第5図はその結果として得られた光ファイバー役付中
のシリカ堆積−の乱れt示す縦断面略図、第6図、第7
図および第8図は本発明によるシリカ焼結体のll#解
方法%溶解状態および光フアイバー母材CXけるシリカ
堆積−の状o′Ik−示す縦断面略図、第9図は従来法
で作った光フアイバー母材の縦断面の顧歇鏡写真、第1
0図は本発明方法で得られた光アアイパー母材の縦断面
の′4A欽繞写真Y示したものである。 特許出軸人 イ1幌化学工ll!体式会社第9図 第10図 手続補正占(方式) %式% ) 2、発明の名称 光フアイバー用母材の製造方法 3.1山正11ろ7名 を件との関li゛、  特許6−人 名称 (206)  信越化学工業線式会社4、代  
理  !、 11− 所 〒1(IJ東I+を都中央1・((本稿A
:町4“j目9番地4jlL’l 1JJAlklk(
27d)085A、 os59Jう、h11正ジ)月家 Il!!l向(第9〜10図)
Fig. 1 is a schematic vertical cross-sectional view showing the fractured state of a silica sintered body according to conventional method-2, Fig. 2 is a schematic vertical cross-sectional view showing the horizontal cross-section of the silica sintered body, and Fig. 3 is a schematic vertical cross-sectional view showing the fractured state of the silica sintered body according to conventional method C; Longitudinal cross-sectional schematic diagram showing how to form an optical fiber base material by force sintering and its melting 6 % #! Figure 4 is a schematic vertical cross-sectional view showing the movement of gas and dopant during dissolution in the conventional silica sintered body. Figure 5 shows the resulting disturbance in the silica deposition during use of the optical fiber. Schematic longitudinal section, Figures 6 and 7
8 and 8 are schematic vertical cross-sectional views showing the melted state of the silica sintered body according to the present invention and the state of silica deposited on the optical fiber base material CX, and FIG. A mirror photo of a longitudinal section of the optical fiber base material, No. 1
Figure 0 is a photograph of a longitudinal section of the optical eyeper base material obtained by the method of the present invention. Patent owner I1 Horo Chemical Industry! Figure 9 Figure 10 Procedure correction calculation (method) % formula %) 2. Name of the invention Method for manufacturing base material for optical fiber 3.1 Relationship with Yamamasa 11 and 7 people, Patent 6 -Name of person (206) Shin-Etsu Chemical Wire Company 4,
Reason! , 11- Location: 〒1 (IJ East I+, Tokyo Chuo 1, (this article A
:Town 4 "Jth No. 9 4jlL'l 1JJAlklk(
27d) 085A, os59J, h11 Masaji) Tsukiie Il! ! l direction (Figures 9-10)

Claims (1)

【特許請求の範囲】[Claims] けい素化合物またはドープ剤を含むけい素化合物を大端
酸化および/または加水分解してレリカ徽粒子からなる
多孔質ガラス焼結体を作り、これを高熱加熱炉で透明ガ
ラス化する光フアイバー用母材の製造方法において、多
孔質ガラス焼結体をそのりリカ堆積面が凸状を示す方向
から凹状面に向けて、定常溶解条件に達した炉内におい
て、一定速度でその全長を同一条件で順次溶解し、ガラ
ス化することを特徴とする光フアイバー用母材の製造方
An optical fiber motherboard in which a silicon compound or a silicon compound containing a dopant is oxidized and/or hydrolyzed to produce a porous glass sintered body made of Relica particles, which is then turned into transparent glass in a high-temperature heating furnace. In the method for producing the material, a porous glass sintered body is oriented from the convex direction of the sintered surface to the concave surface, and is heated at a constant speed over its entire length under the same conditions in a furnace that has reached steady melting conditions. A method for producing a base material for optical fiber, characterized by sequential melting and vitrification.
JP2072082A 1982-02-12 1982-02-12 Manufacture of base material for optical fiber Granted JPS58140336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2072082A JPS58140336A (en) 1982-02-12 1982-02-12 Manufacture of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2072082A JPS58140336A (en) 1982-02-12 1982-02-12 Manufacture of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS58140336A true JPS58140336A (en) 1983-08-20
JPS631254B2 JPS631254B2 (en) 1988-01-12

Family

ID=12034998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2072082A Granted JPS58140336A (en) 1982-02-12 1982-02-12 Manufacture of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS58140336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172644A (en) * 1984-09-19 1986-04-14 Sumitomo Electric Ind Ltd Manufacture of optical fiber having low transmission loss
JPS6186431A (en) * 1984-10-04 1986-05-01 Asahi Glass Co Ltd Vitrification of porous quartz glass parent material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149356A (en) * 1974-04-22 1975-11-29
JPS52149134A (en) * 1976-06-04 1977-12-12 Fujikura Ltd Preparation of mother material for optical fiber
JPS54134128A (en) * 1978-04-04 1979-10-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of basic material for light transmitting fiber
JPS5636132A (en) * 1979-08-31 1981-04-09 Jeol Ltd Sample shifter for electron ray exposing device, etc.
JPS5717433A (en) * 1980-05-24 1982-01-29 Nippon Telegr & Teleph Corp <Ntt> Dehydrating and sintering method for porous base material for optical fiber with low loss

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149356A (en) * 1974-04-22 1975-11-29
JPS52149134A (en) * 1976-06-04 1977-12-12 Fujikura Ltd Preparation of mother material for optical fiber
JPS54134128A (en) * 1978-04-04 1979-10-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of basic material for light transmitting fiber
JPS5636132A (en) * 1979-08-31 1981-04-09 Jeol Ltd Sample shifter for electron ray exposing device, etc.
JPS5717433A (en) * 1980-05-24 1982-01-29 Nippon Telegr & Teleph Corp <Ntt> Dehydrating and sintering method for porous base material for optical fiber with low loss

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172644A (en) * 1984-09-19 1986-04-14 Sumitomo Electric Ind Ltd Manufacture of optical fiber having low transmission loss
JPH05350B2 (en) * 1984-09-19 1993-01-05 Sumitomo Electric Industries
JPS6186431A (en) * 1984-10-04 1986-05-01 Asahi Glass Co Ltd Vitrification of porous quartz glass parent material
JPH0563415B2 (en) * 1984-10-04 1993-09-10 Asahi Glass Co Ltd

Also Published As

Publication number Publication date
JPS631254B2 (en) 1988-01-12

Similar Documents

Publication Publication Date Title
FI77217B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN POLARISATIONSBEVARANDE OPTISK FIBER.
US4082420A (en) An optical transmission fiber containing fluorine
JP5579210B2 (en) Optical fiber preform manufacturing method
JPS61155225A (en) Manufacture of optical wave guide tube
US4161505A (en) Process for producing optical transmission fiber
US4643751A (en) Method for manufacturing optical waveguide
JPH044986B2 (en)
US4242375A (en) Process for producing optical transmission fiber
JPS58145634A (en) Manufacture of doped glassy silica
US4165152A (en) Process for producing optical transmission fiber
US4087266A (en) Optical fibre manufacture
JPH0948629A (en) Optical fiber and its production
JPS6172644A (en) Manufacture of optical fiber having low transmission loss
JPS58140336A (en) Manufacture of base material for optical fiber
JPS599491B2 (en) Method for manufacturing base material for optical fiber
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
JPS596821B2 (en) Method for manufacturing multicomponent glass fiber
JPS60263103A (en) Base material for optical fiber and its production
JPH0460930B2 (en)
JP2007091579A (en) Method of manufacturing optical fiber preform
JPS6136130A (en) Manufacture of preform for polarization-keeping optical fiber
JPS61158303A (en) Formation of quartz optical waveguide
JP2003165736A (en) Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it
CN100999382B (en) Method for fabricating optical fiber preform and method for fabricating optical fiber using the same
JPS60145927A (en) Production of base material for optical fiber