JPS58139182A - Driving of liquid crystal display - Google Patents

Driving of liquid crystal display

Info

Publication number
JPS58139182A
JPS58139182A JP2107482A JP2107482A JPS58139182A JP S58139182 A JPS58139182 A JP S58139182A JP 2107482 A JP2107482 A JP 2107482A JP 2107482 A JP2107482 A JP 2107482A JP S58139182 A JPS58139182 A JP S58139182A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
driving
period
nematic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2107482A
Other languages
Japanese (ja)
Inventor
岡崎 熱郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2107482A priority Critical patent/JPS58139182A/en
Publication of JPS58139182A publication Critical patent/JPS58139182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は液晶表示器の駆動方法に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for driving a liquid crystal display.

〔従来技術とそ・の間唾点〕[Conventional technology and its points]

表面に電極を有する2枚の絶縁基板とこれらの絶縁基板
に挾持され九ネマチック液晶を有し、このネマチック液
晶は基板、表面に平行配向され、又−電異方性が第1図
に示すように低周波駆動期間においては正の値を、高周
波駆動電圧において紘負の値を有し、鋏液晶層の配向方
向を低周波駆動電圧によって畔絶縁基板に喬直になるよ
う制御し、高周波駆動電圧によう7c″鋏絶縁基板に水
平になるよう制御する事によって生ずる光学的効果を利
用して所望の表示を行なう、いわゆる2Il波駆動駆動
液晶器が知られている。
It has two insulating substrates with electrodes on their surfaces and nine nematic liquid crystals sandwiched between these insulating substrates, and the nematic liquid crystals are oriented parallel to the substrates and surfaces, and have electrical anisotropy as shown in Figure 1. It has a positive value during the low frequency drive period and a negative value at the high frequency drive voltage, and the alignment direction of the scissors liquid crystal layer is controlled by the low frequency drive voltage so that it is perpendicular to the insulating substrate, and the high frequency drive A so-called 2Il wave driven liquid crystal device is known which displays a desired display by utilizing the optical effect produced by controlling the voltage to be horizontal to a 7c'' scissors insulating substrate.

eoような光学効果としてはTN (Twiatm N
ematic )効果、若しくはG/H(Gu鶴t−H
o5t)効果が上げられ、いずれの場合にも第2図に示
す、低周波電圧が印加されてから光学変化(透過率の変
化、又は反射率の変化)が生ずるまでの時間−立ち上が
抄時間(TON )−と高量波電圧が印加されてから光
学変化が生ずる壕での時間−立ち下がり時間(TUFF
)−に関してs TONは駆動電圧vLとの間に(1)
式の関係が成立する事が知られている。
The optical effect like eo is TN (Twiatm N
ematic) effect, or G/H (Gutsurut-H
o5t) The time from the application of the low-frequency voltage until the optical change (change in transmittance or change in reflectance) occurs, as shown in FIG. time (TON) - and the time at which the optical change occurs after the high-wave voltage is applied - the fall time (TUFF)
) - s TON is between the driving voltage vL (1)
It is known that the relationship of Eq.

η:粘度、Δm、@電率異方性、に:弾性常数、a:セ
ル厚従ってTONに関しては駆動電圧vLを充分大きく
する事によって任意に小さくする事ができる。同様に立
ち下がり時間T’oyrはTONとvLとの類推より(
2)式が成立されると予想される。
η: viscosity, Δm, @electrical anisotropy, ni: elastic constant, a: cell thickness Therefore, TON can be made arbitrarily small by making the drive voltage vL sufficiently large. Similarly, the fall time T'oyr is determined by analogy between TON and vL (
2) It is expected that the formula will hold.

この事はTOFFが高周波駆動電圧V、を充分大きくす
れば任意に小さくできる事を意味しており、従来のIN
!il波の駆動方法の場合においてTOFFは液晶材料
の物性値によってのみ決まる一定の値を示すのに比べ2
周波駆動の大きな利点で6つ九、ところが第3図に示す
ようにvLを一定値より大きくすると図中(1)で示す
ようなピークが現われる丸めTOFFの値が期待に反し
て下がらないという事が見出され友。この現象はBac
kflow現象と呼ばれるもので第4図に基づき簡単に
説明する。低周波駆動電圧が印加されている期間液晶分
子は基板に垂直に配向される。高周波駆動電圧が印加さ
れると液晶分子の誘電異方性が正から負に変化するため
、今まで液晶分子を−直に配向させるように働いてい走
力は水平に配向するような力に変化する。この時基板近
傍の分子は基板表面の水平方向の配向力の丸めセル中央
の分子よシ容易に回転運動を起こす。
This means that TOFF can be made arbitrarily small if the high-frequency drive voltage V is made large enough, and the conventional IN
! In the case of the il-wave driving method, TOFF exhibits a constant value determined only by the physical properties of the liquid crystal material;
However, as shown in Figure 3, when vL is increased beyond a certain value, the rounded TOFF value, which shows a peak as shown in (1) in the figure, does not decrease as expected. Found a friend. This phenomenon is Bac
This phenomenon is called the kflow phenomenon, and will be briefly explained based on FIG. While the low frequency driving voltage is applied, liquid crystal molecules are aligned perpendicular to the substrate. When a high-frequency driving voltage is applied, the dielectric anisotropy of the liquid crystal molecules changes from positive to negative, so the running force, which until now acted to orient the liquid crystal molecules directly, changes to a force that orients them horizontally. do. At this time, the molecules near the substrate easily undergo rotational movement compared to the molecules at the center of the rounding cell due to the horizontal orientation force of the substrate surface.

このためこの基板近傍の液晶分子の回転運動によって、
セル中央の分子は電界による力と反対方向のトルクを持
つ友流体力学的力(3)を受は一時的に電界による回転
方向とは逆の回転運動を起こし、流体力学的力が減衰し
九後、本来の電界による回転方向へ復帰する。第3図の
ピークはこの回転のゆり戻しの時の生ずるものであり、
このような現象をBackflowと呼んでいる。この
Backflow ill象の丸め従来の218波駆動
法において、立ち下かに時間TOFFの電圧Vnによる
減少の効果はvLがある一定値以上では着しく減殺され
るという欠点が有った。  1〔発明の目的〕 本発明は上述し九従来の駆動方法の欠点を除去した新規
な駆動方法を与える4のであって、この駆動方法を採用
する事によって立ち上がヤ時間。
Therefore, due to the rotational movement of liquid crystal molecules near this substrate,
The molecule at the center of the cell receives a hydrodynamic force (3) that has a torque in the opposite direction to the force caused by the electric field, and temporarily causes a rotational movement in the opposite direction to the rotation direction caused by the electric field, and the hydrodynamic force is attenuated. After that, it returns to the original direction of rotation due to the electric field. The peak in Figure 3 occurs when this rotation is reversed,
This phenomenon is called Backflow. In the conventional 218-wave drive method with rounding of this Backflow Illusion, there is a drawback that the effect of reducing the falling edge time TOFF by the voltage Vn is severely diminished when VL exceeds a certain value. 1 [Object of the Invention] The present invention provides a new driving method that eliminates the above-mentioned nine drawbacks of the conventional driving methods, and by adopting this driving method, the start-up time can be reduced.

立ち下がり時間共に駆動電圧によって任意に減少させる
事ができるものである。
Both the fall time and the falling time can be arbitrarily reduced by changing the driving voltage.

〔発明の概要〕[Summary of the invention]

上述したBackflowなる現象は高周波駆動電圧を
急激に印加した事によって、あらかじめ一定のチ′ ル
ト角を有する基板近傍の分子が電界力に比較的追随し易
いのに比して、基板中央の分子は#1とんどチルト角が
無いため追随しにくいために生ずるものと考えられる。
The Backflow phenomenon described above is caused by the sudden application of a high-frequency drive voltage, and while molecules near the substrate, which have a predetermined tilt angle, are relatively easy to follow the electric field force, molecules at the center of the substrate are #1 This is thought to occur because there is almost no tilt angle, making it difficult to follow.

従がって、低周波駆動電圧印加期間と高周波駆動電圧印
加期間の間に第3の期間を設けこの期間内は電圧を印加
しないか若しくはこの期間において印加電圧を0から所
定の電圧まで漸次増大する事によって、この期間丙に液
晶分子は基板表面の配向力によっである程度基板に平行
な配向へ復帰しているため、セル中央の分子も高周波駆
動電圧の電界力に追随できBackflow現象は生じ
ないと考えられる。
Therefore, a third period is provided between the low-frequency drive voltage application period and the high-frequency drive voltage application period, and no voltage is applied during this period, or the applied voltage is gradually increased from 0 to a predetermined voltage during this period. During this period, the liquid crystal molecules return to a certain degree of alignment parallel to the substrate due to the alignment force on the substrate surface, so the molecules at the center of the cell can also follow the electric field force of the high-frequency drive voltage, causing the Backflow phenomenon. It is thought that there is no.

〔発明の効果〕〔Effect of the invention〕

本発明による駆動方法によってBackflow現象が
生じないため、立ち下がり時間はBackflow @
象が有る場合に比し2/3〜1/2に改善された。
Since the driving method according to the present invention does not cause the Backflow phenomenon, the falling time is
It was improved to 2/3 to 1/2 compared to the case where there was an elephant.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を以下に述べる。t/Ii5図は本発明
の要件を満足する駆動波形を発生する回路であシ、第6
図(b)はその駆動波形である。実験に使用し九液晶表
□示器はG/Hタイプ液晶^示器を用い、液晶材料はシ
クロヘキサン系とジシアノハイドロキノン誘導体の混合
物を使用、染料はアント□ラキノン系染料を使用し丸。
Examples of the present invention will be described below. t/Ii5 Figure 6 shows a circuit that generates a drive waveform that satisfies the requirements of the present invention.
Figure (b) shows the drive waveform. The liquid crystal display used in the experiment was a G/H type liquid crystal display, the liquid crystal material was a mixture of cyclohexane and dicyanohydroquinone derivatives, and the dye was anthraquinone dye.

第6図(a)は本実施例による駆動波形に゛て駆動し九
場合の、液晶□表示器の透過率変化である。参考の為、
第6図(a)には従−〇2周波駆動波形(C)で駆動し
た場合の透過率変化も示しである。図かられかるように
本実施例による駆動回路によって駆 生じないため立ち下がり時間は短かくなっている。
FIG. 6(a) shows the change in transmittance of the liquid crystal □ display when driven with the driving waveform according to this embodiment. For reference,
FIG. 6(a) also shows the change in transmittance when driven with the sub-〇2 frequency drive waveform (C). As can be seen from the figure, the fall time is short because it is not caused by the drive circuit according to this embodiment.

〔本発明の他の実施例〕[Other embodiments of the present invention]

第7図は本発明の他の実施例を示しており、第7図(a
)は実際の駆動回路、同図(b)は駆動波形を各々示し
ている。本実施例では低周波駆動期間と高周波駆動期間
に電圧を印加しない期間を設は友ものである。本駆動波
形を用いても全く同様の効果を祷る事ができ丸。ここで
時間Tは第1の実施例の場合に比し10〜20%長くす
る必要が6つ九が、いずれの実施例の場合も温度によっ
て値を変える必要があり、時間Tは温度センサにより自
動調節される事が望ましい。
FIG. 7 shows another embodiment of the present invention, and FIG.
) shows an actual drive circuit, and (b) shows the drive waveform. In this embodiment, a period in which no voltage is applied is provided in the low frequency driving period and the high frequency driving period. Exactly the same effect can be achieved using this drive waveform. Here, the time T needs to be 10 to 20% longer than in the first embodiment, but in any embodiment, it is necessary to change the value depending on the temperature, and the time T is determined by the temperature sensor. It is desirable that it be automatically adjusted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は誘電率の周波数特性、第2図は2W4波駆動波
形と液晶表示器の応答波形、嬉3図は従来の21111
波駆動におけるBackflow現象を示す図、第4図
はBackflow現象を説明する分子模式図、第5図
は本発明の一実施例による駆動回路、第6図は#I5図
に示した回路による駆動波形と応答波形、第7図は本発
明の他の実施例による駆動回路とその駆動波形を示す図
である。 (1)−= Backflow現象にヨルピーク(2)
・・・電界による回転力 (3)・・・流体力学的力に基づく回転力(4)・・・
電極基板 (5)・・・駆動波形(b)による応答flL形(6)
・・・駆動波形(C)による応答波形代理人 弁理士 
 則 近 憲 佑 ほか1名 腰・ ・                 1第  l  
囚 第  2  図 第3図 −T− ← 第4図 第  5  図 第  6  図 第7図
Figure 1 is the frequency characteristic of dielectric constant, Figure 2 is the 2W4 wave drive waveform and response waveform of the liquid crystal display, and Figure 3 is the conventional 21111 waveform.
A diagram showing the Backflow phenomenon in wave driving, Figure 4 is a molecular schematic diagram explaining the Backflow phenomenon, Figure 5 is a drive circuit according to an embodiment of the present invention, and Figure 6 is a drive waveform by the circuit shown in Figure #I5. FIG. 7 is a diagram showing a drive circuit and its drive waveform according to another embodiment of the present invention. (1) - = Backflow phenomenon and Jopeak (2)
... Rotational force due to electric field (3) ... Rotational force based on hydrodynamic force (4)...
Electrode substrate (5)...Response flL type (6) due to drive waveform (b)
...Response waveform agent based on drive waveform (C) Patent attorney
Noriyuki Noriyuki and 1 other person... 1st l
Prisoner Figure 2 Figure 3-T- ← Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 表面に電極を有する2枚の絶縁基板とこの絶縁基板に挾
持され九ネマチック液晶層とを有し、このネマチック液
晶は誘電異方性が低周波において再、ilI1m18波
において負の値を有しかつ前記絶縁基板゛に平行に配向
さ7れており、低周波の駆動電圧によって前記ネマチッ
ク液晶を絶縁基板Kfi直に配向制御し、高周波の駆動
電圧によって水平に配向制御する21i&駆動方法にお
いて、低周波駆動期間の直後で高周波駆動電圧期間の前
に一定期間を設け、この期間内は電圧を無印加若しくは
高l1ltILの駆動電圧をOから所定の電圧まで漸次
増大する事を特徴とする液晶表示器の駆動方法。
It has two insulating substrates having electrodes on their surfaces and a nine nematic liquid crystal layer sandwiched between the insulating substrates, and the nematic liquid crystal has dielectric anisotropy that is negative at low frequencies and negative at ilI1m18 waves. In the 21i & driving method, the nematic liquid crystal is aligned parallel to the insulating substrate 7, and the alignment of the nematic liquid crystal is controlled directly to the insulating substrate Kfi by a low-frequency drive voltage, and the alignment is controlled horizontally by a high-frequency drive voltage. A liquid crystal display characterized in that a certain period is provided immediately after the driving period and before the high frequency driving voltage period, and during this period, no voltage is applied or the driving voltage of high l1ltIL is gradually increased from O to a predetermined voltage. Driving method.
JP2107482A 1982-02-15 1982-02-15 Driving of liquid crystal display Pending JPS58139182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107482A JPS58139182A (en) 1982-02-15 1982-02-15 Driving of liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107482A JPS58139182A (en) 1982-02-15 1982-02-15 Driving of liquid crystal display

Publications (1)

Publication Number Publication Date
JPS58139182A true JPS58139182A (en) 1983-08-18

Family

ID=12044737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107482A Pending JPS58139182A (en) 1982-02-15 1982-02-15 Driving of liquid crystal display

Country Status (1)

Country Link
JP (1) JPS58139182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515020A (en) * 2012-03-30 2015-05-21 サン−ゴバン グラス フランス Electrically controllable liquid crystal glazing power supply and method for feeding such glazing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515020A (en) * 2012-03-30 2015-05-21 サン−ゴバン グラス フランス Electrically controllable liquid crystal glazing power supply and method for feeding such glazing

Similar Documents

Publication Publication Date Title
JPS59214824A (en) Liquid-crystal electrooptic device
JPH09146126A (en) Liquid crystal display and information transmission device
JPS58139182A (en) Driving of liquid crystal display
JPH07505236A (en) lcd device
US4016094A (en) Electro-optical device
JPS56156816A (en) Liquid-crystal display device
JPH02300723A (en) Liquid crystal display element
KR930018449A (en) Method of aligning cholesteric liquid crystal between two parallel glass plates of liquid crystal cell without generating opposite diagonal line
JPS59131911A (en) Liquid crystal electrooptic device
JP3625862B2 (en) Liquid crystal material and liquid crystal display panel
JPS6048020A (en) Liquid crystal color display element
JPS5876483A (en) Liquid crystal mixture
JPS54101344A (en) Liquid crystal display device
JPS6295380A (en) Chiral smectic liquid crystal composition
JPH03200220A (en) Liquid crystal element
JPS6173927A (en) Driving method of liquid-crystal panel
JPS6337193A (en) Liquid crystal display device
JPS63186217A (en) Liquid crystal display device
JPH0222116B2 (en)
JPH01251015A (en) Liquid crystal element
JPH04102828A (en) Liquid crystal element
JPS63159825A (en) Manufacture of liquid crystal electrooptical element
JPS59105680A (en) Liquid crystal display cell
JPS5840169B2 (en) exiyouhiyoujisouchi
JPS62246014A (en) Liquid crystal display device