JPS59131911A - Liquid crystal electrooptic device - Google Patents

Liquid crystal electrooptic device

Info

Publication number
JPS59131911A
JPS59131911A JP651283A JP651283A JPS59131911A JP S59131911 A JPS59131911 A JP S59131911A JP 651283 A JP651283 A JP 651283A JP 651283 A JP651283 A JP 651283A JP S59131911 A JPS59131911 A JP S59131911A
Authority
JP
Japan
Prior art keywords
liquid crystal
glass substrates
rubbing
phase
rubbing direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP651283A
Other languages
Japanese (ja)
Inventor
Minoru Yazaki
矢崎 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP651283A priority Critical patent/JPS59131911A/en
Publication of JPS59131911A publication Critical patent/JPS59131911A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To improve remarkably orientation characteristic of a liquid crystal having a chiral smectic C phase or H phase and to obtain a good contrast characteristic by coating a polyimide resin on the surface on the liquid crystal layer side of two sheets of upper and lower glass substrates to be sealed therein with said liquid crystal and curing said resin, then rubbing and combining the rubbing direction on the two glass substrates in prallel in the same upper and lower directions. CONSTITUTION:Transparent electrodes 23 are provided on the liquid crystal layer 25 side on upper and lower glass substrates 21, 22, and furthr a polyimide resin 24 is coated thereon and is rubbed in parallel with a bleached fabric or the like by a rubbing machine. The substrates 21, 22 are further pasted together at a suitable space so as to have the same rubbing direction. The polarizing plates are further set on the top and bottom of the cell with the optical axis 14 of the one polarizing plate deviated to an angle psi0 of about 22.5 deg. relative with the rubbing direction so as to intersect orthogonally with the optical axis 13 of the other polarizing plate. When an electric field is impressed on the cell, an electrooptic device wherein the light is passed or interrupted and is thus turned on and off is obtd.

Description

【発明の詳細な説明】 本発明は液晶電気光学装置に関し、特に印加電圧と分子
配向との強い結合により極性に迅速に応答する液晶電気
光学装置の液晶の配向方法に関する0 液晶は種々の電気光学装置に利用されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid crystal electro-optical device, and more particularly to a method for aligning liquid crystal in a liquid crystal electro-optical device that rapidly responds to polarity due to a strong bond between applied voltage and molecular orientation. Used in equipment.

特に時計、電卓の衷示装置のような小型、低消費電力が
必要とされる装置に用いられている。これ等の装置はネ
マチック、スメクチック、コレステリック相における誘
電体の配列効果を利用している0このような方法による
印加電界と液晶分子の結合はかなり弱いので上記装置の
電気光学的応答時間は極めて遅いものとなる。しかしな
がら液晶電気光学装置は、低電圧、低消費電力、小型、
薄型化が可能であることから、非発光型電気光学装置と
して最も有望視されている。従って液晶電気光学装置の
もつ、″応答速度が遅く非―型性が改善できれば、用途
の著しい拡大が期待できる。
It is particularly used in devices that require small size and low power consumption, such as clocks and calculator display devices. These devices utilize the alignment effect of dielectrics in nematic, smectic, and cholesteric phases.The coupling between the applied electric field and liquid crystal molecules in these methods is quite weak, so the electro-optical response time of the above devices is extremely slow. Become something. However, liquid crystal electro-optical devices are low voltage, low power consumption, small size,
Because it can be made thinner, it is considered the most promising non-emissive electro-optical device. Therefore, if the slow response speed and amorphous property of liquid crystal electro-optical devices can be improved, a significant expansion of applications can be expected.

このような状況から、カイラルスメクチック液晶を電気
光学素子として使用する試みが、特開昭56−IO72
16に記載されている。これによると、カイラルスメク
チックC又はH相液晶は−般的に電気双極子密度を有す
る強誘電体であることが言われており、更に上記電気双
極子密度は分子の傾斜方向に対して直角である。これら
カイラルスメクチック内に電気双極子があることにより
印加電界と分子配向との間に強い結合が生じる。
Under these circumstances, an attempt was made to use chiral smectic liquid crystal as an electro-optical element in Japanese Patent Application Laid-open No. 56-IO72.
16. According to this, chiral smectic C- or H-phase liquid crystals are generally said to be ferroelectrics with an electric dipole density, and furthermore, the electric dipole density is perpendicular to the direction of molecular inclination. be. The presence of electric dipoles within these chiral smectics creates a strong coupling between the applied electric field and molecular orientation.

この結合は誘電体の異方性により得られるものより強い
。更に上記結合は極性的なものであり好ましい配向の電
気双極子密度は印加電界と平行である。その結果印加電
界の極性を反転させることによって好ましい配向電気双
極子を反転させることができるので電界の反転を分子配
向の制御に効果的に用いることができる。これにより液
晶を使用している従来の電気光学装置と比較して100
0〜10000倍も応答速度が速く充分な固有非直線性
が得られる。又、強誘電性スメクチック液晶は、結晶強
誘電体と異なり好ましい配向を必要とすることが記載さ
れている。更にその配向方法は、デシルオキシベンジリ
デンp′−アミノ2メチルブチルシンナメート(DOB
AMBO)及びヘキシルオキシベンジリデンp′−アミ
ノ2クロロプロピルシンナメー)(HOBAOPc)の
化合物の場合、無傷のガラス又は無傷の酸化スズ層によ
って配向される。又、ネマチック相からスメクチック人
相が形成される場合、十分な磁界を印加すると磁界に沿
って平均分子配向を有する。更に2安定性をより確実に
行なう方法として第1図に示したように2枚のガラス基
板に方形のリッジを設け、それぞれのガラス基板を液晶
の振れ角2ψ。
This coupling is stronger than that obtained by dielectric anisotropy. Furthermore, the bond is polar and the preferred orientation of the electric dipole density is parallel to the applied electric field. As a result, the preferred orientation electric dipole can be reversed by reversing the polarity of the applied electric field, so that reversal of the electric field can be effectively used to control molecular orientation. This results in an improvement of 100% compared to conventional electro-optical devices that use liquid crystals.
The response speed is 0 to 10,000 times faster and sufficient inherent nonlinearity can be obtained. It is also described that ferroelectric smectic liquid crystals require favorable orientation, unlike crystalline ferroelectrics. Furthermore, the orientation method is decyloxybenzylidene p'-amino 2methylbutyl cinnamate (DOB
In the case of the compounds AMBO) and hexyloxybenzylidene p'-amino 2chloropropylcinname) (HOBAOPc), they are oriented by an intact glass or an intact tin oxide layer. Also, when a smectic phase is formed from a nematic phase, when a sufficient magnetic field is applied, it has an average molecular orientation along the magnetic field. Furthermore, as a method for achieving bistability more reliably, a rectangular ridge is provided on two glass substrates as shown in FIG. 1, and each glass substrate is fixed at a deflection angle of 2ψ of the liquid crystal.

の角をなすように配位し2液晶を配向させる方法が記載
されている。しかしながら、我々の実験結果からは配向
処理をしないガラス基板を用いたものでは、各ドメイン
がランダムに配向してしまい十分なコントラストを得る
ことができない。
A method for orienting two liquid crystals by coordinating them so as to form an angle is described. However, our experimental results show that when using a glass substrate that is not subjected to orientation treatment, each domain is randomly oriented, making it impossible to obtain sufficient contrast.

更に磁界中で配向させる方法においては、磁場印加時に
はモノドメインとなり一方向に配向するが@に〜十数K
Gの磁場を必要とするため大型の磁場発生機が必要であ
り実用的でない。更にガラス基板にリッジを設け、コー
ンの振れ角2ψ。と同角度分ガラス基板をずらす方法に
おいてもほとんどコントラストを得ることができなかっ
た。
Furthermore, in the method of orientation in a magnetic field, when a magnetic field is applied, it becomes a monodomain and is oriented in one direction, but
Since it requires a G magnetic field, a large magnetic field generator is required, which is not practical. Furthermore, a ridge is provided on the glass substrate, and the deflection angle of the cone is 2ψ. Even with the method of shifting the glass substrate by the same angle as the above, almost no contrast could be obtained.

又、最近の文献等の報告からも磁場中以外でのカイラル
スメクチック液晶の良好な配向方法は示されていない。
Further, recent literature reports have not shown any good method for aligning chiral smectic liquid crystals outside of a magnetic field.

本発明は上記点に着目してなされたものでありカイラル
スメクチック液晶の簡易で実用的な配向方法を呈示する
ものである。これによりカイラルスメクチック液晶の優
れた応答速度を有効に利用できるものである0即ちカイ
ラルスメクチックC相又はH相を有する液晶を封入する
2枚の上下のガラス基板の液晶層側の面上にポリイミド
樹脂を塗布し硬化後ラビングし、しかも2枚のガラス基
板上のラビング方向を上下同一方向に平行に組み合わせ
たものであり、これによりカイラルスメクチック液晶の
配向性が著しく向上し、良好なコントラスト特性を得る
ことを可能にしたものである。
The present invention has been made in view of the above points, and provides a simple and practical method for aligning chiral smectic liquid crystals. This makes it possible to effectively utilize the excellent response speed of chiral smectic liquid crystals.Polyimide resin is coated on the liquid crystal layer side surfaces of two upper and lower glass substrates that encapsulate liquid crystals having 0, that is, chiral smectic C phase or H phase. is applied and rubbed after curing, and the rubbing directions on the two glass substrates are parallel to each other in the same direction above and below. This significantly improves the alignment of chiral smectic liquid crystals and provides good contrast characteristics. This is what made it possible.

第2図は本発明の構成の簡略図である。スメクチック人
相の状態ではラビング方向が上下同一のため液晶分子は
ラビング方向に分子長軸をそろえて配向している。そし
て温度が下がってスメクチックC相に転移するとコーン
状でカイラリティをもった分子となり2ψ0が現われて
くる。温度の下降と供にこの2ψ。は徐々に大きくなり
さ50゜まで拡がる。液晶分子11はこの2ψ。の角度
内で自由度をもつ(カイラリティを示す)。しかも電気
双極子と液晶分子長軸は直角であるため外部から正又は
負の電界を印加するとコーンの最も振れる線状11の状
態又は15の状態で安定する。
FIG. 2 is a simplified diagram of the configuration of the present invention. In the state of smectic physiognomy, the rubbing directions are the same up and down, so the liquid crystal molecules are oriented with their long axes aligned in the rubbing direction. When the temperature decreases and it transitions to the smectic C phase, it becomes a cone-shaped molecule with chirality and 2ψ0 appears. This 2ψ increases as the temperature decreases. gradually increases in size and extends up to 50°. The liquid crystal molecule 11 is this 2ψ. It has degrees of freedom within the angle of (indicates chirality). Furthermore, since the electric dipole and the long axis of the liquid crystal molecules are perpendicular to each other, when a positive or negative electric field is applied from the outside, the cone stabilizes in the linear state 11 or 15, where it swings the most.

従ってこの2安定の一方向に偏光板13又は14の光軸
を合せておきもう一方を直交させ、電界を印加すると光
が通過又は遮断されon 、offさせる電気光学装置
が出来る。又、理想的なコントラストを得るには2ψ0
は45°である。これは液晶の温度により設定可能であ
る。
Therefore, by aligning the optical axes of the polarizing plates 13 or 14 in one of these two stable directions and orthogonal to the other, and applying an electric field, an electro-optical device can be created in which light passes through or is blocked and is turned on or off. Also, to obtain the ideal contrast, 2ψ0
is 45°. This can be set by the temperature of the liquid crystal.

以下、実施例に従って本発明を更に具体的に説明する。Hereinafter, the present invention will be explained in more detail according to Examples.

実施例 第3図に本発明電気光学装置のセル構造の概略を示す。Example FIG. 3 schematically shows the cell structure of the electro-optical device of the present invention.

21及び22は上下のガラス基板である。21 and 22 are upper and lower glass substrates.

この基板上の液晶層25側に透明電極23が設けられ更
にその上にポリイミド樹脂(東し社製ドレニース200
0# )24を約soX位塗布し、う4   ピングマ
シンにて、サラシ布等で平行にラビングし、更に上下2
枚のガラス基板を適当な間隔(01〜5.0μm)で第
4図の如くラビング方向が同一となるように貼り合せた
@液晶層25はDOBAMBC又はHOBAOPO系の
液晶である。更にこのセルの上下に偏光板をセットし一
方の偏光板の光軸をラビング方向に対して約22.5度
の角度にずらし他方の偏光板の光軸をこれと直交させた
A transparent electrode 23 is provided on the liquid crystal layer 25 side on this substrate, and a polyimide resin (Drainice 200 manufactured by Toshisha Co., Ltd.) is further applied thereon.
0#) Apply approximately soX amount of 24, rub it in parallel with a drying cloth etc. using a 4-ping machine, and then apply 2
The liquid crystal layer 25, which is made by laminating two glass substrates at appropriate intervals (01 to 5.0 μm) so that the rubbing directions are the same as shown in FIG. 4, is a DOBAMBC or HOBAOPO liquid crystal. Further, polarizing plates were set above and below this cell, and the optical axis of one polarizing plate was shifted at an angle of about 22.5 degrees with respect to the rubbing direction, and the optical axis of the other polarizing plate was set perpendicular thereto.

このようなセルで温度82℃の時DQBAMB液晶を使
用したものの特性は±IDVのオンオフにより、応答速
度は10μ・欧でありコントラスト比は13対1であっ
た。又、温度70℃の時HOBACPC液晶を使用した
ものは±5vのオンオフにより、応答速度は16μ・紅
であるこの時のコントラスト比は15対1であった。更
に比較のために行なった無配向のもの及び第1図に示し
たものは、応答速度はほとんど測定できず又コントラス
ト比も1〜1.3対1位でほとんど確認できなかった。
When a DQBAMB liquid crystal was used in such a cell at a temperature of 82° C., the response speed was 10 μm and the contrast ratio was 13:1 depending on the on/off of ±IDV. Further, when the temperature was 70° C., the response speed was 16 μm and the contrast ratio was 15:1 using the HOBACPC liquid crystal with ±5 V on/off switching. Furthermore, in the non-oriented sample and the sample shown in FIG. 1, which were used for comparison, the response speed could hardly be measured, and the contrast ratio was 1 to 1.3:1, which could hardly be confirmed.

更にポリイミド樹脂を塗布しないで上記本発明構成で行
なったもののコントラスト比は約5対1であった。
Further, the contrast ratio of the sample according to the present invention without coating the polyimide resin was about 5:1.

以上の如く本発明によればカイラルスメクチイック液晶
を簡易にしかも良好に配向できるためその高速応答を利
用した電子シャッター、高密度テレビスクリーン等、液
晶電気光学装置を安価にしかも簡易に作成することが可
能である。
As described above, according to the present invention, chiral smectic liquid crystal can be easily and well aligned, so that liquid crystal electro-optical devices such as electronic shutters and high-density television screens that utilize its high-speed response can be produced inexpensively and easily. is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来配向方法の一例を示す拡大略図である。 第2図は、本発明方法の構成の簡略図であり、第3図は
、本発明セル構造の略図である。 第4図は、本発明ラビング方向の略図である。 1・・・上側ガラス基板リッジ 2・・・下側ガラス基板リッジ 3・・・上側ガラス基板の平均リッジ方向4・・・下側
ガラス基板の平均リッジ方向11・・・液晶分子 12・・・ラビング方向 13.14・・・偏光板光軸 15・・・2安定位置 21・・・上側ガラス基板 22・・・下側ガラス基板 23・・・透明電極 24・・・ポリイミド樹脂層及びラビング面25・・・
液晶層 31・・・平均ラビング方向 以  上 出願人  株式会社諏訪精工舎 代理人  弁理士 最上  務 (9) 第1図 第2図 第3図    第40
FIG. 1 is an enlarged schematic diagram showing an example of a conventional orientation method. FIG. 2 is a simplified diagram of the configuration of the method of the invention, and FIG. 3 is a schematic diagram of the cell structure of the invention. FIG. 4 is a schematic diagram of the rubbing direction of the present invention. 1... Upper glass substrate ridge 2... Lower glass substrate ridge 3... Average ridge direction of upper glass substrate 4... Average ridge direction of lower glass substrate 11... Liquid crystal molecules 12... Rubbing direction 13, 14...Polarizing plate optical axis 15...2 Stable position 21...Upper glass substrate 22...Lower glass substrate 23...Transparent electrode 24...Polyimide resin layer and rubbing surface 25...
Liquid crystal layer 31...average rubbing direction or more Applicant Suwa Seikosha Co., Ltd. Agent Patent attorney Tsutomu Mogami (9) Figure 1 Figure 2 Figure 3 Figure 40

Claims (1)

【特許請求の範囲】[Claims] カイラルなスメクチックC相又はスメクチックH相を有
する液晶を、電極を設は配向処理した2枚のガラス基板
中に封入し、前記2枚のガラス基板の上下方に偏光板を
直交させて設け、更に電極に電界を印加17正反転させ
ることにより、光を通過又は遮断し、on、offさせ
る液晶電気光学装置において、前記2枚のガラス基板の
配向処理方法がポリイミド樹脂を塗布し焼成後ラビング
1゜たものであり、しかも2枚のガラス基板のラビング
方向が平行であることを特徴とする液晶電気光学装置。
A liquid crystal having a chiral smectic C phase or a smectic H phase is encapsulated in two glass substrates on which electrodes have been provided and which have been subjected to alignment treatment, polarizing plates are provided vertically above and below the two glass substrates, and further In a liquid crystal electro-optical device in which light is turned on and off by passing or blocking light by applying an electric field to the electrodes and reversing the polarity, the method for aligning the two glass substrates is to apply a polyimide resin and rub 1° after baking. 1. A liquid crystal electro-optical device characterized in that the rubbing directions of two glass substrates are parallel.
JP651283A 1983-01-18 1983-01-18 Liquid crystal electrooptic device Pending JPS59131911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP651283A JPS59131911A (en) 1983-01-18 1983-01-18 Liquid crystal electrooptic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP651283A JPS59131911A (en) 1983-01-18 1983-01-18 Liquid crystal electrooptic device

Publications (1)

Publication Number Publication Date
JPS59131911A true JPS59131911A (en) 1984-07-28

Family

ID=11640461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP651283A Pending JPS59131911A (en) 1983-01-18 1983-01-18 Liquid crystal electrooptic device

Country Status (1)

Country Link
JP (1) JPS59131911A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272719A (en) * 1985-05-27 1986-12-03 Hosiden Electronics Co Ltd Ferroelectric liquid crystal cell and its production
JPS6218522A (en) * 1985-07-17 1987-01-27 Canon Inc Liquid crystal element
JPS6236634A (en) * 1985-08-12 1987-02-17 Seikosha Co Ltd Liquid crystal display device
JPS6252528A (en) * 1985-09-02 1987-03-07 Hitachi Ltd Electrooptic device using ferroelectric liquid crystal
JPS62275224A (en) * 1986-05-22 1987-11-30 Stanley Electric Co Ltd Manufacture of liquid crystal display element
JPS63198020A (en) * 1987-02-13 1988-08-16 Asahi Glass Co Ltd Ferroelectric liquid crystal display element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173718A (en) * 1982-04-07 1983-10-12 Hitachi Ltd Optical modulating device of liquid crystal and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173718A (en) * 1982-04-07 1983-10-12 Hitachi Ltd Optical modulating device of liquid crystal and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272719A (en) * 1985-05-27 1986-12-03 Hosiden Electronics Co Ltd Ferroelectric liquid crystal cell and its production
JPS6218522A (en) * 1985-07-17 1987-01-27 Canon Inc Liquid crystal element
JPS6236634A (en) * 1985-08-12 1987-02-17 Seikosha Co Ltd Liquid crystal display device
JPS6252528A (en) * 1985-09-02 1987-03-07 Hitachi Ltd Electrooptic device using ferroelectric liquid crystal
JPS62275224A (en) * 1986-05-22 1987-11-30 Stanley Electric Co Ltd Manufacture of liquid crystal display element
JPS63198020A (en) * 1987-02-13 1988-08-16 Asahi Glass Co Ltd Ferroelectric liquid crystal display element

Similar Documents

Publication Publication Date Title
JPS63153521A (en) Optical modulation using liquid crystal electro-optical device
JPS61272719A (en) Ferroelectric liquid crystal cell and its production
JPS59214824A (en) Liquid-crystal electrooptic device
JPS61252532A (en) Ferroelectric smectic liquid crystal electrooptic device
JPS63151927A (en) Method for orienting ferroelectric liquid crystal
JPH05273554A (en) Ferroelectric liquid crystal element
US5153755A (en) Ferroelectric liquid crystal optical device having dielectric layers with large surface energy and high polar power component
JPS59131911A (en) Liquid crystal electrooptic device
JP2647828B2 (en) Liquid crystal device manufacturing method
KR100218983B1 (en) Liquid crystal display device for using achiral smectic c liquid crystal material
EP0095012B1 (en) Liquid crystal display device
JPS6057821A (en) Liquid-crystal display element
JPS62161123A (en) Ferroelectric liquid crystal element
KR100958254B1 (en) Liquid crystal display of in-plane-switching mode and method of fabricating the same
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JPS59131913A (en) Liquid crystal electrooptic device
JPS6380230A (en) Liquid crystal electrooptic device
JPS62295021A (en) Liquid crystal element and its production
JPS6240428A (en) Manufacture of liquid crystal element
JPH0754382B2 (en) Method for manufacturing liquid crystal electro-optical device
JPH01254792A (en) Ferroelectric liquid crystal composition
JPS63163821A (en) Ferroelectric liquid crystal display element
JPH0451022A (en) Method for orienting liquid crystal
JPS63246725A (en) Liquid crystal element
JPS62227123A (en) Liquid crystal electro-optical element