JPH03200220A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPH03200220A
JPH03200220A JP34360289A JP34360289A JPH03200220A JP H03200220 A JPH03200220 A JP H03200220A JP 34360289 A JP34360289 A JP 34360289A JP 34360289 A JP34360289 A JP 34360289A JP H03200220 A JPH03200220 A JP H03200220A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
alignment
metal phthalocyanine
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34360289A
Other languages
Japanese (ja)
Inventor
Yasushi Nakajima
靖 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP34360289A priority Critical patent/JPH03200220A/en
Publication of JPH03200220A publication Critical patent/JPH03200220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a stable display of a high contrast free from flickering by forming the oriented film of at least one of substrates of a high-polymer oriented material contg. a high-polymer compd. having metal phthalocyanine in the main chain or side chain as one component or the whole component. CONSTITUTION:The oriented films 6, 7 formed on the electrode-forming surfaces of the two substrates 1, 2 are formed of the high-polymer oriented material contg. the high-polymer compd. having the metal phthalocyanine in the main chain or side chain as one component. The time constants of the oriented films 6, 7 can be approximated to the time constant of a liquid crystal 9 by decreasing the resistanceof the oriented films 6, 7 if the oriented films 6, 7 are formed of such high-polymer oriented material. The voltage holding rate between the electrodes 3 and 5 facing each other is improved and the driving voltage to be impressed to the liquid crystal layer is stabilized if the time constant of the oriented films 6, 7 are approximate to the time constant of the liquid crystal 9. The stable display of the high contrast free from the flickering is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶素子に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a liquid crystal element.

〔従来の技術〕[Conventional technology]

液晶素子は、−面に透明電極を形成するとともにこの電
極形成面に配向膜を形成した一対の透明基板間に液晶を
封入した構成となっており、側基板面の配向膜は、一般
に、前駆体であるポリアミック酸を溶剤に溶かしたプレ
ポリマー溶液を基板面に塗布し、これを熱処理により脱
水閉環反応させてポリマーとしたポリイミドで形成され
、その表面は一方向にラビング処理されている。
A liquid crystal element has a structure in which liquid crystal is sealed between a pair of transparent substrates with transparent electrodes formed on the negative side and an alignment film formed on the electrode formation side.The alignment film on the side substrate surface is generally a precursor. A prepolymer solution prepared by dissolving polyamic acid in a solvent is applied to the surface of the substrate, and this is heat-treated to undergo a dehydration ring-closing reaction to create a polymer made of polyimide.The surface is rubbed in one direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、配向膜が絶縁性に優れたポリイミドで形
成されている上記従来の液晶素子は、この配向膜の抵抗
値が1016Ω・cmと液晶の抵抗値(10目Ω・cm
)に比べてかなり大きいため、配向膜の時定数が液晶の
それよりはるかに高い。このため、従来のアクティブマ
トリックス方式のTFT型液晶素子は、電極上の配向膜
と液晶層とを介して対向する電極間の電圧保持率が低下
し、そのために表示にフリッカが発生して、安定した高
コントラストの表示が得られないという問題をもってい
た。また、従来の単純マトリックス型液晶素子では、液
晶層への印加電圧が配向膜において大きく降下するため
に、この配向膜での電圧降下分を見込んで印加電圧を高
くしなければならず、したがって消費電力が大きいとい
う問題ももっていた。
However, in the above conventional liquid crystal element in which the alignment film is made of polyimide with excellent insulation properties, the resistance value of the alignment film is 1016 Ω·cm, and the resistance value of the liquid crystal (10 Ω·cm
), the time constant of the alignment film is much higher than that of the liquid crystal. For this reason, in conventional active matrix type TFT liquid crystal elements, the voltage retention rate between electrodes that face each other via the alignment film on the electrodes and the liquid crystal layer decreases, which causes flickering in the display and stabilizes the display. The problem was that high contrast display could not be obtained. In addition, in conventional simple matrix liquid crystal devices, the voltage applied to the liquid crystal layer drops significantly at the alignment film, so the applied voltage must be increased to take into account the voltage drop at the alignment film, and therefore the consumption Another problem was that it required a lot of electricity.

本発明は上記のような実情にかんがみてなされたもので
あって、その目的とするところは、フリッカのない安定
した高コントラストの表示が得られ、また消費電力も節
減することができる液晶素子を提供することにある。
The present invention was made in view of the above-mentioned circumstances, and its purpose is to provide a liquid crystal element that can provide flicker-free, stable, high-contrast display and reduce power consumption. It is about providing.

[課題を解決するための手段〕 本発明の液晶素子は、上記目的を達成するために、−面
に透明電極を形成するとともにこの電極形成面に配向膜
を形成した一対の透明基板間に液晶を封入した液晶素子
において、少なくとも一方の基板の配向膜を、主鎖また
は側鎖に金属フタロシアニンをもつ高分子化合物を一成
分または全成分とする高分子配向材料で形成したもので
ある。
[Means for Solving the Problems] In order to achieve the above object, the liquid crystal element of the present invention has a liquid crystal display between a pair of transparent substrates having a transparent electrode formed on the negative side and an alignment film formed on the electrode forming side. In the liquid crystal device encapsulating a liquid crystal device, the alignment film of at least one substrate is formed of a polymer alignment material containing one or all of the components of a polymer compound having a metal phthalocyanine in the main chain or side chain.

〔作用〕[Effect]

このように、配向膜を、主鎖または側鎖に金属フタロシ
アニンをもつ高分子化合物を一成分または全成分とする
高分子配向材料で形成すれば、この配向膜の抵抗値を下
げて配向膜の時定数を液晶の時定数に近づけ、対向する
電極間にの電圧保持率を向上させて、液晶層に印加され
る駆動電圧を安定させることができる。したがって本発
明の液晶素子によれば、フリッカのない安定した高コン
トラストの表示が得られるし、また配向膜での電圧降下
が小さくなるために、その分だけ印加電圧は小さくてよ
いから、消費電力も節減することができる。
In this way, if the alignment film is formed of a polymer alignment material containing one or all of its components as a polymer compound having metal phthalocyanine in the main chain or side chain, the resistance value of the alignment film can be lowered and the alignment film can be By bringing the time constant closer to that of the liquid crystal, the voltage retention rate between opposing electrodes can be improved, and the drive voltage applied to the liquid crystal layer can be stabilized. Therefore, according to the liquid crystal element of the present invention, a stable high-contrast display without flicker can be obtained, and since the voltage drop in the alignment film is small, the applied voltage can be reduced accordingly, which reduces power consumption. can also save money.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本実施例の液晶素子の断面図であり、ここでは
アクティブマトリックス方式のTFT型岐品素子を示し
ている。
FIG. 1 is a cross-sectional view of the liquid crystal element of this embodiment, showing an active matrix type TFT type component element.

第1図において、1.2はガラス等からなる一対の透明
基板であり、一方の基板1面にはITO等からなる多数
の透明画素電極3とこの画素電極3に接続されたTPT
 (薄膜トランジスタ)4とが縦横に配列形成され、他
方の基板2のほぼ全面には、ITO等からなる透明な対
向電極5が形成されている。これらの基板1.2の電極
形成面には配向膜6,7が形成されている。この側基板
1゜2は、その電極形成面を互いに対向させて、枠状の
シール材8を介して接着されており、この側基板1.2
間には液晶9が封入されている。
In FIG. 1, reference numeral 1.2 denotes a pair of transparent substrates made of glass or the like, and one surface of the substrate has a large number of transparent pixel electrodes 3 made of ITO or the like and TPT connected to the pixel electrodes 3.
(Thin film transistors) 4 are arranged vertically and horizontally, and on almost the entire surface of the other substrate 2, a transparent counter electrode 5 made of ITO or the like is formed. Alignment films 6 and 7 are formed on the electrode formation surfaces of these substrates 1.2. These side substrates 1.2 are bonded together via a frame-shaped sealing material 8 with their electrode forming surfaces facing each other.
A liquid crystal 9 is sealed in between.

そして、側基板1.2面の配向膜6.7は、この配向膜
6,7に液晶配向力をもたせるための配向用高分子化合
物としてポリイミドを用い、このポリイミドに、主鎖に
金属フタロシアニンをもつ高分子化合物を混合させた高
分子配向材料で形成されており、この配向膜6,7の膜
面は一方向にラビング処理されている。
The alignment films 6 and 7 on the sides of the side substrates 1 and 2 are made of polyimide as an alignment polymer compound in order to provide the alignment films 6 and 7 with a liquid crystal alignment force, and this polyimide has metal phthalocyanine added to its main chain. The film surfaces of the alignment films 6 and 7 are rubbed in one direction.

この配向膜6,7は、通常のポリイミドの前駆体である
ポリアミック酸を主成分プレポリマーとし、これに主鎖
に金属フタロシアニンをもつプレポリマーを混入した配
向材料を溶剤に溶かして基板1.2面に塗布し、これを
熱処理により脱水閉環反応させてポリマー化する方法で
形成されたもので、このようにして形成された配向膜6
.7は、ポリイミドのポリマーと、主鎖に金属フタロシ
アニンをもつ高分子化合物のポリマーとが互いに絡み合
って混在した組成となっている。
The alignment films 6 and 7 are made by dissolving an alignment material in a solvent in which a prepolymer as a main component is polyamic acid, which is a precursor of normal polyimide, and a prepolymer having a metal phthalocyanine in the main chain. The alignment film 6 formed in this way
.. No. 7 has a composition in which a polyimide polymer and a polymer of a high molecular compound having a metal phthalocyanine in the main chain are intertwined with each other.

第2図は、上記主鎖に金属フタロシアニンをもつ高分子
化合物(プレポリマー)の化学構造式を示しており、こ
のプレポリマーの導電性はIQ−12〜1O−6(”Ω
−’co−’)である。
Figure 2 shows the chemical structural formula of the polymer compound (prepolymer) having metal phthalocyanine in the main chain, and the conductivity of this prepolymer is IQ-12 to 1O-6 (Ω
-'co-').

すなわち、この実施例の液晶素子は、側基板1゜2の電
極形成面に形成する配向H6,7を、主鎖に金属フタロ
シアニンをもつ高分子化合物を一成分とする高分子配向
材料で形成したものであり、このような高分子配向材料
で配向膜6.7を形成すれば、配向膜6,7の抵抗値を
下げて、この配向膜6,7の時定数(C−R)を液晶9
の時定数に近づけることができる。そして、配向膜6.
7の時定数が液晶9の時定数に近ければ、対向する電極
3,5間の電圧保持率が向上し、液晶層に印加される駆
動電圧を安定させることができる。したがって上記実施
例の液晶素子によれば、フリッカのない安定した高コン
トラストの表示を得ることができる。
That is, in the liquid crystal element of this example, the orientations H6 and 7 formed on the electrode forming surface of the side substrate 1°2 were formed using a polymer alignment material containing a polymer compound having metal phthalocyanine in the main chain as one component. If the alignment films 6 and 7 are formed using such a polymer alignment material, the resistance value of the alignment films 6 and 7 can be lowered and the time constant (C-R) of the alignment films 6 and 7 can be changed to that of the liquid crystal. 9
The time constant of And alignment film 6.
If the time constant of 7 is close to the time constant of liquid crystal 9, the voltage retention rate between the opposing electrodes 3 and 5 will improve, and the driving voltage applied to the liquid crystal layer can be stabilized. Therefore, according to the liquid crystal element of the above embodiment, stable, high-contrast display without flicker can be obtained.

第3図は、上記実施例の液晶素子に低周波の矩形波パル
ス電圧を印加したときの液晶層に加わる電圧を示したも
ので、従来の液晶素子では、液晶層に加わる電圧が同図
に破、線で示したように変動するのに対し、上記実施例
の液晶素子では、実線で示したように時間に無関係に一
定しているから、表示にフリッカが発生することはない
し、また表示コントラストも常に高く維持される。
Figure 3 shows the voltage applied to the liquid crystal layer when a low frequency rectangular wave pulse voltage is applied to the liquid crystal element of the above example. In contrast, in the liquid crystal element of the above embodiment, as shown by the solid line, it remains constant regardless of time, so no flicker occurs on the display, and the display Contrast is also always maintained high.

しかも、上記実施例の液晶素子では、配向膜6゜7の抵
抗値が小さいために、この配向膜6,7での電圧降下は
小さく、したがってその分だけ印加電圧は小さくてよい
から、消費電力も節減することができる。
Moreover, in the liquid crystal element of the above embodiment, since the resistance value of the alignment films 6 and 7 is small, the voltage drop across the alignment films 6 and 7 is small, and therefore the applied voltage can be reduced by that much, which reduces power consumption. can also save money.

なお、上記実施例では、配向膜6.7に液晶配向力をも
たせるための高分子化合物としてポリイミドを用いてい
るが、この液晶配向力をもたせるための高分子化合物は
、液晶配向性を有するものであれば、ポリアミド等の他
の高分子化合物を用いてもよい。さらに、金属フタロシ
アニンをもつ高分子化合物は、第2図に示した化学構造
式のものに限らず、他の高分子化合物でもよく、また金
属フタロシアニンをもつ高分子化合物自体が液晶配向性
をもっている場合は、この高分子化合物のみで配向膜6
,7を形成するか、あるいは、この高分子化合物に、液
晶配向力をもたせるための高分子化合物を若干添加した
高分子配向材料で配向膜6.7を形成してもよい。
In the above embodiment, polyimide is used as a polymer compound for imparting liquid crystal alignment force to the alignment film 6.7, but the polymer compound for imparting liquid crystal alignment force to the alignment film 6.7 may be one having liquid crystal alignment ability. If so, other polymeric compounds such as polyamide may be used. Furthermore, the polymer compound containing metal phthalocyanine is not limited to the one with the chemical structural formula shown in Figure 2, but may be other polymer compounds, and if the polymer compound containing metal phthalocyanine itself has liquid crystal orientation. The alignment film 6 is formed using only this polymer compound.
, 7, or alternatively, the alignment film 6.7 may be formed of a polymer alignment material in which a small amount of a polymer compound for imparting liquid crystal alignment force is added to the polymer compound.

また、上記実施例では、金属フタロシアニンをもつ高分
子化合物として、主鎖に金属フタロシアニンをもつもの
を用いているが、この高分子化合物は、側鎖に金属フタ
ロシアニンをもつものでもよい。
Furthermore, in the above embodiments, a polymer compound having metal phthalocyanine in its main chain is used as the polymer compound having metal phthalocyanine, but this polymer compound may have metal phthalocyanine in its side chain.

この側鎖に金属フタロシアニンをもつ高分子化合物とし
ては、例えば第4図に示した化学構造式で表されるもの
がある。この高分子化合物は、スチレンと2−ビニルピ
リジンの共重合体へのPr1edel−Crart+J
反応によって得られる化合物である。この化合物の導電
性は、M(金属)の種類とその含有量(mo1%)によ
って変化するが、MとしてCOを7.2 mo1%含む
ものは10−9Ω−ICI!lN1を10.9 mo1
%含むものは10〜8Ω−IC,−1であり、このよう
な側鎖に金属フタロシアニンをもつ高分子化合物を一成
分または全成分とする高分子配向材料で配向膜6,7を
形成しても、この配向膜の抵抗値を下げて配向膜の時定
数を液晶の時定数に近づけ、液晶層に印加される駆動電
圧を安定させることができるし、また配向膜での電圧降
下も小さくすることができる。
Examples of polymeric compounds having metal phthalocyanine in their side chains include those represented by the chemical structural formula shown in FIG. This polymer compound is a Pr1edel-Crart+J copolymer of styrene and 2-vinylpyridine.
It is a compound obtained by reaction. The conductivity of this compound varies depending on the type of M (metal) and its content (mo1%), but one containing 7.2 mo1% of CO as M has a 10-9Ω-ICI! 10.9 mo1 of lN1
% is 10 to 8Ω-IC,-1, and the alignment films 6 and 7 are formed of a polymer alignment material containing one or all of the components as such a polymer compound having metal phthalocyanine in the side chain. Also, by lowering the resistance value of this alignment film, the time constant of the alignment film approaches the time constant of the liquid crystal, making it possible to stabilize the driving voltage applied to the liquid crystal layer and also reducing the voltage drop in the alignment film. be able to.

さらに、上記実施例では、一対の基板1.2の両方の配
向膜6,7を、主鎖(または側鎖)に金属フタロシアニ
ンをもつ高分子化合物を一成分(または全成分)とする
高分子配向材料で形成しているが、いずれか一方の配向
膜は、金属フタロシアニンを含まない高分子化合物で形
成してもよく、その場合でも、従来の液晶素子に比べれ
ば、液晶層に印加される駆動電圧を安定させてフリッカ
のない安定した高コントラストの表示が得られるし、ま
た配向膜での電圧降下も小さくして消費電力を節減する
ことができる。
Furthermore, in the above embodiment, both of the alignment films 6 and 7 of the pair of substrates 1.2 are made of a polymer having one component (or all components) of a polymer compound having a metal phthalocyanine in the main chain (or side chain). Although it is formed from an alignment material, one of the alignment films may be formed from a polymer compound that does not contain metal phthalocyanine, and even in that case, compared to conventional liquid crystal elements, the voltage applied to the liquid crystal layer is By stabilizing the drive voltage, a flicker-free and stable high-contrast display can be obtained, and the voltage drop across the alignment film can also be reduced, thereby reducing power consumption.

なお、本発明は、TPT (薄膜トランジスタ)4て画
素電極3を選択するアクティブマトリックス方式のTF
T型液晶素子に限らず、対向する基板面それぞれにスト
ライブ状の電極を互いに交差するように配列した単純マ
トリックス型の液晶素子にも適用できることはもちろん
である。
Note that the present invention uses an active matrix type TF in which the pixel electrode 3 is selected by a TPT (thin film transistor) 4.
It goes without saying that the present invention can be applied not only to T-type liquid crystal elements but also to simple matrix type liquid crystal elements in which striped electrodes are arranged on opposing substrate surfaces so as to cross each other.

〔発明の効果〕〔Effect of the invention〕

本発明の液晶素子は、少なくとも一方の基板の配向膜を
、主鎖または側鎖に金属フタロシアニンをもつ高分子化
合物を一成分または全成分とする高分子配向材料で形成
したものであるから、上記配向膜の抵抗値を下げてその
時定数を液晶の時定数に近づけ、液晶層に印加される駆
動電圧を安定させることができ、したがって、フリッカ
のない安定した高コントラストの表示が得られるし、ま
た配向膜での電圧降下が小さくなるために、その分だけ
印加電圧は小さくてよいから、消費電力も節減すること
ができる。
In the liquid crystal element of the present invention, the alignment film of at least one substrate is formed of a polymer alignment material containing one or all components of a polymer compound having a metal phthalocyanine in the main chain or side chain. By lowering the resistance value of the alignment film and bringing its time constant closer to that of the liquid crystal, it is possible to stabilize the driving voltage applied to the liquid crystal layer, and therefore, a stable, high-contrast display without flicker can be obtained. Since the voltage drop across the alignment film is reduced, the applied voltage can be reduced by that much, and power consumption can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の実施例を示したもので、第1
図は液晶素子の断面図、第2図は主鎖に金属フタロシア
ニンをもつ高分子化合物の一例を示す化学構造式図、第
3図は液晶素子に低周波の矩形波パルス電圧を印加した
ときの液晶層に加わる電圧を示す図、第4図は側鎖に金
属フタロシアニンをもつ高分子化合物の一例を示す化学
構造式%式% ()
1 to 4 show embodiments of the present invention.
The figure is a cross-sectional view of a liquid crystal element, Figure 2 is a chemical structural formula diagram showing an example of a polymer compound having a metal phthalocyanine in its main chain, and Figure 3 is a diagram of a liquid crystal element when a low-frequency rectangular pulse voltage is applied. A diagram showing the voltage applied to the liquid crystal layer. Figure 4 shows an example of a polymer compound with metal phthalocyanine in the side chain.

Claims (1)

【特許請求の範囲】[Claims] 一面に透明電極を形成するとともにこの電極形成面に配
向膜を形成した一対の透明基板間に液晶を封入した液晶
素子において、少なくとも一方の基板の配向膜を、主鎖
または側鎖に金属フタロシアニンをもつ高分子化合物を
一成分または全成分とする高分子配向材料で形成したこ
とを特徴とする液晶素子。
In a liquid crystal element in which a liquid crystal is sealed between a pair of transparent substrates having a transparent electrode formed on one surface and an alignment film formed on the electrode forming surface, the alignment film of at least one substrate is coated with metal phthalocyanine in the main chain or side chain. 1. A liquid crystal element characterized in that it is formed of a polymer alignment material having one or all of its components as a polymer compound.
JP34360289A 1989-12-28 1989-12-28 Liquid crystal element Pending JPH03200220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34360289A JPH03200220A (en) 1989-12-28 1989-12-28 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34360289A JPH03200220A (en) 1989-12-28 1989-12-28 Liquid crystal element

Publications (1)

Publication Number Publication Date
JPH03200220A true JPH03200220A (en) 1991-09-02

Family

ID=18362804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34360289A Pending JPH03200220A (en) 1989-12-28 1989-12-28 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPH03200220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223796A (en) * 2016-06-14 2017-12-21 株式会社ジャパンディスプレイ Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223796A (en) * 2016-06-14 2017-12-21 株式会社ジャパンディスプレイ Display device

Similar Documents

Publication Publication Date Title
EP0345064B1 (en) Liquid crystal display device
KR100751188B1 (en) Method of Fabricating Ferroelectric Liquid Crystal Display
JPH03200219A (en) Liquid crystal element
JPH03200220A (en) Liquid crystal element
CN1637568B (en) In-plane-switching mode liquid crystal display device and method of fabricating the same
JPH0457025A (en) Oriented film and liquid crystal element
JP3205598B2 (en) Liquid crystal display device and driving method thereof
JPH0718990B2 (en) Liquid crystal cell
JP2651842B2 (en) Liquid crystal element
JP2761583B2 (en) Driving method of liquid crystal device
JPH0344625A (en) Active matrix type liquid crystal display panel
JP3730320B2 (en) LCD panel
JPH11222593A (en) Liquid crystal composition and liquid crystal element
JPH06148648A (en) Feproelectric liquid crystal display element
JP3625862B2 (en) Liquid crystal material and liquid crystal display panel
JPH0373922A (en) Liquid crystal display device
JP3667014B2 (en) Ferroelectric liquid crystal display device
JPH0210326A (en) Liquid crystal display element
JPS6157926A (en) Liquid crystal display element
JP3252564B2 (en) Liquid crystal alignment film and liquid crystal display device
JPH01134335A (en) Phase transition type liquid crystal display element
JPH02179612A (en) High-polymer liquid crystal element
JPS58139182A (en) Driving of liquid crystal display
JPH04359222A (en) Liquid crystal device
JPH0196287A (en) Liquid crystal composition