JPS58138981A - Electric heating furnace - Google Patents
Electric heating furnaceInfo
- Publication number
- JPS58138981A JPS58138981A JP1973882A JP1973882A JPS58138981A JP S58138981 A JPS58138981 A JP S58138981A JP 1973882 A JP1973882 A JP 1973882A JP 1973882 A JP1973882 A JP 1973882A JP S58138981 A JPS58138981 A JP S58138981A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- carbon
- sheet
- heat
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Furnace Details (AREA)
- Resistance Heating (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は炭素材を抵抗発熱体とする電気加熱炉、たとえ
はタンマン弐裏温加熱炉に係り、木fに少くとも210
00℃の高温で長時間安定に加熱することかできるタン
マン式加熱炉に関する0従米、屍紫繊維などの炭素材料
やセラミックスなどの各柿工業用案材の製赦に用いられ
る高温加熱炉として抵抗炉、誘導炉、アーク炉、プラズ
マ炉など各棹の加熱炉が知られているが、抵抗炉、−特
に炭素材を抵抗発熱体とするタンマン炉型式(以下タン
マン式という)の加PA炉はその加熱手段が比較的単純
であるため上記工業用素材の加熱炉として広く使用され
ている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric heating furnace, such as a Tanman Niura heating furnace, which uses carbon material as a resistance heating element.
This is a high-temperature heating furnace that can be used to smelt various persimmon industrial materials such as carbon materials such as Shishifiber and ceramics. Various types of heating furnaces such as furnaces, induction furnaces, arc furnaces, and plasma furnaces are known, but resistance furnaces, especially Tammann furnace type PA furnaces (hereinafter referred to as Tammann type) that use carbon material as a resistance heating element, are known. Since the heating means is relatively simple, it is widely used as a heating furnace for the above-mentioned industrial materials.
下発熱体という)に電流を通じ、ジュール熱によりこの
発熱体を発熱せしめ、管内に静置または連続的に通過す
る被加熱処理物を加熱、焼成するが、通常は窒素やアル
ゴン等の不活性ガス中あるいは減圧(真空)中でおこな
われ、発熱体としては一般に炭素(黒鉛)材が用いられ
る。An electric current is passed through the heating element (called the lower heating element) to generate heat using Joule heat, and the object to be heated, which is left stationary or passes continuously inside the tube, is heated and fired, but usually an inert gas such as nitrogen or argon is used. It is carried out in medium or reduced pressure (vacuum), and carbon (graphite) material is generally used as the heating element.
この炭素材からなる発熱体は、金属材料やセラミックス
系材利を発熱体とする加熱炉とは異なり、2000〜3
000℃の高温領域においても、溶融2分解などを起こ
さず発熱体として十分その機能を発揮し、かつ比較的安
価な材料であるけれども、前述の高温下で長時間使用す
ると徐々に減耗し縁続使用が困緋となる。The heating element made of this carbon material is different from the heating element made of metal or ceramic materials, and has a heating element of 2,000 to 3
Even in the high-temperature range of 1,000°C, it does not undergo melting and bicomponent decomposition and performs its function as a heating element, and it is a relatively inexpensive material. It becomes difficult to use.
すなわち、発熱体の減耗により肉厚が簿くなるとその部
分の電気抵抗が高くなり、発熱密度の変化にともなう炉
内の温度9分布の変化をきたすため、焼成した製品の品
質安定にたいする阻業は安全上、炉を冷却した後に行な
う必要があるか1″1に大型の加熱炉においては、冷却
−解体−組立−再加熱といった一連の作業に多゛大の時
1−i4j、労力を必要とし、発熱体交換周期が短くな
ればなるほど単に発熱体の材料費のみでなく、生産性を
著しく阻害し、かつ焼成コストの増大をもたらすのであ
る。In other words, when the wall thickness decreases due to wear and tear on the heating element, the electrical resistance of that part increases, causing a change in the temperature distribution in the furnace due to changes in heat generation density, which is an impediment to the quality stability of fired products. For safety reasons, is it necessary to perform this after the furnace has been cooled? 1.1 In large heating furnaces, the series of operations such as cooling, disassembly, assembly, and reheating can be very labor-intensive. As the heating element replacement period becomes shorter, not only the material cost of the heating element increases, but also the productivity is significantly hindered and the firing cost increases.
本発明者らはかかる問題が解消され、寿命の延長された
炭素質発熱体を5有する加熱炉を特願昭56−203,
460号として提案したが、さらに研究を進めて本発明
に到達したものである。The present inventors have proposed a heating furnace having five carbonaceous heating elements, which solves this problem and has an extended lifespan.
No. 460, but the present invention was achieved through further research.
本発明の特徴は前記特許請求の範囲に記載し鉛を春画し
てなる抵抗発熱体を用いることにある。A feature of the present invention is the use of a resistance heating element made of lead as described in the claims.
前記特胛Ill、56−203,460号の発明で提案
したP 素iK、旌糸条を捲回した発熱体を用いた加熱
炉においてはその発熱体の寿命は従来の加熱炉にくらべ
て大幅に延長できるなど多くの特長を有するか本発明で
は更にその効果を助長するために、前記発熱体に繊維状
炭素のみならずフィルム状又はシート状の炭素乃至黒鉛
と捲回したところに特徴がある。In a heating furnace using a heating element wound with P element iK and rolled threads proposed in the invention of the above-mentioned Special Patent Ill, No. 56-203,460, the life of the heating element is significantly longer than that of conventional heating furnaces. In order to further enhance the effect, the present invention is characterized in that the heating element is wound with not only fibrous carbon but also film or sheet carbon or graphite. .
繊維状炭素を捲回積層することにより発熱体の寿命が延
長できる理由は必ずしも明確ではないが、発熱体外表面
の熱的、電気的な境界条件を緩和する作用が有効に働い
ていると考えられる。特に熱的な境界条件に対しては捲
回された糸層による断熱効果が十分に発揮されることが
必要であり本% tl+、ではこの点に注目し改良を加
えたものである。The reason why the life of the heating element can be extended by winding and laminating fibrous carbon is not necessarily clear, but it is thought that the effect of relaxing the thermal and electrical boundary conditions on the outer surface of the heating element is working effectively. . In particular, under thermal boundary conditions, it is necessary that the wound yarn layer exhibits a sufficient heat insulating effect, and the present %tl+ focuses on this point and makes improvements.
フィルム状又はシート状炭素乃至黒鉛としては例えばユ
ニオンカーバイド社から「グラ7オイル」等として市販
されているものがあるがこれらは熱的特性に顕著な異方
性を示し、その面 □内では熱伝導率が高いが、
面と垂直な方向では低いという特徴を有する。本発明で
はこの特徴を生かし、律:#状炭素の捲回積層と併せて
捲き重ねることにより、発熱体外表面よりの外界への1
7(熱を更に効果的に抑制することが可能となる。Film-like or sheet-like carbon or graphite is commercially available as "Gura 7 Oil" from Union Carbide Co., Ltd., but these exhibit remarkable anisotropy in thermal properties, and within the plane □ Although the conductivity is high,
It has the characteristic that it is low in the direction perpendicular to the plane. In the present invention, by taking advantage of this feature and stacking the #-shaped carbon together with the winding layer, one
7 (It becomes possible to suppress heat even more effectively.
特に、2000℃以上もの高温においては伝熱は輻射が
主体となり、発熱体の表面から外界へσン熱のbν、散
はこの輻射熱をカットすることにより更に下げることが
可能となるが、この点においても、シート状物を円筒形
に捲き込むことによって、熱幅射を内部へ反射させ断熱
効果の向上を達成することが出来る。In particular, at high temperatures of 2000°C or higher, heat transfer is mainly through radiation, and the bv and dissipation of σ heat from the surface of the heating element to the outside world can be further reduced by cutting this radiant heat. Also, by rolling the sheet-like material into a cylindrical shape, it is possible to reflect heat radiation inside and improve the heat insulation effect.
以下に図面に従って本発明の装置の構成を8に明する。The configuration of the apparatus of the present invention will be explained in 8 below according to the drawings.
第1図は本発明で用いられる加熱炉の1例を示す側断面
図である。1は炭素材からなる発熱体で、この発熱体1
の内部の空間は被加熱処理物を収納もしくは通過せしめ
るに十分な広さを有し、所望の温度、雰υ6気に保たれ
る必要があるが、発熱体の外表面は単に外界に熱を放散
する放熱面である。FIG. 1 is a side sectional view showing one example of a heating furnace used in the present invention. 1 is a heating element made of carbon material;
The internal space of the heating element must be large enough to accommodate or pass the object to be heated, and it must be maintained at the desired temperature and atmosphere, but the outer surface of the heating element simply transfers heat to the outside world. It is a heat dissipating surface.
したがって、この発熱体1を断熱材〜2で榎うことによ
り保温を行なう。3は電流を通じるための電極、4は出
入口シール部である。被加熱処理物を連続的に加熱処理
する場合には、サンプルが通過できるような隙間をシー
ル部に設ける必要があるが、バッチ式加熱処理の場合は
7ランジ構造とすることもできる。外殻5の内部の断熱
材層2および発熱体内部は被加熱処理書物およ、び発熱
体の酸化劣化を抑制するために、 −常時、窒素や
アルゴンなどの不活性ガスを満たけ粒状物、あるいはフ
ェルト状物などが用いられる。■は炭素繊維とシート状
黒鉛の積層された発熱体巻回層であり■のシート状黒鉛
が炭素繊維と一緒に捲回されている。繊維状炭素とフィ
ルム状又はシート状炭素乃至黒鉛は少くとも2層に交互
に捲回すればよいが、これに限定されるものではない。Therefore, the heating element 1 is kept warm by covering it with a heat insulating material 2. 3 is an electrode for passing current, and 4 is an entrance/exit seal portion. When heat-treating the object to be heat-treated continuously, it is necessary to provide a gap in the sealing part through which the sample can pass, but in the case of batch-type heat treatment, a 7-lunge structure can be used. The heat insulating material layer 2 inside the outer shell 5 and the inside of the heating element are constantly filled with an inert gas such as nitrogen or argon to prevent oxidative deterioration of the books to be heated and the heating element. , or a felt-like material is used. (2) is a heating element winding layer in which carbon fibers and sheet-like graphite are laminated, and the sheet-like graphite (2) is wound together with carbon fibers. The fibrous carbon and the film or sheet carbon or graphite may be alternately wound in at least two layers, but the invention is not limited thereto.
ここで用いられる炭素N&組は、ピッチ系、セルロース
系、アクリル系などの有機繊維を不活性ガス中で800
℃以上で焼成して得られる一般の炭素繊維である。場合
によっては2000℃以上の制温で焼成された黒鉛繊維
を用いることもできる。いずれにしろ長時間発熱体1に
直接接触しているので、黒鉛化が進むことになり炭素質
、黒鉛質のいずれでも用いることができる。また通常市
販の炭素繊維には、エポキシ系或はポリビニルアルコー
ル系などのサイジング剤か付与されている場合が多いが
、これらサイジング剤は加熱されると分解しガス化する
ので、炉内雰囲気を汚染することになる。したがって被
加熱処理物を実際的に処理する以前に充分子熱し、その
間に分解ガスを置換しておく必要があり、好ましくは発
熱体に巻付ける以ケ11に除去しておくのかよい。The carbon N & group used here is made by preparing organic fibers such as pitch, cellulose, and acrylic fibers in an inert gas at 800%
It is a general carbon fiber obtained by firing at temperatures above ℃. In some cases, graphite fibers fired at a temperature of 2000° C. or higher may also be used. In any case, since it is in direct contact with the heating element 1 for a long time, graphitization progresses, so either carbonaceous or graphite can be used. Additionally, commercially available carbon fibers are often coated with sizing agents such as epoxy or polyvinyl alcohol, but these sizing agents decompose and gasify when heated, polluting the atmosphere inside the furnace. I will do it. Therefore, before the object to be heated is actually processed, it is necessary to heat it sufficiently and replace the decomposition gas during that time, and it is preferable to remove it before winding it around the heating element.
また、ここで用いられるフィルム又はシート状物は膨張
黒鉛を□加圧成形したような可撓性のシート状物で厚さ
が01〜1mのものが好ましく使用できる。またはこれ
ら単一のシートを複νI枚重ねて炭素材で固めたラミネ
ートシートや炭素繊維を抄造し炭素質バインダーで同め
たシート状物であってもよい。Further, the film or sheet-like material used here is preferably a flexible sheet-like material formed by pressure-molding expanded graphite and having a thickness of 01 to 1 m. Alternatively, it may be a laminate sheet in which multiple νI of these single sheets are stacked and hardened with a carbon material, or a sheet-like product made from carbon fibers and bonded with a carbonaceous binder.
上記フィルム乃至シートは可撓性の大きいものであれば
炭素紳維糸条を捲回する際に間に挾んで円筒状に捲き込
むことが出来る。この場合加熱体に直接的に接触する最
内層は炭素絵緯とし、少くとも2〜5□厚さに炭素繊維
を巻きつけたのちシートを挟みさらにその外側に糸を捲
きつけるようにするのか好ましい。その理由は最内層に
フィルム乃至はシート状物があると加熱体表面との接触
が均一に密着させることか国難であり、かえって加熱体
の外界との境界条件を悪化させることかあるからである
。またシート状物の積層枚数は必ずしも一板でなく複数
枚例えは2〜3枚間に炭素繊維の積層された層を介して
重ねて捲きつけることも出来る。If the above-mentioned film or sheet is highly flexible, it can be inserted into the film or sheet and wound into a cylindrical shape when winding the carbon fiber thread. In this case, it is preferable that the innermost layer that comes into direct contact with the heating element is made of carbon fiber, and that carbon fiber is wound around it to a thickness of at least 2 to 5 square meters, and then a sheet is sandwiched between the sheets and a thread is wound around the outside of the carbon fiber. . The reason for this is that if there is a film or sheet-like material in the innermost layer, it is difficult to make uniform contact with the surface of the heating element, and it may actually worsen the boundary conditions between the heating element and the outside world. . Further, the number of sheets to be laminated is not necessarily one, but a plurality of sheets, for example, two to three sheets, may be stacked with carbon fiber layers interposed therebetween.
実施例1
図1に示したようなタンマン炉において、発熱体である
黒鉛パイプとして内径400外径70y長さ1mのもの
を用いた。このパイプの中央部組70ffiにわたって
炭素繊維6トレカ“■T−300を厚さ4−まで捲きつ
けたのちその上に黒船シート、グラフオイル■厚さ0.
6゜のものを一層、更にその上に5閣の厚さで前記と同
じ炭化糸を捲きつけ、グラフオイルシートを包み込んで
加熱体として構成した。Example 1 In a Tammann furnace as shown in FIG. 1, a graphite pipe serving as a heating element having an inner diameter of 400, an outer diameter of 70, and a length of 1 m was used. After wrapping carbon fiber 6 trading cards "■ T-300 to a thickness of 4" over 70ffi of the central part of this pipe, cover it with Kurofune sheet and graph oil ■ thickness 0.
A heating element was constructed by wrapping a graph oil sheet by wrapping one layer of 6° carbon fiber and then wrapping the same carbonized thread as above to a thickness of 5 cm.
該炉を純度99.999%の窒素シール下で加熱体中空
部の内部の最高温度が2800℃になるように電流を通
じ加熱を行った。30日後に解体し、糸屑をはがして発
熱体の状態をw!察したが損耗は軽微であった。The furnace was heated under a nitrogen seal with a purity of 99.999% by passing an electric current so that the maximum temperature inside the hollow part of the heating body was 2800°C. Disassemble it after 30 days, peel off the thread and check the condition of the heating element lol! However, the wear and tear was minor.
一方前記炭素繊維糸条の捲付を行わずに黒鉛パイプのみ
を使用して同様のテストを行ったところ7日後に発熱体
である黒鉛パイプが切損し使用に耐えなくなった。解体
点検したところパイプの中央部外壁の黒鉛が蒸発減耗し
切損に至ったものであることが確認された。On the other hand, when a similar test was conducted using only the graphite pipe without winding the carbon fiber yarn, the graphite pipe serving as the heating element broke after 7 days and became unusable. Upon disassembly and inspection, it was confirmed that the graphite on the outer wall of the central part of the pipe had been evaporated and wasted, leading to the breakage.
第1図は本発明の電気加熱炉の1例を示す断面図である
。
1−発熱体、 2=断熱材層、 3:電極。
4:シール部、 5:外殻、 6:発熱体巻回庖7:
シート状黒鉛
特許出願人 東し株式会社FIG. 1 is a sectional view showing an example of the electric heating furnace of the present invention. 1 - heating element, 2 = heat insulating material layer, 3: electrode. 4: Seal part, 5: Outer shell, 6: Heating element winding 7:
Sheet graphite patent applicant Toshi Co., Ltd.
Claims (1)
JII熱炉。(]) I for electric heating/furnace using carbon material as resistance heating element
JII heat furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1973882A JPS58138981A (en) | 1982-02-12 | 1982-02-12 | Electric heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1973882A JPS58138981A (en) | 1982-02-12 | 1982-02-12 | Electric heating furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58138981A true JPS58138981A (en) | 1983-08-18 |
Family
ID=12007670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1973882A Pending JPS58138981A (en) | 1982-02-12 | 1982-02-12 | Electric heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58138981A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59154788A (en) * | 1983-02-21 | 1984-09-03 | 工業技術院長 | Graphite heat generator |
JPH0250079A (en) * | 1988-08-09 | 1990-02-20 | Kanto Yakin Kogyo Kk | High-temperature heating furnace |
-
1982
- 1982-02-12 JP JP1973882A patent/JPS58138981A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59154788A (en) * | 1983-02-21 | 1984-09-03 | 工業技術院長 | Graphite heat generator |
JPH0345879B2 (en) * | 1983-02-21 | 1991-07-12 | Kogyo Gijutsu Incho | |
JPH0250079A (en) * | 1988-08-09 | 1990-02-20 | Kanto Yakin Kogyo Kk | High-temperature heating furnace |
JPH0434068B2 (en) * | 1988-08-09 | 1992-06-04 | Kanto Yakin Kogyo |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5829129Y2 (en) | Multilayer molded insulation material for vacuum furnaces | |
JPS58176186A (en) | Heat insulator | |
JPS58138981A (en) | Electric heating furnace | |
WO2013035237A1 (en) | Process for producing carbonaceous film and process for producing graphite film | |
JP3287029B2 (en) | heating furnace | |
JP4477284B2 (en) | Continuous annealing equipment with rollers for transporting metal strips | |
JPS6317381A (en) | Carbonating furnace | |
JPS6311448B2 (en) | ||
JP2000141526A (en) | Carbon fiber-forming heat insulation material | |
JPS63149142A (en) | Multilayer molded heat insulator and manufacture thereof | |
JPS5925936B2 (en) | heating furnace | |
JP2573102B2 (en) | Furnace wall of heating furnace | |
JPH0440631B2 (en) | ||
JP3042554B2 (en) | Method for graphitizing low-density carbon fiber moldings | |
JPS58205082A (en) | Tanmann type heating furnace | |
JP2734013B2 (en) | Insulation method | |
JPH08152277A (en) | Heat insulation ceramic fiber block, and heat insulation executing method | |
JPS6363649B2 (en) | ||
SU684788A1 (en) | Electric resistance heater for furnaces | |
JPS58140987A (en) | Composite carbon heater | |
JPH06280117A (en) | Heating furnace for graphite fiber production | |
JP3546071B2 (en) | Graphite electrode rod for arc furnace | |
Takahashi et al. | Anomalous thermal expansion of the interlayer spacing of graphite-bromine residue compound at high temperatures | |
JPS58120731A (en) | Continuous annealing furnace for electrical steel plate | |
GB2073491A (en) | Electrolytic condenser |