JP3546071B2 - Graphite electrode rod for arc furnace - Google Patents

Graphite electrode rod for arc furnace Download PDF

Info

Publication number
JP3546071B2
JP3546071B2 JP27462893A JP27462893A JP3546071B2 JP 3546071 B2 JP3546071 B2 JP 3546071B2 JP 27462893 A JP27462893 A JP 27462893A JP 27462893 A JP27462893 A JP 27462893A JP 3546071 B2 JP3546071 B2 JP 3546071B2
Authority
JP
Japan
Prior art keywords
conductive
layer
electrode
electrode rod
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27462893A
Other languages
Japanese (ja)
Other versions
JPH07130465A (en
Inventor
勝美 森川
丈記 吉富
幸夫 森本
忠司 井本
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP27462893A priority Critical patent/JP3546071B2/en
Publication of JPH07130465A publication Critical patent/JPH07130465A/en
Application granted granted Critical
Publication of JP3546071B2 publication Critical patent/JP3546071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharge Heating (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、電気製鋼炉、原料溶融炉等の電弧炉で使用される黒鉛質電極棒の酸化防止技術に関する。
【0002】
【従来の技術】
従来より、電弧炉用の電極として、一般に黒鉛質の電極が使用されている。この電極は、大電流、高温度、溶融物の飛散、付着等の影響を受け、その使用環境は非常に過酷である。とくに、電極の先端部では、超高温のアークフレアーによって電極は消耗し、また、炉内挿入部全体の電極棒は、炉の開口部から侵入した空気により酸化消耗する。例えば、アーク炉による製鋼工程では、電極のコストが、操業コストの実質的部分を占めるので酸化消耗は経済的にも大きな損失になる。この対策として、電極棒に水を流して冷却し酸化を抑制する方法が講じられている。しかしながら、この水冷方式は、炉内に大量の水分が入った場合水蒸気爆発の危険性が高く、また電極棒全体の冷却効果が少ないために十分な酸化防止効果が期待できない。
【0003】
電極消耗の原因は、その50〜70重量%が側周面からの消耗であって、一部に言われているように、発生アークによる先端部からのみの消耗ではない。また、先端部になるほど酸化消耗により先細りするため、その結果、長手方向の消耗が加速される。
【0004】
このアーク炉用電極棒の消耗の態様から、電極棒側周面の全体にわって酸化防止策が十分にとることができれば、その消耗は相当に抑制することができることは明白である。このことから、アーク炉用電極棒を保護被膜によってその消耗を抑える試みがなされてきた。例えば、特開昭59−51499号公報には、非導電性の結晶化リン珪酸ガラスからなる酸化防止層を黒鉛電極棒表面に形成することが開示されている。
【0005】
ところが、この酸化防止層の形成に際しては、電極棒への通電の確保のために電極ホルダー部分を避けて施工する必要がある。そのため、操業中に施工する際には、電極棒を通電のためにセットした状態で、炉蓋上の露出している電極棒に専用の施工装置によって施工することを余儀なくされる。このことは、施工設備が必要になると同時に、炉蓋上での施工のため電極棒の消耗に伴う新電極棒の継ぎ足しに当たっては、炉蓋上で熱間で施工を行う必要があり、作業に危険を伴う。
【0006】
また、熱間で酸化防止層の施工を行うと、電極棒が高温であるため、瞬間的に溶媒が蒸発するために、乾固した酸化防止層が形成され多孔質になり易く十分な酸化防止効果が得られ難い。
【0007】
このような問題を回避するために、予め電極棒に酸化防止層を施工する場合、専用設備を設ける必要がなく設備面では有利であるが、電極ホルダー部分を避けて帯状に施工する必要がある。この場合、電極棒の消耗に従い順次新しい電極が上部から継ぎ足される結果、下部では帯状に残った未処理部分で酸化現象が発生してしまう問題がある。
【0008】
このように酸化防止層の形成により電極棒を保護しようとする試みは、上記のような問題点により一般には普及していないのが現状である。
【0009】
【発明が解決しようとする課題】
本発明の目的は、電極棒の酸化による消耗を防止するための被膜層の形成に際して、非電導性被覆層を電極ホルダー部分を避けて形成する必要性からくる問題を解消したアーク炉用電極棒を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、従来の非導電性の酸化防止層に変えて、導電性の被膜を形成したことによってその目的を達成するもので、黒鉛電極棒のように炭素質材料からなる母材表面に、導電性酸化防止層を形成したアーク炉用電極棒を提供することにある。
【0011】
この導電性酸化防止層を形成する材料としては、粉末状のガラスフリット、無機質結合剤を主成分とした配合物に金属粉末、黒鉛粉末等の導電性フィラーを適量添加したものを使用する
【0012】
本発明の導電性酸化防止層の体積固有抵抗は、アークが安定し順調な操業を行うためには、102 Ω・cm以下である必要があり、望ましくは101 Ω・cm以下で黒鉛母材のそれにできるだけ近いほど望ましい。一般に黒鉛質電極の体積固有抵抗は室温で10-3Ω・cm程度であるので、酸化防止被膜の抵抗を母材に近ずける必要がある。
【0013】
このためには、導電性フィラーの添加量、フィラー形状を適宜選定することにより適正な体積固有抵杭の被膜が得られる。導電性フィラーの添加量に関しては、添加量は多い程導電性面で好ましいが、導電性フィラーを入れすぎると熱間で耐酸化性が劣るので適量を維持する必要があり、通常、被覆形成材中に、5〜50vol%の範囲添加配合することが望ましい。
【0014】
また、導電性フィラーの形状は2次元または3次元的に発達し相互いに接触する機会の多いものを選定する必要がある。このため、導電性酸化防止層は酸化防止の有効温度範囲が異なる導電性酸化防止層を単層または複層構造として黒鉛質電極の表面に被覆する。
【0015】
また、電極部とこの導電性酸化防止層で被覆された黒鉛質電極棒との導電性を増加させるために銀,銅,ニッケル,アルミニウム,鉄等の金属やその他ほう化ジルコニウム等の高導電性を示す材料を配合するなどして体積固有抵抗10−2Ω・cm以下にした高導電性層を最外層に被覆する
【0016】
【作用】
本発明の酸化防止機能は、基本的には、熱間においてガラスフリットが軟化し、粘調なガラスフィルムを母材表面に形成することにより、酸化性ガスの母材表面へのアタックを抑制することにある。またガラスの軟化以前の温度域においては被膜の通気抵抗により、酸化現象を軽減することができる。
【0017】
一般にガラスによる被覆効果は、ある温度範囲にのみ有効で、更に高温になった場合は、ガラス被覆層の粘度が低下し被膜効果が消失する。従って同材質の層を単層で施工した場合は、有効温度範囲が狭く実炉の使用雰囲気温度範囲に適合しない場合がある。この場合、酸化防止の有効温度範囲の異なる酸化防止材、たとえば低温用、中温用、高温用等の導電性酸化防止層を積層化することで低温から高温まで酸化防止効果を維持することが可能になる。
【0018】
図1には、本実施例で得られた導電性酸化防止層の体積固有抵抗と電極ホルダー部分での温度との関係を示している。電極ホルダー部分での温度は、通電後温度が安定した状態での温度をもとにプロットしている。この図から明らかなように、塗膜の体積固有抵抗が104 Ω・cm以上であると電極ホルダー温度が600℃以上になり、その結果、Cu合金製の電極ホルダー表面の酸化被膜生成に伴う電気的抵抗が増大すると共に、さらには電極ホルダーと電極棒との間でスパークが発生し電極ホルダー部分の溶損を生じたりする。また、酸化防止層中の導電性フィラーが変質,消失したりして導電性に支障を来たしたりするために好ましくない。一方、酸化防止層の体積固有抵抗が102 Ω・cm以下であると電極ホルダー部分の温度は400℃以下になり、Cu合金製の電極ホルダーの酸化に伴う電気抵抗の増大、導電性フィラーの変質現象も少なく実用に十分耐え得るものとなる。
【0019】
しかしながら、体積固有抵抗が102 Ω・cm以下であっても電極棒と電極ホルダーの接触面積、酸化防止層の電流密度、体積固有抵抗、冷却状況、施工厚さなどの要因によっては発熱現象が激しく起こる場合がある。
【0020】
この現象を防止する方法として、種々検討を加えた結果、電極ホルダー面と酸化防止層面との間に高導電性層を被覆することで解決を見いだした。すなわち、黒鉛質電極棒又は導電性酸化防止層が施された黒鉛質電極棒の表面に、更に電極ホルダー部の材質の体積固有抵抗と同等または近い高導電性のコーティング層を被覆することにより、見かけ上、電極ホルダー部と酸化防止層との間の接触面積を増加させることができる。その結果、導電性酸化防止層内部での電流密度を低下させ、発熱を分散抑制でき、導電性を維持しながら長時間の使用に耐え得ることを見いだした。一般に電極ホルダーはCu合金で作製されており、その体積固有抵抗は、10-6Ω・cmオーダーであり、種々検討を加えた結果、高導電性層の体積固有抵抗は10-2Ω・cm以下が必要であり、望ましくは、10-4Ω・cm以下で良好あることがわかった。この高導電性層は導電性酸防層の全表面に施工することが望ましいが、コストアップにつながるため発熱の程度に応じては電極ホルダー接触部分を中心に最少の面積で施工することもできる。なお、この高導電性層は、銀,銅,ニッケル,アルミニウム,鉄等の金属やその他ほう化ジルコニウム等の高導電性材料を主成分として構成されている。
【0021】
【実施例】
製鋼用電気炉で用いられる直径20インチ、長さ2.5mの黒鉛質電極棒を複数本、接続した電極の表面に導電性酸化防止層を施工し、通電実験を行なった。
【0022】
本実験で使用した低温用、中温用、高温用酸化防止剤の基本配合及び酸化防止の有効範囲を表1に示している。この基本配合に導電性付与成分としてグラフアイト粉末と金属鉄粉末を添加して体積固有抵抗を変化させた配合の詳細を表2に示している。また、表3には実施例で使用した高導電性層の配合及び体積固有抵抗を示す。
【0023】
表4に、表1と表2に示す各酸化防止剤と高導電性層によって、酸化防止層を形成した実施例を比較例と共に示す。
【0024】
【表1】

Figure 0003546071
【表2】
Figure 0003546071
【表3】
Figure 0003546071
【表4】
Figure 0003546071
実施例1〜3は塗膜の体積固有抵抗を変化させて実験を行った場合であるが、実施例1では軽微な酸化が生じたが実用に十分耐え得るものであった。また、実施例2、3は実施例1よりやや体積固有抵抗が高い被膜であるが電極部でやや発熱したものの問題なく操業できた。
【0025】
ここで注目すべき点は、酸化減量指数である。比較例1に示した未処理品の電極酸化減量を、100とした場合の指数表示で、実施例1〜3の導電性酸化防止層を処理した黒鉛質電極棒の減量は36〜39となり著しく改善されているのが分かる。比較例2、3は被膜の体積固有抵抗が更に高い場合を示したものであるが、電極ホルダー部分で発熱または異常赤熱が生じ、比較例2では実験開始1時間後に、また比較例3では実験の初期に異常赤熱のため実験を中止した。
【0026】
実施例4は、低温用、中温用、高温用導電性酸化防止層を積層して黒鉛質電極棒に施工した場合の結果を示している。電極ホルダー部分で軽微な発熱を示したものの、中温用酸化防止層単層の場合と比較して酸化防止範囲が広がり、先端の高温部から低温部の電極ホルダー下部まで十分な酸化防止効果を示し、酸化減量の指数表示で28と顕著な効果を示した。また、実施例5及び6は実施例3に更に改良を加えた例を示している。
【0027】
実施例5では、最外層に銅及び鉄フレークをベースとする体積固有抵抗3×10-2Ω・cmの高導電性層Bを形成することで電極ホルダー部分での発熱が軽減できた例を、また、実施例6は、高導電層の体積固有抵抗を4×10-4Ω・cmと更に低めた場合であるが、電極ホルダー部での発熱現象は全く発生しないと同時にアークの状況も安定し良好な状態を呈した。一方、比較例4は、請求項4を外れた例であり、5×10-1Ω・cmの高温用酸化防止層を実施例3の表面に積層した場合を示しているが、電極ホルダー部で発熱現象は軽減されていない。
【0028】
このように、最外層に被覆される層は電極ホルダー材質の体積固有抵抗と同等もしくは近似させることにより、ホルダー部での発熱を防止でき安定操業が可能となる。
【0029】
実施例7は実施例6を更に改良した例である。電極棒表面に有効温度範囲を広げるために高温、中温用導電性酸化防止層を積層し、更に実施例6で使用した高導電層Aを処理した電極棒を使用した場合である。その結果、電極ホルダー部で発熱等の現象も発生しないばかりでなく、電極棒全表面にわたって十分な酸化防止効果を示し、重量減少指数25と絶大な効果を示した。
【0030】
このように、軟化特性の異なる導電性酸化防止層を積層した実施例4、またその表面に高導電性層を施工した実施例7で酸化防止効果が優れる。また、実施例5,6に示したように、102 Ω・cm程度の導電性酸化防止層の場合でも、表面に高導電性層を施工することで、実炉使用に十分耐久することが明らかになった。更に実施例1〜3に示したように、102 Ω・cm以下の低い体積固有抵抗の導電性酸化防止層を施工した場合でもやや前記実施例に比べ耐酸化性は劣るが、コーティング層の構造が単純で実用性は高いと考えられる。
【0031】
【発明の効果】
本発明のアーク炉用黒鉛質電極棒によって以下の効果が得られる。
【0032】
(1)黒鉛質電極棒の外表面の酸化を抑制し、電極消耗をアークによる先端からの消耗が主体的となり、カーボン電極棒の消耗を著しく減少することができる。
【0033】
(2)酸化防止層が絶縁層でないために炉蓋上で施工する必要がなくなり、更に専用施工設備も全く必要なくなる。この結果、施工装置の設備費用、装置メンテナンス等の工程の省略が可能である。
【0034】
(3)電極を水冷するような危険を伴う作業から解放され、安全な作業環境とすることができる。
【図面の簡単な説明】
【図1】本実施例で得られた導電性酸化防止層の体積固有抵抗と電極ホルダー部分での温度との関係を示す。[0001]
[Industrial applications]
The present invention relates to a technology for preventing the oxidation of graphite electrode rods used in electric arc furnaces such as electric steelmaking furnaces and raw material melting furnaces.
[0002]
[Prior art]
Conventionally, graphite electrodes have been generally used as electrodes for electric arc furnaces. This electrode is affected by a large current, a high temperature, scattering of a molten material, adhesion, and the like, and its use environment is very severe. In particular, at the tip of the electrode, the electrode is depleted by the ultra-high temperature arc flare, and the electrode rods in the entire furnace insertion portion are oxidized and depleted by air entering from the opening of the furnace. For example, in a steelmaking process using an arc furnace, the cost of the electrode accounts for a substantial part of the operating cost, so that oxidative consumption is a great economic loss. As a countermeasure, a method of suppressing the oxidation by flowing water through the electrode rod to cool it has been taken. However, in this water cooling method, there is a high risk of steam explosion when a large amount of water enters the furnace, and a sufficient effect of preventing oxidation cannot be expected because the cooling effect of the entire electrode rod is small.
[0003]
The cause of electrode wear is 50 to 70% by weight of the wear from the side peripheral surface, and, as is said in part, not the wear from only the tip due to the generated arc. In addition, the taper due to oxidative wear at the tip becomes tapered, so that the wear in the longitudinal direction is accelerated.
[0004]
From the aspect of the consumption of the electrode rod for an arc furnace, it is apparent that the consumption can be considerably suppressed if an antioxidant measure can be sufficiently taken over the entire electrode rod side peripheral surface. For this reason, attempts have been made to suppress the consumption of the arc furnace electrode rod by a protective coating. For example, JP-A-59-51499 discloses that an antioxidant layer made of non-conductive crystallized phosphosilicate glass is formed on the surface of a graphite electrode rod.
[0005]
However, when forming this antioxidant layer, it is necessary to avoid the electrode holder part in order to secure the power supply to the electrode rod. Therefore, when the electrode rod is set during operation, the electrode rod is set to be energized, and must be applied to the exposed electrode rod on the furnace lid by a dedicated processing device. This means that, at the same time that construction equipment is required, it is necessary to perform hot work on the furnace lid when adding new electrode rods due to the depletion of the electrode rods for work on the furnace lid. With danger.
[0006]
In addition, when the antioxidant layer is applied hot, since the electrode rod is at a high temperature, the solvent evaporates instantaneously, so that a dry antioxidant layer is formed, which easily becomes porous, and sufficient antioxidation is achieved. It is difficult to obtain the effect.
[0007]
In order to avoid such a problem, when an antioxidant layer is previously applied to the electrode rod, it is not necessary to provide a dedicated facility, which is advantageous in terms of equipment, but it is necessary to avoid the electrode holder and to apply the strip in a strip shape. . In this case, new electrodes are successively added from the upper part in accordance with the consumption of the electrode rods, and as a result, there is a problem that an oxidation phenomenon occurs in the untreated portion remaining in a band shape at the lower part.
[0008]
Attempts to protect the electrode rod by forming an antioxidant layer in this way have not been widely spread due to the problems described above.
[0009]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrode rod for an arc furnace which solves a problem caused by the necessity of forming a non-conductive coating layer by avoiding an electrode holder portion when forming a coating layer for preventing the electrode rod from being consumed by oxidation. Is to provide.
[0010]
[Means for Solving the Problems]
The present invention achieves the object by forming a conductive film in place of a conventional non-conductive antioxidant layer, and the surface of a base material made of a carbonaceous material such as a graphite electrode rod, An object of the present invention is to provide an electrode rod for an arc furnace having a conductive oxidation preventing layer.
[0011]
As a material for forming the conductive antioxidant layer, a material obtained by adding a suitable amount of a conductive filler such as a metal powder or a graphite powder to a compound mainly composed of a powdery glass frit and an inorganic binder is used .
[0012]
The volume resistivity of the conductive antioxidant layer of the present invention must be 10 2 Ω · cm or less, and preferably 10 1 Ω · cm or less, in order for the arc to be stable and operate smoothly. The closer to that of the material, the better. In general, the volume resistivity of a graphite electrode is about 10 −3 Ω · cm at room temperature, so it is necessary to bring the resistance of the antioxidant coating closer to the base material.
[0013]
For this purpose, by appropriately selecting the addition amount of the conductive filler and the shape of the filler, a coating of an appropriate volume specific pile can be obtained. Regarding the amount of the conductive filler to be added, the larger the amount of the conductive filler, the more preferable in terms of conductivity. However, if the conductive filler is added too much, the oxidation resistance during heating is inferior, so it is necessary to maintain an appropriate amount. It is desirable to add and mix in the range of 5 to 50 vol%.
[0014]
In addition, it is necessary to select a shape of the conductive filler that develops two-dimensionally or three-dimensionally and has many chances of contact with each other. For this reason, the conductive antioxidant layer covers the surface of the graphite electrode in a single-layer or multilayer structure with a conductive antioxidant layer having a different effective temperature range for antioxidation.
[0015]
Also, in order to increase the conductivity between the electrode part and the graphite electrode rod coated with the conductive antioxidant layer, a metal such as silver, copper, nickel, aluminum, iron or other high conductivity such as zirconium boride is used. the highly conductive layer which is below the volume resistivity 10 -2 Ω · cm, for example, by compounding a material exhibiting a coating on the outermost layer.
[0016]
[Action]
The antioxidant function of the present invention basically suppresses the attack of the oxidizing gas on the surface of the base material by softening the glass frit during the hot process and forming a viscous glass film on the surface of the base material. It is in. Further, in a temperature range before the softening of the glass, the oxidation phenomenon can be reduced due to the ventilation resistance of the coating.
[0017]
Generally, the effect of coating with glass is effective only in a certain temperature range, and when the temperature rises further, the viscosity of the glass coating layer decreases, and the coating effect disappears. Therefore, when a single layer of the same material is used, the effective temperature range is narrow and may not be suitable for the operating atmosphere temperature range of the actual furnace. In this case, it is possible to maintain the antioxidant effect from a low temperature to a high temperature by laminating antioxidants having different effective temperature ranges of antioxidation, for example, conductive antioxidant layers for low temperature, medium temperature, and high temperature. become.
[0018]
FIG. 1 shows the relationship between the volume resistivity of the conductive antioxidant layer obtained in this example and the temperature at the electrode holder. The temperature at the electrode holder is plotted based on the temperature in a state where the temperature is stable after the current is supplied. As is apparent from this figure, when the volume resistivity of the coating film is 10 4 Ω · cm or more, the electrode holder temperature becomes 600 ° C. or more, and as a result, an oxide film is formed on the surface of the electrode holder made of Cu alloy. As the electric resistance increases, a spark is generated between the electrode holder and the electrode rod, and the electrode holder is melted. In addition, the conductive filler in the antioxidant layer is not preferable because the conductive filler deteriorates or disappears, thereby causing a problem in conductivity. On the other hand, if the volume resistivity of the antioxidant layer is 10 2 Ω · cm or less, the temperature of the electrode holder portion becomes 400 ° C. or less, the electric resistance increases due to oxidation of the electrode holder made of Cu alloy, There is little alteration phenomenon and it can be sufficiently used for practical use.
[0019]
However, even if the volume resistivity is less than 10 2 Ω · cm, a heat generation phenomenon may occur depending on factors such as the contact area between the electrode rod and the electrode holder, the current density of the antioxidant layer, the volume resistivity, the cooling condition, and the construction thickness. May occur violently.
[0020]
As a method of preventing this phenomenon, as a result of various studies, a solution was found by coating a highly conductive layer between the electrode holder surface and the antioxidant layer surface. That is, by coating the surface of the graphite electrode rod or the graphite electrode rod provided with the conductive antioxidant layer with a highly conductive coating layer equivalent to or close to the volume resistivity of the material of the electrode holder portion, Apparently, the contact area between the electrode holder portion and the antioxidant layer can be increased. As a result, they have found that the current density inside the conductive antioxidant layer can be reduced, heat generation can be suppressed, and the conductive property can be maintained for a long time while maintaining conductivity. Generally, the electrode holder is made of a Cu alloy, and its volume resistivity is on the order of 10 -6 Ω · cm. As a result of various studies, the volume resistivity of the highly conductive layer is 10 -2 Ω · cm. It is found that the following is required, and desirably, it is not more than 10 −4 Ω · cm. This highly conductive layer is desirably applied to the entire surface of the conductive acid-proof layer, but it can be applied with a minimum area centering on the electrode holder contact portion depending on the degree of heat generation because it leads to an increase in cost. . The high conductive layer is composed mainly of a metal such as silver, copper, nickel, aluminum and iron, and a high conductive material such as zirconium boride.
[0021]
【Example】
A plurality of graphite electrode rods having a diameter of 20 inches and a length of 2.5 m used in an electric furnace for steelmaking were used.
[0022]
Table 1 shows the basic formulations of the antioxidants for low, medium and high temperatures used in this experiment and the effective range of antioxidants. Table 2 shows the details of the composition in which the volume resistivity was changed by adding graphite powder and metallic iron powder as the conductivity-imparting components to this basic composition. Table 3 shows the composition and volume resistivity of the highly conductive layer used in the examples.
[0023]
Table 4 shows an example in which an antioxidant layer was formed by each of the antioxidants and the highly conductive layers shown in Tables 1 and 2, together with a comparative example.
[0024]
[Table 1]
Figure 0003546071
[Table 2]
Figure 0003546071
[Table 3]
Figure 0003546071
[Table 4]
Figure 0003546071
Examples 1 to 3 are cases where an experiment was conducted by changing the volume resistivity of the coating film. In Example 1, slight oxidation occurred, but it was sufficient for practical use. Further, Examples 2 and 3 were films having a slightly higher volume specific resistance than Example 1, but could be operated without any problem, although the electrode portion generated a little heat.
[0025]
What should be noted here is the oxidation weight loss index. When the electrode oxidation weight loss of the untreated product shown in Comparative Example 1 is set to 100, the weight loss of the graphitic electrode rod treated with the conductive antioxidant layer of Examples 1 to 3 is remarkably 36 to 39. You can see that it has been improved. Comparative Examples 2 and 3 show the case where the volume resistivity of the coating is even higher. However, heat generation or abnormal red heat was generated in the electrode holder, and in Comparative Example 2 one hour after the start of the experiment, and in Comparative Example 3 the experiment was performed. The experiment was stopped early in the day due to abnormal red heat.
[0026]
Example 4 shows the results in the case where low-temperature, medium-temperature, and high-temperature conductive antioxidant layers were laminated and applied to a graphite electrode rod. Although a small amount of heat was generated at the electrode holder, the range of oxidation prevention was wider than that of a single-layer antioxidant layer for medium temperature, and a sufficient oxidation prevention effect was exhibited from the high-temperature part at the tip to the lower part of the electrode holder at the low-temperature part. And a remarkable effect of 28 as an index of oxidation loss. Examples 5 and 6 show examples in which the third embodiment is further improved.
[0027]
In the fifth embodiment, an example in which heat generation in the electrode holder portion can be reduced by forming a high conductive layer B having a volume resistivity of 3 × 10 −2 Ω · cm based on copper and iron flakes as the outermost layer. Further, in Example 6, the volume resistivity of the high conductive layer was further reduced to 4 × 10 −4 Ω · cm. It was stable and good. On the other hand, Comparative Example 4 is an example that deviates from claim 4 and shows a case in which a high-temperature antioxidant layer of 5 × 10 −1 Ω · cm is laminated on the surface of Example 3; The heat generation phenomenon has not been reduced.
[0028]
In this way, by making the layer covered by the outermost layer equal or close to the volume resistivity of the electrode holder material, heat generation in the holder part can be prevented and stable operation can be performed.
[0029]
Embodiment 7 is an example in which Embodiment 6 is further improved. In this case, a high- and medium-temperature conductive antioxidant layer is laminated on the electrode rod surface to extend the effective temperature range, and the high-conductive layer A used in Example 6 is treated with the electrode rod. As a result, not only did the electrode holder generate no heat or other phenomena, but it also exhibited a sufficient antioxidant effect over the entire surface of the electrode rod, and exhibited a remarkable effect with a weight loss index of 25.
[0030]
As described above, Example 4 in which the conductive antioxidant layers having different softening properties are laminated, and Example 7 in which the highly conductive layer is applied to the surface thereof have excellent oxidation prevention effects. Also, as shown in Examples 5 and 6, even in the case of a conductive antioxidant layer of about 10 2 Ω · cm, by applying a high conductive layer on the surface, it is possible to sufficiently endure use in an actual furnace. It was revealed. Furthermore, as shown in Examples 1 to 3, even when a conductive antioxidant layer having a low volume resistivity of 10 2 Ω · cm or less is applied, the oxidation resistance is slightly inferior to that of the above examples, but the coating layer It is considered that the structure is simple and practical.
[0031]
【The invention's effect】
The following effects can be obtained by the graphite electrode rod for an arc furnace of the present invention.
[0032]
(1) Oxidation of the outer surface of the graphite electrode rod is suppressed, and electrode consumption is mainly caused by consumption from the tip by an arc, so that consumption of the carbon electrode rod can be significantly reduced.
[0033]
(2) Since the oxidation preventing layer is not an insulating layer, there is no need to perform the work on the furnace lid, and no special installation equipment is required. As a result, it is possible to omit steps such as equipment costs of the construction equipment and equipment maintenance.
[0034]
(3) It is free from a risky work such as water-cooling the electrode, and a safe working environment can be provided.
[Brief description of the drawings]
FIG. 1 shows the relationship between the volume resistivity of a conductive antioxidant layer obtained in this example and the temperature at the electrode holder.

Claims (1)

黒鉛質材からなる母材の表面に、粉末状の硝子フリット、無機質結合剤を主成分とした配合物に導電性フィラーを添加してなる導電性酸化防止層を形成したアーク炉用黒鉛質電極であって、導電性酸化防止層が酸化防止の有効温度範囲の異なる複数の被覆層を積層した構造で、且つ体積固有抵抗が10 -2 Ω・cm以下の高導電性層を最外層に被覆したアーク炉用黒鉛質電極Graphite electrode for arc furnaces with a conductive antioxidant layer formed by adding a conductive filler to a compound mainly composed of a powdery glass frit and an inorganic binder , on the surface of a graphite base material Wherein the conductive antioxidant layer has a structure in which a plurality of coating layers having different effective temperature ranges for preventing oxidation are laminated, and the outermost layer is coated with a high conductive layer having a volume resistivity of 10 −2 Ω · cm or less. arc furnace for graphite electrode rods were.
JP27462893A 1993-11-02 1993-11-02 Graphite electrode rod for arc furnace Expired - Fee Related JP3546071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27462893A JP3546071B2 (en) 1993-11-02 1993-11-02 Graphite electrode rod for arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27462893A JP3546071B2 (en) 1993-11-02 1993-11-02 Graphite electrode rod for arc furnace

Publications (2)

Publication Number Publication Date
JPH07130465A JPH07130465A (en) 1995-05-19
JP3546071B2 true JP3546071B2 (en) 2004-07-21

Family

ID=17544363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27462893A Expired - Fee Related JP3546071B2 (en) 1993-11-02 1993-11-02 Graphite electrode rod for arc furnace

Country Status (1)

Country Link
JP (1) JP3546071B2 (en)

Also Published As

Publication number Publication date
JPH07130465A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
CN101345142B (en) Electrical contact material with Ti3SiC2 multi-layer compound structure and preparation technique
CN106057526A (en) Laminated silver-copper-brazing-filler-metal three-composite electrical contact material manufactured by coating and sleeving method and manufacturing method thereof
CN101345141A (en) Electrical contact material with Ti3SiC2 three-layer compound structure and preparation technique
CN105525130A (en) Copper-chromium electrical contact material and preparation method thereof
JP3546071B2 (en) Graphite electrode rod for arc furnace
US3023393A (en) Liquid electrical connection for electrolytic cells
EP1147070B1 (en) Electrically conductive ceramic layers
CN114334321B (en) Impact-resistant chip resistor and manufacturing method thereof
CN106057527A (en) Laminated silver-copper-brazing-filler-metal composite electrical contact material prepared by coating method and preparation method thereof
CN113658751B (en) Heat dissipation type medium-voltage fireproof cable and preparation method thereof
US3904910A (en) Gas-filled discharge overvoltage protector
CN109767866A (en) A kind of ceramic fire-proof high-temperature resistant cable
CN104200902A (en) Environmental energy-saving fire-proofing cooper-aluminum alloy electric cable and manufacturing method thereof
US1742259A (en) Electrical resistor, conductor, and the like
CN100431077C (en) Contact material for low voltage electric apparatus
JP3287029B2 (en) heating furnace
JPS6254623A (en) Electric discharge machine
CN217239114U (en) Anticorrosive crowded cast generating line that wraps
JPH0935892A (en) Electrode for plasma generating device
JPH0789027B2 (en) DC arc furnace
CN210378581U (en) High temperature resistant type wire and cable
JP3065219B2 (en) Annealing equipment using conductor rolls
CN208014421U (en) A kind of aluminium alloy cable
CN219842829U (en) Irradiation crosslinking insulation type interlocking armoured aluminum alloy cable
AU772804B2 (en) Electrically conductive ceramics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees