JPS58138973A - Method of separating air - Google Patents

Method of separating air

Info

Publication number
JPS58138973A
JPS58138973A JP2164682A JP2164682A JPS58138973A JP S58138973 A JPS58138973 A JP S58138973A JP 2164682 A JP2164682 A JP 2164682A JP 2164682 A JP2164682 A JP 2164682A JP S58138973 A JPS58138973 A JP S58138973A
Authority
JP
Japan
Prior art keywords
column
liquid
pressure column
air
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2164682A
Other languages
Japanese (ja)
Inventor
富阪 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2164682A priority Critical patent/JPS58138973A/en
Priority to IN718/CAL/83A priority patent/IN159789B/en
Publication of JPS58138973A publication Critical patent/JPS58138973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は空気を液化して分離する方法に関し、特に全低
圧方式によって空電を分離して高純度のfII紫を経済
的に製造する方法に関する吃のである。。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for liquefying and separating air, and more particularly to a method for economically producing high-purity fII violet by separating static electricity using an all-low pressure system. .

空気を液化してM留することkよってN25o2sAr
等を分離する空気の液化分離装置はa1々の分野で11
動じている。この槌の空気液化分離装置では、原料空気
や製品酸素に対して運転条件に応じた加圧、減圧操作を
施す必要がある為、圧縮機。
By liquefying air and distilling it into M, N25o2sAr
Air liquefaction separation equipment that separates
I'm moving. In this air liquefaction separation equipment, it is necessary to pressurize and depressurize the raw air and product oxygen according to the operating conditions, so a compressor is used.

膨張機等の機器のf&瞳が不可欠である。かかる機器に
要する動力のうち、特にf+:稲のための動力は大きな
比菖を占めておシ、該圧縮機の動力費が空気液化分離装
置の#1力費の大半を占めているのが央悄である。特に
空気液化分離装置は大容量のものが多く動力費が嵩むた
め、製品酸素の製造コストの低減を図る一環として動力
費の低減が強<*望されている。こうした事情はいわゆ
る全低圧空気分離方法に於ても全く同様であるが、有効
な対策にはとんど―じられていない。
F&pupils of equipment such as expanders are essential. Of the power required for such equipment, the power for f+ rice in particular occupies a large proportion, and the power cost of the compressor accounts for most of the #1 power cost of the air liquefaction separation device. It's central. In particular, many air liquefaction separation devices have a large capacity and the power cost is high, so there is a strong desire to reduce the power cost as part of efforts to reduce the manufacturing cost of product oxygen. These circumstances are exactly the same in the so-called total low-pressure air separation method, but no effective measures have been taken.

従来の全低圧式空気分離方法は、一般に第1図に示す様
な系統図に従って行なわれている。即ち原料空気は空気
濾過器lから供給され、空電圧縮機2で約4゜6 at
a4C圧鰯加圧されたのち、アフタクーラ8で冷却され
る。次に可逆式熱交換器4に入り、製品酸素及び不純屋
素と熱交換してほぼ沸点近(壕で冷却される。史に柚留
塔低圧塔(以下これを単にr上塔」と称する)5の下部
の@lコンデンサ6に導入し、該コンデンサ6で上塔6
の還流液との熱交換によシ沸点以下まで過冷却される。
Conventional all-low pressure air separation methods are generally carried out according to a system diagram as shown in FIG. That is, raw air is supplied from the air filter 1 and compressed by the pneumatic compressor 2 at approximately 4°6 at.
After the a4C pressurized sardine is pressurized, it is cooled in the aftercooler 8. Next, it enters the reversible heat exchanger 4, where it exchanges heat with the product oxygen and impure nitrogen and is cooled in a trench near the boiling point. ) 5 into the lower @l condenser 6, and the condenser 6 connects the upper tower 6.
It is supercooled to below the boiling point by heat exchange with the reflux liquid.

従って一部は液化す志。次いで%液分離器7内で気体空
気と液体空気に分離され、液体空気は全JitM留塔中
圧塔(以下これを単に「下塔」と称する)8に導かれる
。下塔8に導入された液体空気は電化して上昇ガスとな
る一方、該下塔8の頂部でlIl縮して傷られる還流液
(冨輩嵩f&)に接触させて粗輌留し、下塔8の頂部で
冨amガスを得ると共に、前記還流液は下塔8の底部で
酸素成分約40憾の液体空気となる。同下塔8の中間部
よシ抽出された気体空気は管路81,82から膨張ター
ビン9に入シ、ここで寒冷を発生した後、管路88を通
って上塔5に導かれる。
Therefore, some of them are willing to liquefy. Next, it is separated into gaseous air and liquid air in a liquid separator 7, and the liquid air is led to a total JitM distillation column intermediate pressure column (hereinafter simply referred to as "lower column") 8. The liquid air introduced into the lower tower 8 is electrified and becomes a rising gas, while it is brought into contact with the reflux liquid (F&), which is compressed and damaged at the top of the lower tower 8, and remains in the lower column. Am rich gas is obtained at the top of the column 8, and the reflux liquid becomes liquid air with an oxygen content of about 40% at the bottom of the lower column 8. The gaseous air extracted from the middle part of the lower tower 8 enters the expansion turbine 9 through pipes 81 and 82, where it is cooled and then guided to the upper tower 5 through a pipe 88.

下塔8で前述の如(−粗N4Iii&された液体空気は
、管路a4を通って液体中gL過冷却器10内に導入冷
却された後、管路85から粗アルゴン塔11の塔頂部に
配設された第2コンデンサ12に導き、該コンデンサ1
2で粗アルゴン塔1’ l 内の富アルゴンガスと熱交
換して液体空電をガス化した後、管路86から上塔5へ
4かれる。一方下堪8の頂部に貯留された富窒素液は管
路87を通って液体空気過冷却器10内に導入・冷却さ
れた後、管路88から上塔6の上部へ導かれる。又気液
分離器7で分離された気体空気は管路27から液化器1
8を通過する間に全音液化され九後、管路29.i4N
体空電過冷却器10.管路80を経て上塔5の上部へ導
かれる。更に上塔すで#1留分離され、底部に貯留され
たl1iIi純度の冨酸素液は、上塔5の底部巌下劇よ
シ抽出され、管路51を通って粗アルゴン塔llの下部
へ導かれ、更に積留される。この後、粗アルゴン塔11
の底部から高純度の富酸素ガスを管路45から抽出した
後、管路4Bを通して液化器1Bへ導く。該液化器18
内で若干温度tIl!J復した高純度富酸素ガスは財に
管路47を通って可逆式熱交換器4へ導入され、該熱交
換器4内で太きく畠pJ回復する0次いで管路48から
酸素圧動機14に導入・加圧された後、外部へ製品酸素
として回収される。
The liquid air which has been converted into crude N4Iii & as described above in the lower column 8 is introduced into the liquid gL subcooler 10 through the pipe a4 and cooled, and then is sent from the pipe 85 to the top of the crude argon column 11. A second capacitor 12 is provided, and the capacitor 1
2, the liquid static electricity is gasified by heat exchange with the argon-rich gas in the crude argon column 1'l, and is then discharged from the pipe 86 to the upper column 5. On the other hand, the nitrogen-rich liquid stored at the top of the lower tower 8 is introduced into the liquid air supercooler 10 through a pipe 87 and cooled, and then guided to the upper part of the upper tower 6 through a pipe 88. The gaseous air separated by the gas-liquid separator 7 is sent from the pipe 27 to the liquefier 1.
After being completely liquefied while passing through pipe 29. i4N
Body pneumatic supercooler 10. It is guided to the upper part of the upper tower 5 via a pipe 80. Furthermore, the rich oxygen liquid of 11iIi purity, which has already been separated in the #1 distillate in the upper column and stored at the bottom, is extracted from the bottom of the upper column 5 and passes through the pipe 51 to the lower part of the crude argon column 11. guided and further stored. After this, the crude argon column 11
After extracting high-purity oxygen-rich gas from the bottom of the pipe 45, it is guided to the liquefier 1B through the pipe 4B. The liquefier 18
The temperature inside is slightly tIl! The recovered high-purity oxygen-rich gas is then introduced into the reversible heat exchanger 4 through a pipe 47, where it is gradually restored to its pJ value. After being introduced and pressurized, it is recovered to the outside as product oxygen.

ところで上記の如き全低圧空気分離方法によって尚細度
の酸素を円滑に回収する為には、■粗アルゴン塔内を約
Q、8ata〜l、Qataの減圧状態に祿持する一方
、■回収時の製品酸素の圧力を約160ata−1,2
ata4C調節する必要がある。その為、従来の全低圧
式空気分離方法においては、可逆式熱交換器4を通過し
皮製品酸素を取出す為の管路48の途中に酸素圧縮機1
4を配設し、粗アルゴン塔11を吸引減圧することによ
って上記■の条件を満足すると共に、粗アルゴン塔11
の下部から約0.8a$a〜1.0ataで抽出された
後、可逆式熱交換器4を通過する段階で約Q、7ata
tで圧損低下する製品酸素を圧縮することによシ約1.
2ataまで加圧調整して上記■の条件を満足せしめて
いる。ζρ様Kjt41R的小範囲の減圧、増圧を図る
ため大規模な酸素圧動機を使用しているので、依然とし
て11力費の高騰を招き、空気分離装置全体の経済性の
改善を図る上で律速となっている。
By the way, in order to smoothly recover even finer oxygen using the total low-pressure air separation method as described above, it is necessary to maintain the inside of the crude argon column at a reduced pressure of about Q, 8 ata to 1, Q ata, and at the time of recovery. The pressure of the product oxygen is about 160 ata-1,2
It is necessary to regulate ata4C. Therefore, in the conventional all-low-pressure air separation method, an oxygen compressor 1 is installed in the middle of the pipe 48 that passes through the reversible heat exchanger 4 and extracts oxygen from the leather product.
By disposing the crude argon column 11 and vacuuming the crude argon column 11, the above condition (2) is satisfied, and the crude argon column 11
After about 0.8a~1.0ata is extracted from the lower part of the
By compressing the product oxygen, the pressure drop decreases at approximately 1.
The pressure was adjusted to 2ata to satisfy the condition (2) above. ζρ-like Kjt41R Since a large-scale oxygen pressure machine is used to reduce and increase pressure in a small range, it still causes a rise in power costs and is a rate-limiting factor in improving the economic efficiency of the air separation equipment as a whole. It becomes.

そこで全低圧式空気分離方法においては、上記■。Therefore, in the all-low-pressure air separation method, the above-mentioned ①.

■の運転条件を満足しながらも、これら条件を満足させ
る為の手段に要する動力費をできる限シ低減できる様な
技術の開発が望まれていた。
It has been desired to develop a technology that can reduce as much as possible the power cost required for the means to satisfy the operating conditions (2) while satisfying these conditions.

本発明はこうした事情に着目してなされたものでその目
的とするところは、全低圧式空気分離システムにおける
上記酸素圧縮機の採用を中止して、別途新規な技術的手
段を有機的に結合させることKよシ、上記■、■の運転
条件を満足させつつ、従来のシ素圧婦機に要していた1
力費を如減し、もって全低圧式空気分離Vj1111全
体の経済性を高めようとするにある。
The present invention has been made in view of these circumstances, and its purpose is to discontinue the use of the above-mentioned oxygen compressor in a total low-pressure air separation system and to organically combine a separate new technical means. KotoKoshi, while satisfying the operating conditions of ■ and ■ above, the 1 required for conventional silicon compression machines.
The purpose is to reduce power costs and thereby improve the economic efficiency of the entire low-pressure air separation system Vj1111.

しかしてこの様な目的を達成し慢た本発明の空気分離方
法とは、粗アルゴン塔頂部の冨デルゴンガスをブロワに
よシ抜き出すことによ)上記■の運転条件を編足せしめ
る一方、粗アルゴン塔低部からは液体酸素をその液面よ
り下部から抜き出し、D液体I11嵩の電力作用により
自己加圧することによシ上記■の運転条件を満足せしめ
る様にした点に要旨を有するものである。
However, the air separation method of the present invention, which has achieved such a purpose, adds the operating conditions of (2) above (by extracting the rich argon gas at the top of the crude argon column with a blower), while The gist of this method is that liquid oxygen is extracted from the lower part of the tower below the liquid level, and is self-pressurized by the action of an electric power of 11 volumes of D liquid I, thereby satisfying the operating condition (2) above. .

以下賽施例図面に基づき本発明の構成及び作用効果を1
明するが、下紀賽施例はjiiIC−代表例に過ぎない
ものであって、前・後記の趣旨に沿って迩宜変史して賽
施し得ることは言うまでもない。
The configuration and effects of the present invention are explained below based on the drawings of the examples.
To be clear, the lower ki sasai is only a representative example of the jii IC, and it goes without saying that the shiki sasai can be changed according to the spirit of the above and after.

第2〆1に本発明の全低圧式空電分離方法の系統図を示
し、第1図の従来例とt本的楢収は同一であシ、同−構
成のものには同一の符号を付しである31本賽施例が従
来例と1!に4異なり、又特徴とするところは、粗アル
ゴン塔ll′の頂部及び下部並びに管路48′の各構成
にあシ、以下この構成を中心に説明し、従来例と同一の
構成についてはその説明を省略する。即ち粗アルゴン塔
11’の頂部には冨アルゴンガスが貯留するが、該富ア
ルゴンガスを管路52を通してブロワ15から抜き出す
Section 2.1 shows a system diagram of the all-low-pressure electrostatic separation method of the present invention, and the basic structure is the same as that of the conventional example in FIG. The attached 31 dice are the conventional example and 1! 4, and the features are in the configuration of the top and bottom of the crude argon column 11' and the pipe line 48'.Hereinafter, this configuration will be mainly explained, and the same configuration as the conventional example will be explained. The explanation will be omitted. That is, rich argon gas is stored at the top of the crude argon column 11', and the rich argon gas is extracted from the blower 15 through the pipe 52.

この場合粗アにボン塔11′内が約Q、 g ataN
l、 0ataに維持される様にブロワ15の運転操作
を行なう。一方粗アルゴン嶋11’の底部には高純度の
富酸素液が貯留するが、謡高純原冨#1Ifflをその
液面よシも下部から下降管路45′を通して抜き出す。
In this case, the inside of the Bon tower 11' is roughly Q, g ataN
The blower 15 is operated so as to maintain the pressure at 1, 0ata. On the other hand, high-purity oxygen-rich liquid is stored at the bottom of the crude argon tank 11', and Utaka Junharafu #1Iffl is extracted from the lower part of the liquid level through the descending pipe 45'.

この場合粗アルゴン塔11’の底sFi管路46よシ屯
相対的に4所に位置しているので底部から約0.8 a
taNl、 Oataで抜き出された富酸素M#i管路
45′内を降下する間に重力作用によシ約1.2ata
に自己加圧される。その結果、管路4gJF化器1g、
管路47.可逆式熱交換器4を経る間に若干の圧損を受
けて本管路48′から外部へ回収される酸素の圧力を約
1.0ataに調整繍持することができる。
In this case, they are located at four locations relative to the bottom sFi pipe 46 of the crude argon column 11', so the distance is about 0.8 a from the bottom.
taNl, about 1.2ata due to gravitational action while descending in the oxygen-rich M#i pipe 45' extracted at Oata.
self-pressurized. As a result, 4 g of pipe, 1 g of JF converter,
Conduit 47. The pressure of the oxygen which undergoes a slight pressure loss while passing through the reversible heat exchanger 4 and is recovered to the outside from the main line 48' can be adjusted to about 1.0 ata.

このように本!施例では粗アルゴン塔11′内の圧力調
整を冨アにボン抜出用プロワ16で行ない、製品酸素回
収時の加圧mmを落差による自己加圧作用で行なうもの
である。従って1g1図における従来例の構成との比較
の上では酸素圧動[14が排除されている代りに富アル
ゴン抜出用プロワ15か付θされた状Iとなっている。
Books like this! In this embodiment, the pressure in the crude argon column 11' is adjusted by a blower 16 for removing the cylinder, and the pressurization mm during product oxygen recovery is carried out by self-pressurization due to a head difference. Therefore, in comparison with the configuration of the conventional example shown in Fig. 1g1, the oxygen pressure pump 14 is eliminated, but the argon-rich extraction blower 15 is added at θ.

しかし該ブロワ15のガス9Jj、埠1!1(冨アVゴ
ンガス流當)は酸素圧n##14のガス処増緻(製品酵
素流量)の約1//2oに過ぎないからその規wAは小
さく、冨アルゴン抜出用ブロワ15の新規採用に伴う動
力費が必要になるとしても、大規模な酸素圧縮機14の
排除に伴う動力費の大巾な節約により全低圧式空気存#
Il装置全体の動力コストを大きく低減することかでさ
る。
However, the gas 9Jj and 1!1 of the blower 15 (total Vgon gas flow) are only about 1/2o of the gas processing enrichment (product enzyme flow rate) of oxygen pressure n##14, so the regulation wA Although the power cost associated with the new adoption of the rich argon extraction blower 15 is small, the large-scale savings in power cost associated with the elimination of the large-scale oxygen compressor 14 makes it possible to maintain the total low-pressure air system.
This will greatly reduce the power cost of the entire Il device.

本発明の空気分離方法は概略以上の様Kll成されるの
で、高純度の製品酸素をよシ経済的に製造することがで
きる様になった。又空気分離装置の運転に要する動力を
低減することによシいわゆる省エネルギー化を図ること
ができるので、エネルギーの節約が強く叫ばれている今
日、産業界に果たす役I#lは大きい。
Since the air separation method of the present invention is generally implemented as described above, it has become possible to economically produce high-purity oxygen product. Furthermore, by reducing the power required to operate the air separation device, it is possible to achieve so-called energy saving, so that it plays a large role in the industry today, when there is a strong demand for energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の全低圧式空電分離方法を示す系統図、第
2図は本発明の全低圧式空電分離方法を例示する系統図
である。 2・・・空気圧−砿   4−・可逆式熱交換器5・・
・低圧塔     6・・・第1コンデンサ7・・・9
L液分離器   8・・・中圧塔9・・・膨張タービン
  10・・・液体空気過冷即器ll・・・粗アルゴン
%  12−・第2コンデンサ18・・・液化器   
  14・・・酸素圧縮機15・・・ブロワ 品顧人  株式会社神戸製鋼所
FIG. 1 is a system diagram showing a conventional all-low-pressure static separation method, and FIG. 2 is a system diagram illustrating the all-low-pressure static separation method of the present invention. 2...Pneumatic pressure - Kaki 4-Reversible heat exchanger 5...
・Low pressure column 6...1st condenser 7...9
L liquid separator 8... Medium pressure column 9... Expansion turbine 10... Liquid air subcooling reactor 11... Crude argon % 12-- Second condenser 18... Liquefier
14...Oxygen compressor 15...Blower product customer Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] mEE節機で仕動され、史に熱交換器で冷却された原料
空気を低圧塔底部の第1コンデンサに導き、該コンデン
サで低圧塔の液体酸素と熱交換し、該液体酵素を脇発さ
せ低圧塔の上昇ガスとなすと共に原料空気を線点以下の
導度に過冷却して一部を液化せしめ、前記上昇ガスを低
圧塔上部からの還t#腋に誉触させて精留し、これによ
シ前記低圧塔底すちに貯留される還流液を冨酸素液とな
す一方、D’lJ iLl液化空気を中圧塔に導入気化
して中圧塔の上昇ガスとなし中圧Q!i頂部で凝縮して
得られる還流液&C!触せしめて精留し、中圧塔yX部
で富窒素ガスをイ尋ると共に前記還流液は中圧塔底部で
液体空電となし、史に該有体空気は冷却した後粗アルゴ
ン塔rm部の第2コンデンサに導き、該コンデンサで租
アルゴン塔の冨アルゴンガスと熱交換シ液体空゛気をガ
ス化してから低圧塔へ導くようにした空電分離方法にお
いて、粗アルゴン塔底部から液体#素を抜き出すと共に
1力作用により自己加圧した後、可逆式熱交m器にょシ
ガス化して製品酸素とする一方、粗アルゴン塔頂部の富
アルゴンガスをプロワによシ抜き出すことKよシ粗アル
ゴン塔内を減圧状珈にm持することを特徴とする空気分
離方法。
The feed air, which is operated by the mEE moderator and cooled by the heat exchanger, is led to the first condenser at the bottom of the low pressure column, where it exchanges heat with the liquid oxygen in the low pressure column, and the liquid enzyme is emitted aside. At the same time as the rising gas of the low pressure column, the feed air is supercooled to a conductivity below the line point to partially liquefy the rising gas, and the rising gas is brought into contact with the return t# armpit from the upper part of the low pressure column to be rectified. In this way, the reflux liquid stored at the bottom of the low-pressure column is made into an oxygen-rich liquid, while the liquefied air is introduced into the medium-pressure column and vaporized to become the rising gas of the medium-pressure column. ! Reflux liquid obtained by condensation at the top of i &C! At the same time, the reflux liquid is converted into a liquid static electricity at the bottom of the medium pressure column, and the solid air is cooled and then transferred to the crude argon column rm. In the electrostatic separation method, the liquid air is introduced into the second condenser of the crude argon column, where it exchanges heat with the rich argon gas in the crude argon column, gasified, and then introduced into the low-pressure column. # After extracting the element and self-pressurizing it by a single force action, it is gasified in a reversible heat exchanger to produce oxygen product, while the argon-rich gas at the top of the crude argon column is extracted by a blower. An air separation method characterized by maintaining the inside of an argon column in a vacuum state.
JP2164682A 1982-02-12 1982-02-12 Method of separating air Pending JPS58138973A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2164682A JPS58138973A (en) 1982-02-12 1982-02-12 Method of separating air
IN718/CAL/83A IN159789B (en) 1982-02-12 1983-06-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164682A JPS58138973A (en) 1982-02-12 1982-02-12 Method of separating air

Publications (1)

Publication Number Publication Date
JPS58138973A true JPS58138973A (en) 1983-08-18

Family

ID=12060814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164682A Pending JPS58138973A (en) 1982-02-12 1982-02-12 Method of separating air

Country Status (2)

Country Link
JP (1) JPS58138973A (en)
IN (1) IN159789B (en)

Also Published As

Publication number Publication date
IN159789B (en) 1987-06-06

Similar Documents

Publication Publication Date Title
JP2865274B2 (en) Cryogenic distillation of air for the simultaneous production of oxygen and nitrogen as gaseous and / or liquid products
US4615716A (en) Process for producing ultra high purity oxygen
CN111795544B (en) Cryogenic air separation plant
JP5655104B2 (en) Air separation method and air separation device
JPH102664A (en) Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity
JP2001263935A (en) Method for separating air and air separator using the same
EP0584420B1 (en) Efficient single column air separation cycle and its integration with gas turbines
EP0962732A1 (en) Multiple column nitrogen generators with oxygen coproduction
TW202227766A (en) Process and apparatus for cryogenic separation of air with mixed gas turbine
JP5307055B2 (en) Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.
JPS6162776A (en) Method of separating air in order to form boosted oxygen
JPH03500924A (en) Improving air fractionation for nitrogen production
JPH07151458A (en) Method and equipment for preparing gaseous oxygen and/or nitrogen under pressure
US4507134A (en) Air fractionation method
JPH1163810A (en) Method and device for manufacturing low purity oxygen
US20110146343A1 (en) Process And Apparatus For The Separation Of Air By Cryogenic Distillation
US10359231B2 (en) Method for controlling production of high pressure gaseous oxygen in an air separation unit
CN114026376B (en) System and method for producing argon
CN112781321B (en) Air separation device with nitrogen liquefier and method
JPS58138973A (en) Method of separating air
JPH06249574A (en) Method and equipment for manufacturing oxygen and/or nitrogen under pressure
JPH11325716A (en) Separation of air
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JPS61259077A (en) Method of separating air
JP5647853B2 (en) Air liquefaction separation method and apparatus