JPS58137948A - Method of adjusting focus of scanning electron microscope or the like - Google Patents

Method of adjusting focus of scanning electron microscope or the like

Info

Publication number
JPS58137948A
JPS58137948A JP57020410A JP2041082A JPS58137948A JP S58137948 A JPS58137948 A JP S58137948A JP 57020410 A JP57020410 A JP 57020410A JP 2041082 A JP2041082 A JP 2041082A JP S58137948 A JPS58137948 A JP S58137948A
Authority
JP
Japan
Prior art keywords
excitation
signal
scanning
electronic computer
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57020410A
Other languages
Japanese (ja)
Inventor
Sakuyoshi Moriguchi
森口 作美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP57020410A priority Critical patent/JPS58137948A/en
Publication of JPS58137948A publication Critical patent/JPS58137948A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To enable the focus adjustment of a scanning electron microscope or the like to be performed over a relatively wide range of the frequency by subjecting a picture signal obtained every time when the excitation is changed to Fourier conversion carried out in an electronic computer so as to obtain a power spectrum, and comparing areas surrounded by such power spectra and a given reference line with each other. CONSTITUTION:Every time when the excitation of an objective lens 5 is switched by supplying a control signal from an electronic computer 15, a horizontal scanning signal is generated from a scanning-signal generating circuit 12, a certain specific line on a sample is scanned by electron rays 2, and a detection signal obtained from a detector 7 as the result of the above scanning is converted with an AD-converter 19 into a digital signal, which is supplied to the electronic computer 15. In the electronic computer 15, the supplied signal is subjected to Fourier conversion so as to obtain a power spectrum, an area surrounded by the line of the spectrum and, for example, the reference line of 20dB is computed every time when the excitation of the objective lens 5 is switched, and excitation intensity which maximizes the above area is found out.

Description

【発明の詳細な説明】 本発明は走査電子顕微鏡等を自動的に焦点合わせする方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for automatically focusing a scanning electron microscope or the like.

走査電子顕微鏡に右いては自動的に焦点合わせを行なわ
せるため従来より種々の試みがなされてきた。その代表
的なものとしては、対物レンズの励磁を変える毎に画像
信号をサンプリングしてその信号のピーク値を積算し、
この積算値が最大になるところを合焦点とするピーク値
積算法、対物レンズの励磁を変える毎に画像信号を高域
バンド通過フィルターに供給しで、このフィルター出力
が最大の所を合焦点とするバンドパスフィルターを用い
た方法等があるが、前者においては、ピークの判定とピ
ーク値の積算はコンデンサを用いてアナログ的番ζ行う
ため、精度上の問題がある。
Various attempts have been made to automatically focus scanning electron microscopes. A typical example is to sample the image signal every time the excitation of the objective lens is changed and integrate the peak value of the signal.
The peak value integration method takes the point where this integrated value is maximum as the focal point.Each time the excitation of the objective lens changes, the image signal is supplied to a high-pass band-pass filter, and the point where the filter output is maximum is determined as the focal point. There is a method using a band-pass filter to do this, but in the former method, there is a problem in accuracy because peak determination and peak value integration are performed in an analog manner using a capacitor.

又、後者の方法においては、フィルターの通過域に試料
が空間周波数分布を持っていない場合には、フィルター
より信号が取り出せないので、自動的に焦点合わせを行
うことはできず、特定の試料に対してしか適用できない
In addition, in the latter method, if the sample does not have a spatial frequency distribution in the passband of the filter, the signal cannot be extracted from the filter, so automatic focusing is not possible, and it is difficult to focus on a specific sample. It can only be applied to

本発明はこのような従来の欠点を解決することを目的と
してなされたもので、以下本発明において基本となって
いる考えを透過走査像を得る場合を例にとり説明する。
The present invention has been made with the aim of solving these conventional drawbacks, and the basic idea of the present invention will be explained below by taking as an example the case of obtaining a transmission scanning image.

透過走査像の像信号ψは試料の電子−に対する透過率へ
と入射電子線の物置分布関数iのたたみ込み積分として
得られる。
The image signal ψ of the transmission scanning image is obtained as the convolution integral of the distribution function i of the incident electron beam with the electron transmittance of the sample.

ψ= IPs% i  ・・・ ■ 一般に入射電子線の密度分布はガウス分布で近似できる
ので、空間周波数領域でのその周1波数分布I(k) I (k )=i・exp (−k”/ 2 trk″
)・・・■となる。ただしfkは空間周波数領域での分
散であり、空間領域での分散(x”L (y”〆= 1
/ ((2g)7a”)なる関係で結び付けられている
。I(k)をボード線図で表現すると第1図のようにな
り、透過製走査電子顕微鏡において試料に照射される電
子線の密度分布に何がしかの拡がりがあるということは
この電子線を介して試料を像に変換する際にこの変換系
が成る種のローパスフィルターとして働いていることに
対応づけられる。そして第2図(b)においてイ′で示
すような焦点が合っていない状態におけるIに対して、
焦点が合って来ると電子線の密度分布は一点に集中した
もの番と近づいて来るためIは第2図<a>においてイ
で示すようにより高域側にも通過領域の拡がったものに
なる。
ψ= IPs% i ... ■ Generally, the density distribution of an incident electron beam can be approximated by a Gaussian distribution, so its frequency 1 wave number distribution in the spatial frequency domain I (k) I (k ) = i・exp (-k” / 2 trk''
)...■. However, fk is the dispersion in the spatial frequency domain, and the dispersion in the spatial domain (x”L (y”〆= 1
/ ((2g)7a”). When I(k) is expressed in a Bode diagram, it is as shown in Figure 1, which shows the density of the electron beam irradiated onto the sample in a transmission scanning electron microscope. The fact that there is some spread in the distribution corresponds to the fact that this conversion system acts as a kind of low-pass filter when converting the sample into an image via this electron beam. For I in the out-of-focus state as shown by A′ in b),
As the electron beam comes into focus, the density distribution of the electron beam approaches one concentrated at a single point, so I becomes one in which the passage area expands to the higher frequency side, as shown by A in Figure 2 <a>. .

そこで、試料の透過率の分布ψSの空間周波数領域での
分布を第2図(!l)、(b)において口で示すような
成る関数!Sとした場合、ψの空間周波数領域における
表現φは焦点が合っている場合には第2図(a)におい
てハで示すようなものとなり、焦点が合っていない場合
には第2図(b)においてハ′で示すようなものとなり
、φとベースラインとで囲まれた領域(斜線が施こされ
ている)の面積を相互に比較すると、焦点が合っている
場合の面積は合っていない場合に比較して明らかに大き
なものとなる。本発明はこのような原理に基づくるので
、対物レンズの励磁強度を逐次ステップ動作で変化させ
、この変化を・行う都度電子線で試料上の同一部を走査
し、該走査に伴って得られる画トルの虜番養薬1か4a
面積を相互に比較し、紋面積が最大になるところで対物
レンズの励磁を固定するようにしたことを特徴としてお
り、以下図面に基づき本発明の一実施例を詳述する。
Therefore, the distribution of the transmittance distribution ψS of the sample in the spatial frequency domain is expressed by a function as shown in Fig. 2 (!l) and (b). S, the expression φ in the spatial frequency domain of ψ is as shown by C in Figure 2 (a) when it is in focus, and as shown in Figure 2 (b) when it is out of focus. ), the result will be as shown by C′, and if you compare the area of the area surrounded by φ and the baseline (hatched), you will find that the area when it is in focus is not in focus. This is clearly larger than the case. Since the present invention is based on such a principle, the excitation intensity of the objective lens is changed in successive step operations, and each time this change is performed, the same part of the sample is scanned with an electron beam, and the image obtained along with the scanning is Gatoru's captive medicine 1 or 4a
It is characterized in that the areas are compared with each other and the excitation of the objective lens is fixed at the point where the pattern area becomes maximum.An embodiment of the present invention will be described in detail below with reference to the drawings.

第3図は本発明を実施するための装置の一例を示すもの
で、図中1は電子銃であり、この電子銃1よりの電子線
2は嬉1 、@2段の収束レンズ3゜4によって収束さ
れた後、対物レンズ5によって試料6上に細い電子線束
として照射される。試料6を透過した電子線は透過電子
検出器1に入射して検出される。尚、11.51,10
.11は各々通常の透過電子顕微鏡像を得る場合に使用
する結偉レンズ、中間レンズ、投影レンズ、螢光板であ
る。
FIG. 3 shows an example of an apparatus for carrying out the present invention. In the figure, 1 is an electron gun, and the electron beam 2 from the electron gun 1 is 1,2-stage converging lens 3°4. After being converged by, the objective lens 5 irradiates the sample 6 as a narrow electron beam bundle. The electron beam transmitted through the sample 6 enters the transmission electron detector 1 and is detected. In addition, 11.51, 10
.. Reference numerals 11 denote a focusing lens, an intermediate lens, a projection lens, and a fluorescent plate, each of which is used to obtain a normal transmission electron microscope image.

12は走査信号発生回路であり、該回路12よりの水平
及び垂直走査信号は電子顕微鏡の水平及び垂直偏向コイ
ル13X、13Yに供給されていると共に1陰極線管1
4の水平及び垂直偏向コイルDX、DYi(供給されて
いる。この走査信号発生回路12による走査信号の発生
は電子計算機15からの制御信号により制御されている
。16は対物レンズ電源であり、この電源からの励磁電
流は増幅器11を介して対物レンズ5に供給されている
。対物レンズ電源16より対物レンズ5に供給される電
流も電子計算機15よりの制御信号によって制御されて
いる。更に前記透過電子検出器1の出力信号は増幅器1
8を介して・−極線管14のグリッドGに供給されてい
ると共に、人り変換器19を介して電子計算機15に供
給されている・このような構成において、電子計算機1
5より制御信号を供給して対物レンズの励磁を切替える
毎に走査信号発生回路12より水平走査信号を発生して
、試料上の成る同一ラインを電子線2により走査し、そ
の結果検出器1より得られる検出信号をAD変換器1s
によってデジタル信号に変換 ′して電子計算機15に
供給する。電子計算機15においてはこの供給された信
号をフーリエ変換してパワースペクトルを求め、例えば
29dBの基準線とこのスペクトルラインで囲まれた面
積Fを対物レンズ5の励磁を切換える毎に算出し、この
面、積Pが最大になるような励磁強度を見つけ出す。
12 is a scanning signal generating circuit, and horizontal and vertical scanning signals from this circuit 12 are supplied to horizontal and vertical deflection coils 13X and 13Y of the electron microscope, and 1 cathode ray tube 1.
4 horizontal and vertical deflection coils DX, DYi (supplied). Generation of scanning signals by the scanning signal generating circuit 12 is controlled by control signals from the electronic computer 15. 16 is an objective lens power supply; The excitation current from the power supply is supplied to the objective lens 5 via the amplifier 11. The current supplied to the objective lens 5 from the objective lens power supply 16 is also controlled by a control signal from the electronic computer 15. The output signal of the electron detector 1 is sent to the amplifier 1
8 to the grid G of the polar ray tube 14 and also to the computer 15 via the person converter 19. In such a configuration, the computer 1
Each time a control signal is supplied from 5 to switch the excitation of the objective lens, a horizontal scanning signal is generated from the scanning signal generating circuit 12, and the same line on the sample is scanned by the electron beam 2. The obtained detection signal is sent to an AD converter 1s
The digital signal is converted into a digital signal and supplied to the electronic computer 15. The electronic computer 15 performs a Fourier transform on this supplied signal to obtain a power spectrum, calculates the area F surrounded by the 29 dB reference line and this spectrum line each time the excitation of the objective lens 5 is switched, and , find the excitation intensity that maximizes the product P.

とのFが最大となる励磁強度を効率的に探索するには例
えば第5図のフローチャートに示すようにして行う。即
ち、例えばPの値が励磁強度の値に伴って第4図のよう
に変化するとする。まず、凡その焦点位置の近傍で第4
図に示すように励磁電流値がdだけ異なる3つの励磁電
流値0L(1)。
In order to efficiently search for the excitation intensity at which F is maximum, it is carried out as shown in the flowchart of FIG. 5, for example. That is, for example, suppose that the value of P changes as shown in FIG. 4 with the value of excitation intensity. First, a fourth lens is placed near the approximate focal point position.
As shown in the figure, there are three exciting current values 0L(1) that differ by d.

OL(りを設定し、各励磁状態に対応しη計算されたF
を各*F(0)、P(1)、P(2)とすると、電子計
算機15においてこれらを比較し、P(0)又はP(2
)が最大の場合には0L(Q)から0L(2)までの範
囲にはFのピークが存在しないので、そのうちF(0)
が最大の場合には、0L(0)、0L(1)、0L(2
)を夫々dだけ移動し、又F(2)が最大の場合には0
L(0)、0L(t)。
OL(ri) is set, and η is calculated for each excitation state.
are respectively *F(0), P(1), P(2), these are compared in the electronic computer 15, and P(0) or P(2
) is maximum, there is no peak of F in the range from 0L(Q) to 0L(2), so F(0)
is maximum, 0L(0), 0L(1), 0L(2
) respectively by d, and if F(2) is maximum, then 0
L(0), 0L(t).

0L(2)を夫々−dだけ移動する。又P(1)が最大
の場合にはピークはOL (0)−IIsら0L()c
o間に存在するためF(0)とF(2)を比較し、F(
0)>Fl)の場合にはOL (0)Thら0L(1)
の間にピークが存在するため0L(Q)をそのままとし
、0L(1)と0L(z)を−d/2だけ移動した点を
新たな0L(1)、0L(2)とした後dを半分にする
。又F (2) >F (0)(7)場合ハ0L(1)
からOL(2)の間にピークが存在するため0L(2)
を0L(2)から−d/2だけ移動した値にすると共に
、dを半分にする。このようにして各場合について新た
に0L(0)、0L(1)、0L(2)を設定し、設定
された励磁電流が初めてのものならこの励磁強度におい
て電子線を走査してFを求め、’ (o)。
0L(2) are each moved by -d. Also, when P(1) is maximum, the peak is OL (0)-IIs et al. 0L()c
Since it exists between o, F(0) and F(2) are compared and F(
0)>Fl) then OL (0) Th et 0L (1)
Since there is a peak between them, 0L(Q) is left as is, and the points where 0L(1) and 0L(z) are moved by -d/2 are set as new 0L(1) and 0L(2), and then d cut in half. Also, if F (2) > F (0) (7) then Ha0L (1)
Since there is a peak between 0L(2) and OL(2)
is shifted from 0L(2) by -d/2, and d is halved. In this way, newly set 0L(0), 0L(1), and 0L(2) for each case, and if the set excitation current is the first time, scan the electron beam at this excitation intensity to find F. ,' (o).

F(1)、F(2)の比較を繰り返して行く、第4図の
横軸の下側には0L(0)、0L(1)、0L(2)の
値がどのように移って行くかを3ステツプまで具体的に
示しである。そしてもしdが規定のきざみd・より小さ
くなったらこのルーチンから抜は出させれば、その時の
F(1)がピーク値であり、この励磁電流0L(1)が
合焦点の励磁電流であるので、ccで電子計算機15よ
り対物レンズ電源1gの励磁を固定するよう制御信号を
供給する。
Repeat the comparison of F(1) and F(2), and see how the values of 0L(0), 0L(1), and 0L(2) shift below the horizontal axis in Figure 4. This is explained in detail in up to three steps. If d becomes smaller than the specified step d, this routine is exited, then F(1) is the peak value, and this excitation current 0L(1) is the excitation current at the focused point. Therefore, a control signal is supplied from the electronic computer 15 at cc to fix the excitation of the objective lens power source 1g.

上述したように本発明によれば、自動的に焦点合わせを
行うことができるが、本発明においては、励磁を変える
毎iζ得られる画像信号を電子計算機によってフーリエ
変換して、パワースペクトルヲ得、このパワースペクト
ルの成る基準線からの面積を魯互に比較しているため、
比較を従来よりより広い周波数範囲に渡って行うことが
できるため、試料の空間周液数の特殊な分布に影響され
ずにどのような試料に対しても正確に自動焦点合わせが
できる。又全での演算をデジタル演算で行っているため
、高精度な演算が行い得、従って正確に焦点合わせを行
うことができる。
As described above, according to the present invention, focusing can be performed automatically, but in the present invention, the image signal obtained every time the excitation is changed is Fourier-transformed by an electronic computer to obtain a power spectrum. Since the area from the reference line consisting of this power spectrum is compared with each other,
Since the comparison can be made over a wider frequency range than before, accurate automatic focusing can be performed on any sample without being affected by the special distribution of the sample's spatial frequency. Furthermore, since all calculations are performed digitally, highly accurate calculations can be performed, and therefore accurate focusing can be achieved.

尚、上述した実施例は透過走査像を得る場合について説
明したが、本発明の原理は二次電子像成るいは反射電子
像を得る場合にも類推できるので、この両者の場合にも
同様に適用できる。
Although the above-mentioned embodiments have been explained with respect to the case of obtaining a transmission scanning image, the principle of the present invention can be analogized to the case of obtaining a secondary electron image or a backscattered electron image, so the same applies to both cases. Applicable.

又、上述した実施例においてはパワースペクトルの面積
を算出したが、信号をフーリエ変換することによって得
られるスペクトルの振幅の面積を計算しても同様に実施
できる。
Further, in the above-described embodiment, the area of the power spectrum was calculated, but the same method can be implemented by calculating the area of the amplitude of the spectrum obtained by Fourier transforming the signal.

【図面の簡単な説明】[Brief explanation of drawings]

!11図は本発明の詳細な説明するための図、第2図は
焦点が合っている場合と合っていない場合におけるΦを
説明するための図5j13図は本発明を実施するための
図、籐4図はパワースペクトルの面積値と励磁強度との
関係を示すための図、第5図はパワースペクトルの面積
を最大にする励磁強度を探索するための流れ図である。 1:電子銃、2:電子線、5:対物レンズ、6:試料、
1:透過電子検出器、12:走査信号発生回路、13X
、13Y:偏向コイル、15:電子計算機、16:対物
レンズ電源。 特許出願人 日本電子株式会社 代表者加勢忠雄
! Figure 11 is a diagram for explaining the present invention in detail, Figure 2 is a diagram for explaining Φ in focused and out-of-focus cases, and Figure 13 is a diagram for implementing the present invention. FIG. 4 is a diagram showing the relationship between the area value of the power spectrum and the excitation intensity, and FIG. 5 is a flowchart for searching for the excitation intensity that maximizes the area of the power spectrum. 1: Electron gun, 2: Electron beam, 5: Objective lens, 6: Sample,
1: Transmission electron detector, 12: Scanning signal generation circuit, 13X
, 13Y: Deflection coil, 15: Electronic computer, 16: Objective lens power supply. Patent applicant JEOL Ltd. Representative Tadao Kase

Claims (1)

【特許請求の範囲】[Claims] 対物レンズの励磁強度を逐次ステップ動作で変化させ、
この変化を行う都度電子線で試料上の同一部を走査し、
誼走査に伴って得られる画像信号を電子計算機に供給し
てフーリエ変換し各信号の振幅酸るいはパワースペクト
ルを得、紋各振幅成るいはパワースペクトルの面積を相
互に比較し、皺面積が最大になるところで対物レンズの
励磁を固定するようにしたことを特徴とする走査電子顕
微鏡等の焦点会わせ方法。
The excitation intensity of the objective lens is changed in successive step operations,
Each time this change is made, the same part of the sample is scanned with an electron beam,
The image signals obtained with the wrinkle scanning are supplied to an electronic computer and subjected to Fourier transformation to obtain the amplitude or power spectrum of each signal, and the areas of each amplitude or power spectrum are compared with each other to calculate the wrinkle area. A focusing method for a scanning electron microscope, etc., characterized in that the excitation of an objective lens is fixed at a point where it becomes maximum.
JP57020410A 1982-02-10 1982-02-10 Method of adjusting focus of scanning electron microscope or the like Pending JPS58137948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57020410A JPS58137948A (en) 1982-02-10 1982-02-10 Method of adjusting focus of scanning electron microscope or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57020410A JPS58137948A (en) 1982-02-10 1982-02-10 Method of adjusting focus of scanning electron microscope or the like

Publications (1)

Publication Number Publication Date
JPS58137948A true JPS58137948A (en) 1983-08-16

Family

ID=12026261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57020410A Pending JPS58137948A (en) 1982-02-10 1982-02-10 Method of adjusting focus of scanning electron microscope or the like

Country Status (1)

Country Link
JP (1) JPS58137948A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202835A (en) * 1987-02-17 1988-08-22 Nippon Telegr & Teleph Corp <Ntt> Automatic adjusting method and automatic adjusting device for charged beam
JPS63307652A (en) * 1987-06-08 1988-12-15 Nikon Corp Focus detection device for electron microscope
JPH0982257A (en) * 1995-09-14 1997-03-28 Toshiba Corp Astigmatism correction and focusing method for charged particle optical tube
JP2002373611A (en) * 2001-06-15 2002-12-26 Inst Of Physical & Chemical Res Electron microscope and focus position control method
WO2020075241A1 (en) * 2018-10-10 2020-04-16 株式会社日立ハイテクノロジーズ Charged particle beam system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424261B1 (en) * 1970-01-23 1979-08-20
JPS55137653A (en) * 1979-04-13 1980-10-27 Hitachi Ltd Electron beam focus detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424261B1 (en) * 1970-01-23 1979-08-20
JPS55137653A (en) * 1979-04-13 1980-10-27 Hitachi Ltd Electron beam focus detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202835A (en) * 1987-02-17 1988-08-22 Nippon Telegr & Teleph Corp <Ntt> Automatic adjusting method and automatic adjusting device for charged beam
JPS63307652A (en) * 1987-06-08 1988-12-15 Nikon Corp Focus detection device for electron microscope
JPH0982257A (en) * 1995-09-14 1997-03-28 Toshiba Corp Astigmatism correction and focusing method for charged particle optical tube
GB2305324A (en) * 1995-09-14 1997-04-02 Toshiba Kk Correcting asigmatism and focusing of lens for electron beam
GB2305324B (en) * 1995-09-14 1998-06-17 Toshiba Kk Method for correcting astigmatism and focusing in charged particle optical lens-barrel
JP2002373611A (en) * 2001-06-15 2002-12-26 Inst Of Physical & Chemical Res Electron microscope and focus position control method
WO2020075241A1 (en) * 2018-10-10 2020-04-16 株式会社日立ハイテクノロジーズ Charged particle beam system
JPWO2020075241A1 (en) * 2018-10-10 2021-09-02 株式会社日立ハイテク Charged particle beam system
US11380514B2 (en) 2018-10-10 2022-07-05 Hitachi High-Tech Corporation Charged particle beam system

Similar Documents

Publication Publication Date Title
US7759642B2 (en) Pattern invariant focusing of a charged particle beam
US7696497B2 (en) Focusing system and method for a charged particle imaging system
JP2877624B2 (en) Objective lens alignment control apparatus and control method for scanning electron microscope
KR20220011798A (en) Electron beam observation device, electron beam observation system, and method for controlling electron beam observation device
US4978856A (en) Automatic focusing apparatus
JPS58137948A (en) Method of adjusting focus of scanning electron microscope or the like
NL8302181A (en) METHOD AND APPARATUS FOR CORRECTING ASTIGMATIME IN AN ELECTRON Beam Device
US3504176A (en) Method and apparatus for focusing the objective lens of a particle beam microscope
US5032725A (en) Focussing an electron beam
US4678988A (en) Method and apparatus for spectral analysis of a signal at a measuring point
JPS6070651A (en) Focusing method and device therefor
US5233192A (en) Method for autotuning of an electron microscope, and an electron microscope suitable for carrying out such a method
US20230343549A1 (en) Charged Particle Beam Device and Specimen Observation Method
GB2171280A (en) Focusing apparatus used in a transmission electron microscope
JP2001084938A (en) Transmission electron microscope and method for observing image thereof
JPS6054152A (en) Method of automatically controlling focus in electron ray device
JP3428487B2 (en) Automatic focusing method in scanning electron microscope
US6787746B2 (en) Focus aid for confocal microscope
JPS63202835A (en) Automatic adjusting method and automatic adjusting device for charged beam
JPH0119804Y2 (en)
RU2713090C1 (en) Method of processing signals in scanning devices with a highly focused electron beam
JPS5825050A (en) Focus adjustment of electron-ray device
JP2002334678A (en) Auto-focus method in scanned type charged particle beam device and scanned type charged particle beam device
SU1091251A1 (en) Process for microanalyzing heterophase objects
GB2123582A (en) Correction of astigmatism in electron beam instruments