JPS5825050A - Focus adjustment of electron-ray device - Google Patents

Focus adjustment of electron-ray device

Info

Publication number
JPS5825050A
JPS5825050A JP10408481A JP10408481A JPS5825050A JP S5825050 A JPS5825050 A JP S5825050A JP 10408481 A JP10408481 A JP 10408481A JP 10408481 A JP10408481 A JP 10408481A JP S5825050 A JPS5825050 A JP S5825050A
Authority
JP
Japan
Prior art keywords
excitation
scanning
objective lens
electron
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10408481A
Other languages
Japanese (ja)
Inventor
Fumio Kataki
片木 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP10408481A priority Critical patent/JPS5825050A/en
Publication of JPS5825050A publication Critical patent/JPS5825050A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To carry out the focus adjustment automatically by changing the excitation of an objective lens in step-like form, scanning electron rays over a sample every time when the excitation of the lens is changed, and computing the entropies of thus obtained secondary electrons so as to fix the excitation at the maximum point. CONSTITUTION:The excitation of an objective lens 5 is changed in step-like form by controlling an excitation power source 15 by means of an electronic computer 13. At the same time, horizontal scanning signals are produced from a scanning- signal generator 7 synchronously with the step-like changes of the excitation, and scanning are performed over a sample 6 every time when the focus position of the lens 5 changes when the excitation increases a step by a step. Next, thus obtained signals of a secondary-electron detector 9 are stored in the computer 13 through an AD converter 12, and the entropies of the signals are computed and compared with each other so as to obtain a point at which the maximum entropy is given. As a result, the excitation intensity of the lens 5 can be automatically adjusted to the regular focus by controlling the excitation intensity to be fixed at the maximum point.

Description

【発明の詳細な説明】 本発明は走査臘電子顕微鏡等の電子線装置において、自
動的に対物レンズの焦点会わせを行う方法に関する0 走査臘電子顕微鏡等の電子線装置においては、対物レン
ズの励磁電流を制御して試料面とに照射される電子線径
が最小になるようにするための焦点会わせか、良質の試
料欅を得るため−と極めて重要である。この焦点合わせ
を自動的蚤こ行う方法については従来から種々の方法が
提案されているが、代表的なものとしては画像信号を黴
外し、微分値が最大になるところで対物レンズの励磁を
固定する信号微分法、画像信号の交流成分のピーク値が
最大のところで対物レンズの励磁を固定するピーク値検
出法、画像信号のピーク値を積算して積算値が最大にな
るところを合焦点とするピーク値積算法等があるが、第
1番目の方法は微分するためノイズに極めて弱く、又J
llEZ番目及び第3番目のが法はノイズには強いが、
高倍になると電子線プローブ径の違いによる検出信号の
ピーク値の差は極めてわずかなものになるため、この第
2.第3の方法lどよっては高倍lζおいて精度良く焦
点会わせすることはできない。
Detailed Description of the Invention The present invention relates to a method for automatically focusing an objective lens in an electron beam device such as a scanning electron microscope. Controlling the excitation current to minimize the diameter of the electron beam irradiated onto the sample surface is extremely important in order to obtain a high-quality sample. Various methods have been proposed in the past to automatically perform this focusing, but a typical method is to remove the image signal and fix the excitation of the objective lens at the point where the differential value is maximum. Signal differential method, peak value detection method that fixes excitation of the objective lens at the point where the peak value of the AC component of the image signal is maximum, and peak value detection method that integrates the peak values of the image signal and sets the focal point at the point where the integrated value is maximum. There are value integration methods, etc., but the first method is extremely susceptible to noise due to differentiation, and J
The llEZth and 3rd methods are strong against noise, but
When the magnification is high, the difference in the peak value of the detection signal due to the difference in the diameter of the electron beam probe becomes extremely small. In the third method, it is impossible to focus accurately at high magnification lζ.

本発明はこのような従来の電子線装置の焦点会わせ方法
の欠点を解決し、ノイズに強く且つ高倍−ごおいても高
精度−こ自動焦点会わせを行うことのできる電子S*置
の焦点会わせ方法を提供するもので、対物レンズの励磁
強度をステップ状に変fヒさせ、変化を行う都度電子線
を試料とにおいて走査させ、該走査iζ伴って得られる
二次電子或は反射電子検出信号のエントロピーを異った
励磁tCおける走査毎番こ算出して相互に比較し、該エ
ントロピーが最大になるようなところで対物レンズの励
磁強度を固定するよう番こしたことを特徴としているO 以下本発明の原理を述べる。本願発明者は光学系−役は
必ずしらそうでないが、走査製電子顕微鏡等の電子4I
装置においては焦点が最も会った状態において電子線走
査した場合二次電子検出器等より得られる画像信号のエ
ントロピーが最大になることを見出しな〇 いま独立な事象の集合(、i)を考え、それぞれの事象
xtの生起確率をP(xi)とするとき、この事象系(
xttのbつエントロピー(平均情報量)[((X)は
一般的に以下のように定義されている。
The present invention solves the drawbacks of the conventional focusing method for electron beam equipment, and provides an electronic S* position that is resistant to noise and capable of automatic focusing with high precision even at high magnifications. This method provides a focusing method in which the excitation intensity of the objective lens is changed in steps, the electron beam is scanned across the sample each time the excitation intensity is changed, and the secondary electrons or reflections obtained as a result of this scanning are The entropy of the electron detection signal is calculated every scan at different excitation tC and compared with each other, and the excitation intensity of the objective lens is fixed at a point where the entropy becomes maximum. O The principle of the present invention will be described below. The inventor of the present application is an optical system.
In the device, we found that the entropy of the image signal obtained from the secondary electron detector, etc. is maximized when the electron beam is scanned in the state where the focus is closest. Now consider a set of independent events (, i), When the probability of occurrence of each event xt is P(xi), this event system (
b entropy (average information amount) of xtt [((X) is generally defined as follows.

H(X)=−!’P(xi)logP(xi)***a
  (11但し、!P(xi) = 1 、 (L≦P
(xi)≦1である0この定義を離数系から連続系に拡
張すると)I(X)は以下のように表現できる。
H(X)=-! 'P(xi)logP(xi)***a
(11 However, !P(xi) = 1, (L≦P
(xi)≦1 (0) If this definition is expanded from a disjoint system to a continuous system, I(X) can be expressed as follows.

H(X)=−ノ: P(x)logP(x)dx   
 asss   t2)一方、定常過程で与えられる人
力X* * Xs *・・・。
H(X)=-ノ: P(x)logP(x)dx
asss t2) On the other hand, the human power given in the steady process X* * Xs *...

Xoを伝送同波数特性K(ω)のフィルターを通したと
きに得られる出力信号の同波数領域に於るエントロピー
H(ωh・・・、ωn)が次式のよう蚤こなることは広
く知られている。
It is widely known that the entropy H (ωh..., ωn) in the same wavenumber region of the output signal obtained when Xo is passed through a filter with the transmission same wavenumber characteristic K(ω) is expressed by the following equation. It is being

H(ul 、 @争@、ω。)=H(Xh・・・、xn
)十碍fW logIK(ω中df  …・(3) 但し、と弐EこおいてWは積分すべき帯域幅である0 走査製電子顕微鏡における試料の有する画像情報は空間
的に定常であり、且つ走査製電子顕微鏡の電子線プロー
ブを空間同波数K (u 、 v )を持った一種の空
間フィルター七見なすことができるので、このフィルタ
ーを通過した出力像の有する周波数面でのエントロピー
は次式のように拡張される。
H(ul, @war@, ω.) = H(Xh..., xn
) 10 fW logIK (df in ω...・(3) However, and 2E, W is the bandwidth to be integrated 0 The image information possessed by a sample in a scanning electron microscope is spatially stationary, In addition, since the electron beam probe of a scanning electron microscope can be regarded as a kind of spatial filter with the same spatial wavenumber K (u, v), the entropy in the frequency plane of the output image that has passed through this filter is expressed as follows: It is expanded as follows.

H(ule v+ e 11@119 un、 Vl 
)=H(ξjtW1m””*但し、(4)式においてu
l、マ1.・・・*ufieマ1は同波数面での座標で
あり、ξt e Ll t−・・、ξ。、vaは試料面
での座標であり、U、Vは積分すべき帯域幅である。
H(ule v+ e 11@119 un, Vl
)=H(ξjtW1m””*However, in equation (4), u
l, ma1. ...*ufiema1 is the coordinate on the same wave number plane, ξt e Ll t-..., ξ. , va are the coordinates on the sample plane, and U and V are the bandwidths to be integrated.

右辺の第1項は試料が最初に持つでいる画像情報のエン
トロピーであるからこれをHoと1き、父上式の左辺を
H7と書けば(4)式は以下のように1きかえられる。
The first term on the right side is the entropy of the image information that the sample initially has, so if we set this as Ho and write the left side of the father's equation as H7, equation (4) can be changed by 1 as follows.

” −H1=  U’VfU jい’g IK(” s
 ’ ) I ”d u、dv・・φ・ (5) +51式の左辺は試料が持っている画像情報のエントロ
ピーから走査電顕の出力画像が持っているエントロピー
を差し引いたものであるから、試料が持つでいる画像情
報が電子線プローブlこよって走査製子顕微鏡儂へと変
換されるにあたって失われる情報数を我わしている。こ
の失われる情報数をH1ossと表わせばO≦K(u、
v)≦1であるのでH1oss=  、、 fOfy 
JoglK(u、v)l”du、dv≧0−−−+61
が成立し、kllo@Bが常にO以ととなり、現実の状
況と会ってしすることが明らかである。
"-H1= U'VfU j'g IK("s
' ) I "d u, dv...φ. This is the number of information that is lost when the image information held by the electron beam probe is converted to the scanning microscope. If we express this number of lost information as H1oss, then O≦K(u,
v)≦1, so H1oss= ,, fOfy
JoglK(u,v)l”du,dv≧0−−−+61
holds true, kllo@B is always greater than or equal to O, and it is clear that it meets the actual situation.

このように電子線プローブで試料を走査することlこよ
って夫われる試料のiit偉情報歇は走査するプローブ
の空間同波数特性のみによって決定されること6ζなる
By scanning a sample with an electron beam probe in this way, the IIT intensity information of the sample is determined only by the spatial iso-wavenumber characteristics of the scanning probe.

一方片本文la二  二次電子儂におけるプローブの空
間同波数レスポンス 信学技報gnso−49゜f’3
3〜40 (1980−6)等から明らかなように電子
線プローブの電ILI!F度分布がガウス分布で非点収
差が無いときはプローブの空間周波数特性は以下の式で
与えられる。
On the other hand, the spatial isowave number response of the probe in the secondary electron field IEICE Technical Report GNSO-49°f'3
3-40 (1980-6) etc., the electron beam probe's electric ILI! When the F degree distribution is a Gaussian distribution and there is no astigmatism, the spatial frequency characteristic of the probe is given by the following equation.

K(ρ) = exp (−に56 doρ”)   
 m5ss  17)但しdoはプローブの半値幅であ
り、ρ=fJ−1である。
K(ρ) = exp (-56 doρ”)
m5ss 17) However, do is the half width of the probe, and ρ=fJ-1.

試料の持っている画像情報の空間同波数fで規格化した
プローブの径をDとすればdo=”  で−ある故、 Hj+oss =−−# /、V log 1exp 
(−ass ()” tl l l” dρ・・・・ 
(8) この規格化されたプローブ径りを/寸うメータにして、
式(8)の積分計算を電子計算機を用いて行いその結果
をグラフにすると第1図1こ示す如きものとなる0尚、
ここでf=128として計算しである。
If the diameter of the probe normalized by the spatial constant wave number f of the image information possessed by the sample is D, then do = "-, so Hj+oss =--# /, V log 1exp
(-ass ()” tl l l” dρ・・・・
(8) Use this standardized probe diameter as a measuring meter,
If we perform the integral calculation of equation (8) using an electronic computer and plot the results as a graph, we get something like the one shown in Figure 1.
Here, the calculation is performed assuming f=128.

この第1図より明らかなよう醗こ、走査型電子顕微鏡の
場合、HIO@11はDに対して単調増加であることが
わかる。このことから走査型電子顕微鏡の場合はプロー
ブ径りが太き(なる1こ従い、出力画像で失われる情報
量が増大することがわかる。換言すれば走査型電子顕微
鏡ではプローブの径が小さくなるほど出力画像又は出力
信号の持っているエントロピーは増大することが式(4
)から明らかとなる。従って対物レンズの励磁強度を変
化させる毎4こ電子線プローブによって試料表面とを走
査して検出される二次電子或は反射電子検出信号のエン
トロピーを算出し、この算出されたエントロピーが最大
になるような励磁強度を見つけることにより焦点合わせ
を行うことができるわけである。
As is clear from FIG. 1, in the case of a scanning electron microscope, HIO@11 increases monotonically with respect to D. From this, it can be seen that in the case of a scanning electron microscope, the diameter of the probe becomes thicker (1), so the amount of information lost in the output image increases.In other words, in the case of a scanning electron microscope, the smaller the diameter of the probe, the more information is lost in the output image. Equation (4) shows that the entropy of the output image or output signal increases.
). Therefore, every time the excitation intensity of the objective lens is changed, the entropy of the secondary electron or backscattered electron detection signal detected by scanning the sample surface with the four electron beam probes is calculated, and this calculated entropy is maximized. Focusing can be achieved by finding such an excitation intensity.

第2図はと述した原理lζ基づく本発明を実施するため
の装置の一例を示すためのもので、図中1は電子銃であ
り、該電子銃1よりの電子線2は収束レンズ6を通過し
た後、水平及び垂直偏向器4K。
FIG. 2 shows an example of an apparatus for carrying out the present invention based on the principle lζ mentioned above. In the figure, 1 is an electron gun, and an electron beam 2 from the electron gun 1 passes through a converging lens 6. After passing, horizontal and vertical deflector 4K.

4Ylζよって偏向され、更IC対物レンズ51ζよっ
て試料6の表面上に収束される。該水平及び垂直偏向器
4X、4Y及び陰極線管8には走査信号発生器7より水
平及び垂直走査信号が供給されるo9は試料6より発生
した二次電子を検出するための二次電子検出器であり、
該二次電子検出器9よりの出力信号は増幅器10を介し
て陰極線管8のグリッドGに供給されると共iこ減衰器
11.AD変換器12を介して電子計算機131ζ供給
される。14は電子計算機16の出力信号を表示するた
めの表示手段である。15は対物レンズ5の励磁電源で
あり、該励磁電源151ζは電子計算機16より励磁強
度を制御するための信号が供給されている。
4Ylζ and further focused onto the surface of the sample 6 by the IC objective lens 51ζ. Horizontal and vertical scanning signals are supplied from a scanning signal generator 7 to the horizontal and vertical deflectors 4X, 4Y and the cathode ray tube 8. o9 is a secondary electron detector for detecting secondary electrons generated from the sample 6. and
The output signal from the secondary electron detector 9 is supplied to the grid G of the cathode ray tube 8 via an amplifier 10 and an attenuator 11 . The signal is supplied to the electronic computer 131ζ via the AD converter 12. 14 is a display means for displaying the output signal of the electronic computer 16. Reference numeral 15 denotes an excitation power source for the objective lens 5, and the excitation power source 151ζ is supplied with a signal from a computer 16 for controlling the excitation intensity.

又該電子計算機16より前記走査信号発生器7よりの水
平及び垂直走査信号の発生を制御する制御信号も供給さ
れる。
Control signals for controlling the generation of horizontal and vertical scanning signals from the scanning signal generator 7 are also supplied from the computer 16.

このような構成の装置において、電子計算機15より励
磁電源15に制御信号を送って、対物レンズ5の励磁電
流を第3図talに示すようにステップ状に初期値から
増加させて行く。一方、電子計算機16より走査信号発
生器71こ制御信号を送って、坂走査信号発生器7より
第3図(ml lこ示す如き励磁電流の増加に同期した
第3図tb+に示す如き水平走査信号を発生せしめる。
In the apparatus having such a configuration, the computer 15 sends a control signal to the excitation power source 15 to increase the excitation current of the objective lens 5 from the initial value in steps as shown in FIG. 3 (tal). On the other hand, the electronic computer 16 sends a control signal to the scanning signal generator 71, and the slope scanning signal generator 7 performs horizontal scanning as shown in FIG. Generate a signal.

このとき、垂直走査信号の出力値は固定されている。そ
の結果、前記対物レンズ5jこ供給される励磁電流が1
ステツプずつ増加して対物レンズ5の焦点位置が変化す
る毎に、試料6)1.の同一水平ラインが1回ずつ水平
走査される。このような複数回の水平走査1こよって二
次電子検出器9より得られる検出信号は対物レンズ5の
励磁強度が各走査毎jζ異なるため、わずかずつ異なる
ものとなり、例えば11g1目の走査−こおいでは第4
図1clに示す如き検出信号が、又n + 1回目の走
査においては第4図1clに示す如き検出信号が、又n
+21g1目の走査においては第4図1clに示す如I
k検出信号が得られる。これら各走査毎の検出信号は増
幅器10において増幅された後、減衰器11において減
衰され、更にゃムD変換器12において例えば512点
の離数値から成るデジタル信号に変換された後、電子計
算機16内の記憶装置に各走査信号毎に記憶される。記
憶装置に各走査毎に記憶された検出信号は各走査によっ
て得られた信号毎tc#X針算機15+C&tいてフー
リエ変換し、等間隔に取られた512点の各周波数fi
(i==1,2゜・・・、512)における電カスベク
トル8(fi)を算出する。ところで、この電カスベク
トル8(fi)iこ対して以下の2式が成立する。
At this time, the output value of the vertical scanning signal is fixed. As a result, the excitation current supplied to the objective lens 5j is 1
Each time the focal position of the objective lens 5 changes by increasing steps, the sample 6)1. The same horizontal line is horizontally scanned once. The detection signal obtained from the secondary electron detector 9 by such a plurality of horizontal scans 1 differs slightly because the excitation intensity of the objective lens 5 differs for each scan. Come on, number 4
The detection signal as shown in FIG. 1cl, and the detection signal as shown in FIG. 4 1cl in the n + 1st scan,
+21g In the first scan, as shown in Fig. 4, 1cl.
k detection signals are obtained. These detection signals for each scan are amplified in an amplifier 10, attenuated in an attenuator 11, and then converted in a D-converter 12 into a digital signal consisting of, for example, 512 point separation values, and then sent to an electronic computer 16. Each scanning signal is stored in the internal storage device. The detection signal stored in the storage device for each scan is Fourier-transformed using a tc#
Calculate the electric sludge vector 8(fi) at (i==1, 2°..., 512). By the way, the following two equations hold true for this electric waste vector 8(fi)i.

11 従って前記第11)式1c mける集会(、i)を特に
集合(filと考え、会わせてP(xi)を8(fi)
lこ対応すれば、算出された電カスベクトル8(fi)
を用いて爽に電子計算機16において以下の式を演算し
、各走査によって得られた信号毎にそのエントロピーH
を算出する。
11 Therefore, in Equation 11) above, we consider the assembly (,i) to be especially the set (fil), and let P(xi) meet as 8(fi).
If it corresponds to l, the calculated electric waste vector 8(fi)
The following equation is calculated in the electronic computer 16 using
Calculate.

このようなエントロピーの算出の結果、例えば前記第(
1、n+1 e n+21g1目の走査Cζよって得ら
れる信号のエントロピーが各々!4 、 A7 、40
と除々修こ増加しn + 3回目の走査では減少して3
7となったとすると、電子計算機16においでは、これ
ら各走査によって得られた信号毎に計算されたエントロ
ピーを比較して、最大のエントロピーを与える走査はn
 + 2回目の走査によって得られる信号であることを
見出す。そして像観察時においては、n+2回目の走査
を行う際に対物レンズ5Iこ供給される励磁電流と等し
い電流が励磁電源15から供給されるように制御を行う
〇 このようにして対物レンズ5の励磁強度は自動的に正焦
点普こ会わせられる。
As a result of such entropy calculation, for example, the above-mentioned (
1, n+1 e n+21g The entropy of the signal obtained by the 1st scan Cζ is each! 4, A7, 40
The correction gradually increases and decreases to 3 in the n + 3rd scan.
7, the electronic computer 16 compares the entropy calculated for each signal obtained by each of these scans, and selects the scan that gives the maximum entropy as n.
+ Find out that it is the signal obtained by the second scan. During image observation, control is performed so that a current equal to the excitation current supplied to the objective lens 5I is supplied from the excitation power supply 15 when performing the n+2th scan. In this way, the excitation of the objective lens 5 is Intensity is automatically adjusted to normal focus.

と述した本発明ICおける焦点会わせ方法においては、
従来方法におけるように検出信号を微分することがない
ためノイズに強く、又ピーク値積算法と異なり焦点が合
わ駿られて行くに伴い変化する信号のelmのうちの一
部の面(ピーク値)からのみ焦点の会っている程度を検
出するのではな(、信号波形の特徴のうちのより多くの
ファクターが関与するエントロピーの大きさによって焦
点が会っているかどうかを判定して焦点会わせするため
、走査聾電子顕微鏡で高倍観察を行おうとする場合lど
も高精度に焦点会わせを行うことができる。
In the focusing method for the IC of the present invention described above,
Since the detection signal is not differentiated as in the conventional method, it is resistant to noise, and unlike the peak value integration method, it is possible to detect a part of the elm of the signal (peak value) that changes as the focus is focused. Rather than detecting the degree of focus only from When performing high-magnification observation using a scanning deaf electron microscope, focusing can be performed with high precision.

尚、と述した実施例は本発明の一実施例に過ぎず、実施
にあたっては幾多の他の態様をとり得る。
The embodiment described above is only one embodiment of the present invention, and the present invention may be implemented in many other ways.

例えばと述した実施例においては、各走査毎に得られる
信号についでエントロピーを算出するため、電カスベク
トル8(fi)を用いたが、信号値を等間隔にとられた
多数の領域vjに分割した際SC検出器から送られて来
る信号が各領域viに含まれる頻1[Q(マi)をまず
算出し、このQ(マi)を用いて第(1)式によって与
えられるエントロピーを算出するようにしても良い。
For example, in the embodiment described above, the electric scum vector 8 (fi) was used to calculate the entropy of the signal obtained for each scan, but the signal values were spread over a number of equally spaced areas vj. When divided, the signal sent from the SC detector is included in each region vi. First, calculate the frequency 1 [Q (mi), and use this Q (mi) to calculate the entropy given by equation may be calculated.

父、と述した実施例においては、画書信号のエントロピ
ーを算出するため試料の1ラインを繰り返し走査したが
、複数ライン或は−ij面を繰り返し走査し、その際得
られる検出信号を用いてエントロピーを算出するように
しても良い。
In the embodiment described above, one line of the sample was repeatedly scanned to calculate the entropy of the drawing signal, but it is also possible to repeatedly scan multiple lines or the -ij plane and use the detection signal obtained at that time Entropy may also be calculated.

【図面の簡単な説明】[Brief explanation of drawings]

#I1図は電子線プローブ径と失われるエントロピーと
の関係を示すための図、第2図は本発明を実施するため
の装置の一例を示すための図であり、第3図は励磁電流
と走査信号との関係を示すための図、第4図は励磁電流
の変化に伴う検出信号の変化を説明するための図である
。 1:電子銃、2:電子線、!I:収束レンズ、4X。 4Y : X方向及びY方向偏向器、5:対物レンズ、
6:試料、7:走査信号発生器、8:陰極線管、9コニ
次電子検出器、10:増幅器、11:減衰器、12:^
D変換器、16:電子計算機、14:表示手段、15:
励磁電源。 特許出願人 日本電子株式会社 代表者加勢忠雄
#I1 diagram is a diagram showing the relationship between the electron beam probe diameter and lost entropy, Figure 2 is a diagram showing an example of an apparatus for carrying out the present invention, and Figure 3 is a diagram showing the relationship between the excitation current and the entropy lost. FIG. 4 is a diagram for showing the relationship with the scanning signal, and is a diagram for explaining the change in the detection signal due to the change in the excitation current. 1: Electron gun, 2: Electron beam! I: Converging lens, 4X. 4Y: X direction and Y direction deflector, 5: Objective lens,
6: Sample, 7: Scanning signal generator, 8: Cathode ray tube, 9-electron detector, 10: Amplifier, 11: Attenuator, 12: ^
D converter, 16: Electronic computer, 14: Display means, 15:
Excitation power supply. Patent applicant JEOL Ltd. Representative Tadao Kase

Claims (1)

【特許請求の範囲】[Claims] 対物レンズの励磁強度をステップ状に変化させ、この変
化を行う都度電子線を試料J−sとおいて走査させ、該
走査に伴って帰られる二次電子或は反射電子検出信号の
エントロピーを異った励磁における走査毎に算出して相
互lど比較し、該エントロピーが最大擾どなるところで
対物レンズの励磁強度を固定するようにしたことを特徴
とする電子線装置の焦点会わせ方法0
The excitation intensity of the objective lens is changed stepwise, and each time the excitation intensity is changed, the electron beam is scanned with the sample J-s, and the entropy of the secondary electron or backscattered electron detection signal returned with the scanning is varied. Focusing method for an electron beam device 0, characterized in that the excitation intensity of the objective lens is fixed at the point where the entropy reaches the maximum, by calculating and comparing each scan for each excitation.
JP10408481A 1981-07-03 1981-07-03 Focus adjustment of electron-ray device Pending JPS5825050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10408481A JPS5825050A (en) 1981-07-03 1981-07-03 Focus adjustment of electron-ray device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10408481A JPS5825050A (en) 1981-07-03 1981-07-03 Focus adjustment of electron-ray device

Publications (1)

Publication Number Publication Date
JPS5825050A true JPS5825050A (en) 1983-02-15

Family

ID=14371267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10408481A Pending JPS5825050A (en) 1981-07-03 1981-07-03 Focus adjustment of electron-ray device

Country Status (1)

Country Link
JP (1) JPS5825050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2559695A1 (en) * 1984-02-20 1985-08-23 Mitsubishi Electric Corp METHOD AND APPARATUS FOR DETECTING AND REGULATING THE POSITION OF AN ELECTRONIC WELDING BEAM
EP0386894A2 (en) * 1989-03-10 1990-09-12 Hitachi, Ltd. Focussing an electron beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2559695A1 (en) * 1984-02-20 1985-08-23 Mitsubishi Electric Corp METHOD AND APPARATUS FOR DETECTING AND REGULATING THE POSITION OF AN ELECTRONIC WELDING BEAM
EP0386894A2 (en) * 1989-03-10 1990-09-12 Hitachi, Ltd. Focussing an electron beam

Similar Documents

Publication Publication Date Title
US6653633B2 (en) Charged particle beam apparatus
JP5937171B2 (en) Scanning electron microscope and sample observation method
EP2530699B1 (en) Charged particle beam microscope and method of measurement employing same
US20120104253A1 (en) Charged particle beam microscope and measuring method using same
JP2008177064A (en) Scanning charged particle microscope device, and processing method of image acquired with scanning charged particle microscope device
US6734429B2 (en) Electron microscope charge-up prevention method and electron microscope
JP4261743B2 (en) Charged particle beam equipment
JP2010062106A (en) Scanning charged particle microscope device, and method of processing image acquired by the same
JP3424512B2 (en) Particle beam inspection device, inspection method, and particle beam application device
JP4500099B2 (en) Electron microscope apparatus system and dimension measuring method using electron microscope apparatus system
US5144129A (en) Electron microscope
JPWO2003021186A1 (en) Sample size measurement method and scanning electron microscope
WO2018138875A1 (en) Charged particle beam device
US4180738A (en) Astigmatism in electron beam probe instruments
IL163568A (en) Sample dimension measuring method and scanning electron microscope
US4978856A (en) Automatic focusing apparatus
JP4668807B2 (en) Charged particle beam apparatus and charged particle beam image generation method
JPS5825050A (en) Focus adjustment of electron-ray device
JP2008311216A (en) Autofocus method of scanning charged-particle beam device
JP2005005055A (en) Information acquisition method for height of test piece
JP2005174883A (en) Scanning electron microscope
EP1442471B1 (en) System and method for fast focal length alterations
JP4871350B2 (en) Pattern dimension measuring method and pattern dimension measuring apparatus
WO2021149188A1 (en) Charged particle beam device and inspection device
KR102628711B1 (en) Charged particle beam device