JPS58137283A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS58137283A
JPS58137283A JP1932482A JP1932482A JPS58137283A JP S58137283 A JPS58137283 A JP S58137283A JP 1932482 A JP1932482 A JP 1932482A JP 1932482 A JP1932482 A JP 1932482A JP S58137283 A JPS58137283 A JP S58137283A
Authority
JP
Japan
Prior art keywords
layer
groove
substrate
crystal
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1932482A
Other languages
Japanese (ja)
Inventor
Naoto Mogi
茂木 直人
Yukio Watanabe
幸雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP1932482A priority Critical patent/JPS58137283A/en
Publication of JPS58137283A publication Critical patent/JPS58137283A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Abstract

PURPOSE:To form a crystal grown layer with excellent reproducibility by forming a groove with a flat bottom onto a substrate and using the groove as a nucleus for crystal growth. CONSTITUTION:Grooves 22, 23 are formed in parallel onto the N-GaAs substrate 21. An N-GaAlAs layer 24, a P-GaAs layer 25 and a P-GaAlAs layer 26 are grown onto the substrate 21 in succession by using a liquid epitaxial crystal growth method, and a double hetero-junction layer 27 is formed. An N-GaAlAs layer 28 is crystal-grown while a SiO2 film 29 is formed onto the layer 28. The built-in guide type laser is obtained by forming electrodes 30, 31 and a diffusion layer 32.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、作り付は導波路構造【持った半導体レーザの
製造方法に関する0 〔発明の技術的背景とその問題点〕 光ディスク用光源として半導体レーザを見た場合、レー
ザの構造は作り付は導波路形であることが望まれる。作
り付は導波路形レーザとして最も簡単な構造のものに、
半導体基板上にV字溝を形成し2oち結晶成長を行うこ
とによって作るチャネルド・チブストレート・プレーナ
(CEP)レーザが知られている。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor laser having a built-in waveguide structure [Technical Background of the Invention and Problems thereof] A semiconductor laser as a light source for an optical disk. In view of this, it is desirable that the laser structure is built-in in the form of a waveguide. The built-in structure is the simplest as a waveguide laser.
A channeled substrate planar (CEP) laser is known, which is manufactured by forming a V-shaped groove on a semiconductor substrate and performing two-way crystal growth.

第13は従来のG1ムjA−系cspレーザの概略構造
【示す断m図である0半導体基板結晶1上に溝2が形成
されると共に、クラッド層3、活性層4およびクラッド
層6からなるダブルへテロ(DH)接合層Sが成長形成
されている。
The thirteenth figure is a schematic structure of a conventional G1JA-based CSP laser. A double heterojunction (DH) junction layer S is grown.

DH接合層σ上には電流狭 層1および絶縁層8が形成
されている。なお、図中9.10は電極、11は拡散層
【示している0 このようなC8Pレーザにおいては、接合面に垂直方向
の導波路モードt−考えたとき、V字溝2の外側におい
て導波路光は基板結晶1まで滲み出し、そこでバンドギ
ャップの狭い基板結晶1の吸収損失【感じる0そこで、
接合面に水平方向に伝書モード【考え九とき、V字溝2
の内側と外側とでは大きな損失の差(利得の差)を感じ
る次め、この差によって接合面に水平方向に関してもV
字溝2に光を閉じ込める作用が生じる。V字溝2の存在
によって生じた利得の差若しくは損失の差は、結晶とし
て作り付けられ友ものであるから、所謂利得導波形レー
ザとは異なり、接合面に水平な方向にも安定した横モー
ド制御効果を期待できることになる。
A current narrowing layer 1 and an insulating layer 8 are formed on the DH junction layer σ. In the figure, 9.10 is an electrode, and 11 is a diffusion layer [indicated at 0]. In such a C8P laser, when considering the waveguide mode t in the direction perpendicular to the bonding surface, there is a waveguide outside the V-shaped groove 2. The wave path light permeates to the substrate crystal 1, where the absorption loss of the substrate crystal 1 with a narrow bandgap [feels 0].
Message mode horizontally on the joint surface [When thinking 9 times, V-shaped groove 2
There is a large difference in loss (difference in gain) between the inside and outside of the joint, and this difference also causes a V
The effect of confining light in the groove 2 occurs. Since the difference in gain or loss caused by the presence of the V-groove 2 is created as a crystal, unlike a so-called gain waveguide laser, stable transverse mode control is possible even in the direction horizontal to the junction surface. You can expect good results.

ところで、C8Pレーザで上述した横モード制御効果を
実現するには、V字溝2の外側部分においてモードが十
分に基板結晶1tで滲み出すようにする必要がある。こ
のため、活性層4の厚みおよび活性層4と基板1との間
のクラッド層so厚みは、o、xscsm)1度若しく
はそれ以下と極めて薄くしなければならない。C8Pレ
ーザを製造する九めの結晶成長には、現在のところ通常
液相エピタキシャル結晶成長法(LPIC法)が用いら
れているが、このLPI法により0.15(μm〕 と
云うような薄膜の結晶成長【制御良〈行うのは容易でな
い。特に、CAPレーザのように、基板結晶に溝が形成
されこの溝の形状が結晶成長のメルトにょリメル。
By the way, in order to realize the above-mentioned transverse mode control effect with the C8P laser, it is necessary to make sure that the mode sufficiently oozes out from the substrate crystal 1t in the outer part of the V-shaped groove 2. Therefore, the thickness of the active layer 4 and the thickness of the cladding layer between the active layer 4 and the substrate 1 must be extremely thin, 1 degree or less. At present, the liquid phase epitaxial crystal growth method (LPIC method) is normally used for crystal growth, which is the ninth step in manufacturing C8P lasers. Crystal growth [Good control] is not easy to perform.Especially in CAP lasers, grooves are formed in the substrate crystal, and the shape of these grooves is the melt of the crystal growth.

ドパツクと云う現象で溶けて変形すること【防ぐため、
過飽和度の高い条件で結晶成長を行う必要がある場合勢
には、上記薄膜の結晶成長t、制御良く実現するのは極
めて困難となる。
To prevent melting and deformation due to a phenomenon called dopatsuku,
When it is necessary to grow crystals under conditions of high supersaturation, it is extremely difficult to achieve well-controlled crystal growth of the thin film.

そこで最近、cspレーザにおける上記問題を解決する
ものとして纂2図に示す如きツイン・メサ・サブストレ
ート(TMS)レーザが開発されている◇このレーザの
場合には、C8Pレーザの場合と同じ役割【果すV字溝
2は基板結晶1のメチ凸部12上に形成されている。こ
れは、LPE法においてはメチ凸部12の結晶成員速度
が遅くなり、V字溝2の外側部分のクラッド層3の厚み
および活性層4の厚みt薄く成長させることが容易とな
るためである。メチ凸部12の成長が遅くなる原因は、
過飽和度の小さい平価状態に近い条件で結晶成長【行っ
ている場合、メサ上面への結晶成長核が生成し難いのに
対し、メサ底部においてはメサ底部とメサ糊面とが作る
凹部が結晶成長核としての役割【果皮す几めに、結果と
して結晶成長がメ夛底面部で速くなるためである。し九
がって、V字溝2がメルトバックにより変形しないよう
に過飽和度の高い条件で結晶成長を行っても、メサ上部
では結晶成長層の厚みが厚くなることt防止できる。
Recently, a twin mesa substrate (TMS) laser, as shown in Figure 2, has been developed to solve the above problems in CSP lasers. ◇In the case of this laser, it plays the same role as the C8P laser. The V-shaped groove 2 is formed on the diagonal convex portion 12 of the substrate crystal 1. This is because in the LPE method, the crystal formation rate of the Methi convex portion 12 is slowed down, and it becomes easy to grow the thickness of the cladding layer 3 and the thickness of the active layer 4 at the outer part of the V-shaped groove 2 to be thinner. . The reason why the growth of the methi convex portion 12 is slow is as follows.
When crystal growth is carried out under conditions close to the equilibrium state with low supersaturation, it is difficult to generate crystal growth nuclei on the top surface of the mesa, whereas at the bottom of the mesa, the concave area formed by the mesa bottom and mesa glue surface facilitates crystal growth. Role as a nucleus [This is because the pericarp is denser, and as a result, crystal growth is faster at the bottom of the pericarp. Therefore, even if the crystal growth is performed under conditions of high supersaturation so that the V-shaped groove 2 is not deformed due to meltback, it is possible to prevent the crystal growth layer from becoming thicker in the upper part of the mesa.

しかしながら、このような7MSレーザにあ□っては次
のような問題があった0すなわち、メサ上面での結晶成
長層【薄くすることは容易であっても、その厚みt正確
に制御することは困難である。この原因は、メサ上面に
はメサ底部のように結晶成長核となる場所が特に存在し
ない次め、エッヂグロースの進行の□程度が一定しない
ためである。例えば、ウェーハ端にしばしば発生する異
常成長層からのエッヂグロースの影響【受は几り、或い
は基&面方位の低指数面に対する僅かな傾きrc工って
エッヂグロース状態が左右されることになる。この几め
、半導体レーザを再現性良く作ることは困難であった0
〔発明の目的〕 本発明の目的は、作り付は導波路構造ケ持つ半導体レー
ザを製造するに際し、所望の結晶成長層を再現性良く形
成することができ、製造歩留りの向上をはかり得る半導
体レーザの製造方法を提供することにある。
However, such a 7MS laser has the following problems: The crystal growth layer on the top surface of the mesa [although it is easy to make it thin, it is difficult to accurately control the thickness of the layer] It is difficult. The reason for this is that there is no particular place on the top surface of the mesa that serves as a crystal growth nucleus like the bottom of the mesa, and the degree of edge growth is not constant. For example, the influence of edge growth from an abnormally grown layer that often occurs at the edge of a wafer may affect the edge growth state. . This method made it difficult to manufacture semiconductor lasers with good reproducibility.
[Object of the Invention] An object of the present invention is to provide a semiconductor laser that can form a desired crystal growth layer with good reproducibility and improve manufacturing yield when manufacturing a semiconductor laser having a built-in waveguide structure. The purpose of this invention is to provide a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明は、作り付は導波路構造?持つ半導体レーザを製
造するに際し、半導体基板結晶上を選択エツチングし該
基板上に底部が平坦な第1の溝を形成すると共に、この
第1の溝の底部に咳溝と平行に第2の溝を形成したのち
、上記半導体結晶基板上に液相エピタキシャル法により
活性層およびり2ラド層からなるペテロ接合層【形成す
るようにした方法である。
Does the present invention have a built-in waveguide structure? When manufacturing a semiconductor laser with a semiconductor laser, a first groove with a flat bottom is formed on the semiconductor substrate by selective etching, and a second groove is formed at the bottom of the first groove parallel to the groove. In this method, a Peter junction layer consisting of an active layer and a two-layer layer is formed on the semiconductor crystal substrate by a liquid phase epitaxial method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1の溝が半導体基板結晶上への結晶
成長に対して核としての役割【果皮すことになり、これ
により結晶成長における不確定な要因を除去し、結晶成
長の厚み【結晶成長のメルトの過冷却や冷却速度等の制
御し得る要因によって決定することができる。このため
、結晶成長層【再現性良く形成することができ、製造歩
留りの向上【はかり得る0 〔発明の実施例〕 813図−)〜(C)は本発明の一実一例に係わる半導
体レーザの製造工mt−示す断面図である0まず、jI
3図−)に示す如<(001)面が主面となっているN
−GaAm  基板(半導体基板結晶)21上に、幅の
広い溝(IIIの溝)22および7字溝($12の溝)
23tそれぞれ平行に形成し次。JIllの溝22の幅
は50〔μm〕、深さは2 Cf1tt)とし、第20
溝23の幅は3 (μlとし皮。なお、これらの溝22
.:!3は、フォトレジストマスクとリン酸二過酸化水
素:メタノール=1:1:3の面指数に対し顕著な選択
性のあるエッチャントを用いて形成したもので、それぞ
れ〈01丁〉方向にエツチングされている0 次に、LPE法を用い93図(b)に示す如く基板21
上にN −G a A Lム一層(り2ラド層)24、
P −G a A 8層(活性層)25およびP −G
aAtAs層(クラッド層)jgklK次成長せしめて
DH接合層zv5形成し艮。このとき、結晶成長の極め
て初期の段階で第2の溝23が埋まり、ま次第1の溝z
2の両側の段差からも結晶成長が始まる0このIs1層
目の成長は7〔℃/分〕の速度で徐冷後、基板結晶21
1iメルトに接触させ冷却速度1に0.2(℃/分〕で
下げる方法を用い九。すなわち、基板21は約2〔℃〕
の過冷却がついた条件で結晶成長メルトに接触する0そ
して、この条件下では溝が形成され九基板21もほとん
どメルトバックされない0第1層目0N−GaAtAs
用メルトの接触時間は約20秒である0この短時間の接
触でも第2の溝23が略平坦化されるまで結晶成長は進
行する0次の活性層25の成長の場合には、第1の溝2
2の両側の鰍が重要な役割【果たす0つまり、この両側
の壁からはエッヂグロースが発生し、IJlt)@z 
go底部から順次堀まるごとに−なる。o−JLaの溝
22の壁面から生じるエッヂグロースは、基板として作
り付けられたものであるため、従来の7字溝のみが形成
された基板に結晶成長する場合に比して不確定な要素が
少ない0このため、Islの溝の底部における各結晶層
を再現性良く形成することができ九〇 なお、第1の溝22の底部に形成された第20溝23が
第1の溝22の中央部にあると、溝220両側の壁から
のエッヂグロースの影響【受けるため好ましくない。#
!2の溝23は第1の溝22の両側のいずれかの壁に片
寄せて形成しておく方が、再現性の上で好ましい結果が
得られ次〇 次に、第3図(b)に示す試料上に同図(C)に示す如
(N−GaAtA易7Hz m5結晶成長すると共に、
骸層28上に810!膜(絶縁層)29チ形成する。さ
らに、電極20.31および拡散層32【形成すること
によって、作り付は導波路形のレーザを実現した0かく
して形成され九半導体レーザは前記クラッド層24およ
び活性層25の厚みが再現性良いものであり、その製造
歩留りが高いものであることが確認され友。
According to the present invention, the first groove serves as a nucleus for crystal growth on a semiconductor substrate crystal, thereby eliminating uncertain factors in crystal growth and controlling the thickness of crystal growth. [Crystal growth can be determined by controllable factors such as supercooling of the melt and cooling rate. Therefore, the crystal growth layer can be formed with good reproducibility and the manufacturing yield can be improved. Manufacturing process mt - is a cross-sectional view showing 0 First, jI
As shown in Fig. 3-), N whose main surface is the (001) plane
- On the GaAm substrate (semiconductor substrate crystal) 21, a wide groove (III groove) 22 and a figure 7 groove ($12 groove)
23t each formed in parallel. The width of the groove 22 of JIll is 50 [μm], the depth is 2Cf1tt), and the 20th
The width of the grooves 23 is 3 (μl).
.. :! 3 was formed using a photoresist mask and an etchant with remarkable selectivity to the surface index of phosphoric acid dihydrogen peroxide: methanol = 1:1:3, and the etching was performed in the <01> direction. Next, using the LPE method, as shown in FIG. 93(b), the substrate 21 is
On top is a layer of N-G a L layer (2 layers) 24,
P-G a A 8 layer (active layer) 25 and P-G
The aAtAs layer (cladding layer) is grown to form a DH junction layer zv5. At this time, the second groove 23 is filled in the very early stage of crystal growth, and then the first groove z
Crystal growth also starts from the steps on both sides of the substrate crystal 21. The growth of the first layer of Is begins after slow cooling at a rate of 7 [°C/min].
9. Using a method of bringing the substrate into contact with the 1i melt and lowering the cooling rate to 1 by 0.2 (°C/min), the temperature of the substrate 21 is approximately 2 [°C].
The first layer of N-GaAtAs contacts the crystal growth melt under supercooled conditions, and under these conditions grooves are formed and the substrate 21 is hardly melted back.
The contact time of the active layer 25 is approximately 20 seconds. Even with this short contact, crystal growth proceeds until the second groove 23 is approximately flattened. In the case of growth of the zero-order active layer 25, Groove 2
The ribs on both sides of 2 play an important role [0 In other words, edge growth occurs from the walls on both sides, IJlt) @z
Every time you dig one by one from the bottom of the go, it becomes -. Since the edge growth generated from the wall surface of the groove 22 of o-JLa is created as a substrate, there are fewer uncertain factors compared to the case of crystal growth on a conventional substrate in which only a figure-7 groove is formed. Therefore, it is possible to form each crystal layer at the bottom of the Isl groove with good reproducibility. If it is, it is undesirable because it will be affected by edge growth from the walls on both sides of the groove 220. #
! It is better to form the second groove 23 on one side of the wall on either side of the first groove 22 to obtain a preferable result in terms of reproducibility. As shown in the same figure (C), N-GaAtA easy 7Hz m5 crystals were grown on the sample shown,
810 on the corpse layer 28! 29 films (insulating layers) are formed. Furthermore, by forming the electrodes 20, 31 and the diffusion layer 32, a built-in waveguide-shaped laser is realized.The semiconductor laser thus formed has good reproducibility in the thickness of the cladding layer 24 and the active layer 25. It has been confirmed that the manufacturing yield is high.

第4図(a)〜(C)は他の実施例に係わる半導体レー
ザの製造工11.【示す断面図である。この実施例が先
に説明した実施例と異なる点は、前記溝22.23fメ
サ凸部4ノ上に形成し几ことである0この場合、メサ凸
@41の外側に結晶成長し易い部分が存在することにな
り、第2の溝23近傍における結晶成長速度を先の実施
例工り遅くすることができる。この^め、薄いり2ラド
層24および活性層25の膜厚【より正確に制釦する。
FIGS. 4(a) to 4(C) show a semiconductor laser manufacturing process 11 according to another embodiment. [It is a sectional view shown in FIG. This embodiment differs from the previously described embodiment in that the grooves 22 and 23f are formed above the mesa convex portion 4. In this case, there is a portion where crystal growth is likely to occur outside the mesa convex portion Therefore, the crystal growth rate in the vicinity of the second groove 23 can be made slower than in the previous embodiment. For this reason, the film thicknesses of the 2D layer 24 and the active layer 25 can be controlled more accurately.

ことができる。be able to.

なお、本発明は上述した各実施例に限定されるものでは
なく、その要旨を逸脱しない範囲で、種々変形して実施
することができる。例えば、前記第1および第2の溝の
幅や深さ等は、仕様に応じて適宜定めればよい。また、 GaAtAs −GaAg レーザに限らず、I nG
aAsP −I IIP  レーザに適用できるのも勿
論のことである。
Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without departing from the gist thereof. For example, the width, depth, etc. of the first and second grooves may be determined as appropriate according to specifications. In addition, not only GaAtAs-GaAg laser but also InG laser
Of course, it can also be applied to an aAsP-I IIP laser.

【図面の簡単な説明】[Brief explanation of drawings]

構造を示す断面図、93図(a)〜(C)は本発明の一
実施例に係わる半導体レーザの製造工程を示す断面図、
F44図−)〜(c)は他の実施例に係わる半導体レー
ザの製造工程【示す断面図である。 21・・・N −G a A s基板(半導体基板結晶
)、22・・第1の溝、23・・第2の溝、24・・・
N−GaAjAs層(クラッド層)、ZS−・・P −
−G a A a層(活性層)、26 ・” P−Ga
AtA s層(クラッド層)、27・・ダブル−・テロ
(D H)嫉合層、2 g−N−GaAtAs層、29
−810゜all(絶縁層)、30.31・・・電極、
32・・・拡散層、41・・・メサ凸部。 1ゝ 出願人代理人 弁理士  鈴 江 武 門弟1図 第3図 (b) 1
93 (a) to (C) are cross-sectional views showing the manufacturing process of a semiconductor laser according to an embodiment of the present invention;
Figures F44-) to (c) are cross-sectional views showing the manufacturing process of a semiconductor laser according to another embodiment. 21...N-GaAs substrate (semiconductor substrate crystal), 22...first groove, 23...second groove, 24...
N-GaAjAs layer (cladding layer), ZS-...P-
-G a A a layer (active layer), 26 ・” P-Ga
AtAs layer (cladding layer), 27...double terror (DH) jealousy layer, 2 g-N-GaAtAs layer, 29
-810°all (insulating layer), 30.31...electrode,
32... Diffusion layer, 41... Mesa convex portion. 1. Applicant's agent Patent attorney Takeshi Suzue Disciple 1 Figure 3 (b) 1

Claims (1)

【特許請求の範囲】[Claims] (1)  半導体基板結晶上【選択エツチングし諌基板
上に底部が平坦なIIIの#It形成すると共に、この
jllの溝の底部に該溝と平行にIs2の溝を形成し九
のち、上記半導体結晶基板上に液相エピタキシャル法に
より活性層およびり2ラド層からなるヘテロ接合層を形
成することt特徴とする半導体レーザの製造方法0(2
)前記illの溝【前記半導体結晶基板上に設けた凸部
に形成するようにしたことt特徴とする特許請求の範l
1111項記載の半導体レーザの製造方法。
(1) On the semiconductor substrate crystal [Selective etching is performed to form #It of III with a flat bottom on the substrate, and at the same time, a groove of Is2 is formed at the bottom of the groove of Jll in parallel with the groove. A method for manufacturing a semiconductor laser characterized by forming a heterojunction layer consisting of an active layer and a layer on a crystal substrate by liquid phase epitaxial method 0 (2)
) The ill groove is formed in a convex portion provided on the semiconductor crystal substrate.
A method for manufacturing a semiconductor laser according to item 1111.
JP1932482A 1982-02-09 1982-02-09 Manufacture of semiconductor laser Pending JPS58137283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1932482A JPS58137283A (en) 1982-02-09 1982-02-09 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1932482A JPS58137283A (en) 1982-02-09 1982-02-09 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS58137283A true JPS58137283A (en) 1983-08-15

Family

ID=11996219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1932482A Pending JPS58137283A (en) 1982-02-09 1982-02-09 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58137283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0162569A2 (en) * 1984-04-17 1985-11-27 Sharp Kabushiki Kaisha A semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0162569A2 (en) * 1984-04-17 1985-11-27 Sharp Kabushiki Kaisha A semiconductor laser

Similar Documents

Publication Publication Date Title
JPS62283685A (en) Manufacture of semiconductor laser
JPS58137283A (en) Manufacture of semiconductor laser
US4686679A (en) Window VSIS semiconductor laser
JPS5940317B2 (en) Rib guide stripe type semiconductor multilayer thin film optical waveguide and its manufacturing method
JPS6223191A (en) Manufacture of ridge type semiconductor laser device
JPS641952B2 (en)
JPS6377186A (en) Manufacture of semiconductor laser
JPS59119781A (en) Manufacture of semiconductor laser
JPS59227177A (en) Semiconductor laser
JPS58114477A (en) Semiconductor light emitting device
JPS6062173A (en) Semiconductor laser device
JP2023543273A (en) Laser manufacturing method and laser
US4358850A (en) Terraced substrate semiconductor laser
JPS60147119A (en) Manufacture of semiconductor element
JPS6146995B2 (en)
JPH01132191A (en) Semiconductor laser element
JPS6361793B2 (en)
JPS63287079A (en) Manufacture of semiconductor laser
JPH0837338A (en) Double channel planar buried structure semiconductor laser and its manufacture
JPS58225683A (en) Semiconductor laser
JPS6362291A (en) Semiconductor laser device
JPH01166592A (en) Semiconductor laser element
JPS603173A (en) Semiconductor laser device
JPS6058691A (en) Semiconductor device
JPS61284985A (en) Manufacture of semiconductor laser device