JPS58136730A - Blowing gas control device for reflux type vacuum degassing device - Google Patents

Blowing gas control device for reflux type vacuum degassing device

Info

Publication number
JPS58136730A
JPS58136730A JP1777982A JP1777982A JPS58136730A JP S58136730 A JPS58136730 A JP S58136730A JP 1777982 A JP1777982 A JP 1777982A JP 1777982 A JP1777982 A JP 1777982A JP S58136730 A JPS58136730 A JP S58136730A
Authority
JP
Japan
Prior art keywords
flow rate
pipe
blowing
gas
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1777982A
Other languages
Japanese (ja)
Other versions
JPS625210B2 (en
Inventor
Hiromitsu Inoue
博光 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1777982A priority Critical patent/JPS58136730A/en
Publication of JPS58136730A publication Critical patent/JPS58136730A/en
Publication of JPS625210B2 publication Critical patent/JPS625210B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To maintain the reflux velocity of molten steel constant and to prevent the decrease in the degassing and refining speed of the molten steel by detecting the flow rates of the gases in plural inert gas blow pipes provided to a suction pipe of the vacuum vessel in a reflux type vacuum degassing device and controlling the total flow rate of the gases constant at all times. CONSTITUTION:The flow rates of gases in plural inert gas blow pipes 22a-22e provided to a molten steel suction pipe 16 of the vacuum vessel in a reflux type vacuum degassing device for molten steel are detected with respective flow rate sensors 28a-28e. The detected signals SFa-SFe are outputted to flow rate controllers 32a-32e, which compare the same with the target set flow rate SC from a main controller 34, and output the driving signals SDa-SDe for regulating the openings of flow rate control valves 30a-30e to the valves 30a-30e to control the flow rates of the gases of the respective pipes 22a-22e so as to make the differences therebetween zero. The total flow rate of the gases is operated with an adder 36, and the signal ST thereof is outputted through a delay element 38 to the main controller 34, so that the total flow rate is controlled similarly to a target total flow rate.

Description

【発明の詳細な説明】 本発明は環流式真空脱ガス装置の吹込ガス制御装置に関
し、特に、複数の吹込口から吹込まれるガスを均等流量
とするとともに、詰まりによってそれ等吹込口の一部の
流量が低下しても吹込ガスの総流量を一定とする吹込ガ
ス制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blown gas control device for a recirculation type vacuum degassing device, and in particular, to make gas blown in from a plurality of inlets into an equal flow rate, and to prevent some of the inlets from becoming clogged due to clogging. This invention relates to a blowing gas control device that keeps the total flow rate of blowing gas constant even if the flow rate of the blowing gas decreases.

真空槽と、該真空槽に連通し溶鋼中に浸漬される吸上管
および排出管と、該吸上管に設けられた複数の吹込口に
接続された複数の吹込管路とを備え、該吹込管路から該
吸上管内に不活性ガスを吹込むことによって真空槽内に
溶鋼を環流させ、その溶鋼を脱ガスする環流式真空脱ガ
ス装置においては、溶鋼の環流速度が脱ガス能率および
製品品質を維持するために予め定められた一定速度とな
るように、吸上管内に吹込まれるガス量を一定とすると
ともに、溶滴の飛散(スプラッシュ)高さの一ト昇に起
因する内張の寿命低下を防ぐ等のために各吹込口から吹
込まれるガス量をできる限り均等とすることが望まれて
いる。
A vacuum tank, a suction pipe and a discharge pipe that communicate with the vacuum tank and are immersed in molten steel, and a plurality of blowing pipes connected to a plurality of blowing ports provided in the suction pipe, In a circulation type vacuum degassing device that circulates molten steel in a vacuum chamber by blowing inert gas into the suction pipe from a blowing pipe and degasses the molten steel, the circulation speed of the molten steel is determined by the degassing efficiency and In order to maintain product quality, the amount of gas blown into the suction pipe is kept constant to maintain a predetermined constant speed. In order to prevent a decrease in the service life of the gas, it is desired that the amount of gas blown in from each inlet be as equal as possible.

これに対し、上記各吹込管路にそれぞれ流量調節弁およ
び流量検出器を設けるとともに、吸上管内に吹込むため
に必要なガス流量を等分して各吹込管路の目標流量を予
め設定し、それぞれの流量検出器が検出した実際のガス
流量に基づいて流量調節弁を駆動し、各吹込管路のガス
流量をその目標流量と一致するように制御する吹込ガス
制御装置が考えられている。
To deal with this, each of the above-mentioned blowing pipes is provided with a flow rate control valve and a flow rate detector, and the target flow rate of each blowing pipe is set in advance by equally dividing the gas flow rate necessary for blowing into the suction pipe. A blowing gas control device has been proposed that drives a flow rate control valve based on the actual gas flow rate detected by a flow rate detector, and controls the gas flow rate of each blowing pipe to match its target flow rate.

しかしながら、斯る従来の吹込ガス制御装置によれば、
各吹込管路のいずれかに詰まりが生じてその吹込管路の
流量調節弁の操作量(開度)が100%に達して制御可
能範囲を超える状態となると、他の吹込管路が予め設定
された目標流計に制御されているため、1吸土管内に吹
込まれる総ガス流量が不足する不都合があった。すなわ
ち、吹込口付近においては、固化した鋼や酸化鉄等異物
の固着によって詰まりが生じ易く、その」:うな詰まり
によって総ガス流量が不足すると、溶鋼の1流速度が低
下して一定の作業時間内に充分な脱ガスが得られないた
め、製品品質が低下するおそねがあるのである。
However, according to such a conventional blown gas control device,
If a blockage occurs in one of the blowing pipes and the operation amount (opening degree) of the flow rate control valve of that blowing pipe reaches 100% and exceeds the controllable range, the other blowing pipes are set in advance. Since the flowmeter is controlled by a target flow meter, there is a problem that the total gas flow rate blown into one suction pipe is insufficient. In other words, clogging is likely to occur near the injection port due to the adhesion of foreign substances such as solidified steel and iron oxide, and if the total gas flow rate is insufficient due to clogging, the velocity of one flow of molten steel decreases and the work time is reduced for a certain period of time. Since sufficient degassing cannot be obtained within the tank, product quality may deteriorate.

本発明は以」二の事情を背景として為されたものであり
、その目的とするところは、吹込管路に話まりが生じて
も、吸上管内に吹込まれる総ガス流量が一定であり、し
かも詰まりのない他の吹込管路を通して吹込まれるガス
量が均等に制御される環流式真空脱ガス装置の吹込ガス
制御装置を提供することにある。
The present invention was made against the background of the following two circumstances, and its purpose is to maintain a constant total gas flow rate blown into the suction pipe even if a blockage occurs in the blowing pipe. It is an object of the present invention to provide a blowing gas control device for a recirculation type vacuum degassing device in which the amount of gas blown through other blowing pipes without clogging is evenly controlled.

斯る目的を達成するため、本発明は、真空槽と該真空槽
に連通し溶鋼中に浸漬される吸1−暫・および排出管と
該吸1−管に設けられた複数の吹込に1にそれぞれ接続
された複数の吹込管路とを備え、該吹込管路から該吸」
二管内に不活性ガスを吹込むことによって該真空槽内に
溶鋼を環流させる環流式真空脱ガス装置の吹込ガス制御
装置であって、前記吹込管路に流されるガスの各々の管
路流量およびそれ等吹込管路の総ガス流量を検出し、該
管路流量を表わす管路流量信号および該総ガス流量を表
わす総流量信号を出力する流量検出装置と、前記吹込管
路の各々に設けられ、該吹込管路に流されるガスの流量
を調節する流量調節弁と、前記管路流量信号が表わすそ
れぞれの管路流量と共通の目標値とを比較してそれ等の
差が零となるように前記流量調節弁を駆動し、前記各々
の吹込管路のガス流量を該目標値に一致させる第1制御
手段と、前記総流量信号が表オつず総ガス流量と予め定
められた一定値とを比較してそれ等の差が零となるよう
に該目標値を決定し、前記吸上管内に吹込まれるガス量
を該一定値に一致させる第2制御手段とを有する制御装
置とを、含むことを特徴とする。
In order to achieve such an object, the present invention provides a vacuum tank, a suction pipe connected to the vacuum tank and immersed in molten steel, and a discharge pipe, and a plurality of blowing pipes provided in the suction pipe. and a plurality of blowing pipes each connected to the suction pipe.
A blowing gas control device for a circulation type vacuum degassing device that circulates molten steel into the vacuum chamber by blowing an inert gas into two pipes, the flow rate of each gas flowing into the blowing pipes and a flow rate detection device that detects the total gas flow rate of the blowing pipes and outputs a pipe flow rate signal representing the pipe flow rate and a total flow rate signal representing the total gas flow rate; , a flow rate control valve that adjusts the flow rate of gas flowing into the blowing pipe, and a flow rate control valve that compares each pipe flow rate represented by the pipe flow rate signal with a common target value so that the difference between them becomes zero. a first control means for driving the flow rate control valve to make the gas flow rate of each of the blowing pipes match the target value; and a second control means for determining the target value so that the difference between them becomes zero, and for adjusting the amount of gas blown into the suction pipe to match the constant value. , characterized by including.

このようにすれば、総ガス流量と予め定められた一定値
との差が零となるように目標値が決定さ5− れ、各吹込管路のガス流計がその共通の目標値と一致す
るように制御されるので、複数の吹込管路の一部に詰ま
りが生じても、他の吹込管路の目標値が、総ガス流量が
予め定められた一定値に一致するように引き上げられて
、総ガス流量が一定に維持されるとともに、他の吹込管
路のガス流計が均等に制御されるのである。
In this way, the target value is determined so that the difference between the total gas flow rate and a predetermined constant value is zero, and the gas flow meter of each blowing pipe line matches the common target value. Therefore, even if some of the plurality of blowing pipes become clogged, the target value of the other blowing pipes will be raised so that the total gas flow rate will match a predetermined constant value. As a result, the total gas flow rate is maintained constant, and the gas flow meters in the other blow lines are equally controlled.

以下、本発明の一実施例を示す図面に基づいて詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below based on the drawings.

第1図において、真空槽10には真空槽IOに連通し且
つ取鍋12内の溶鋼14に浸漬される1汲上管16およ
び排出管18が形成されており、真空槽10に接続され
た図示しない排気装置によって真空槽10内が真空にさ
れるようになっている。
In FIG. 1, a vacuum tank 10 is formed with a pumping pipe 16 and a discharge pipe 18 that communicate with the vacuum tank IO and are immersed in the molten steel 14 in the ladle 12. The inside of the vacuum chamber 10 is evacuated by an exhaust device that does not require a vacuum pump.

尚、19は内張つとして用いられる耐火物である。In addition, 19 is a refractory material used as an inner lining.

吸上管16内には複数の吹込管路20 a乃至200が
接続されており、それ等吹込管路20 a乃至20eを
通して不活性ガスが吸上管16内に吹込まれると、溶鋼
14がそのガスとともに吸上管16内を上昇して真空槽
10内に入るとともに排出管 6− 18を通して取鍋12内に戻されて環流させられるよう
になっている。このような環流過程において、真空槽1
0内に曝された溶鋼14が脱ガスされるのであるが、そ
の環流速度は脱ガス能率および製品品質等を維持するた
めに望ましい一定値に定められている。すなわち、環流
速度が大き過ぎると真空槽10等の内張りに用いられる
耐火物の消耗を招くばかりでなく脱ガス反応上において
も好ましくないのであり、環流速度が小さ過ぎると脱ガ
ス処理に時間を要し結果的に脱ガス効率を低下させるの
である。
A plurality of blowing pipes 20a to 200 are connected to the suction pipe 16, and when inert gas is blown into the suction pipe 16 through the blowing pipes 20a to 20e, the molten steel 14 is The gas rises in the suction pipe 16 and enters the vacuum chamber 10, and is returned to the ladle 12 through the discharge pipe 6-18 for circulation. In such a reflux process, the vacuum chamber 1
The molten steel 14 exposed to the atmosphere is degassed, and the reflux rate is set at a desired constant value in order to maintain degassing efficiency, product quality, etc. In other words, if the reflux rate is too high, it not only causes consumption of the refractories used for lining the vacuum chamber 10, etc., but also is unfavorable for degassing reactions, while if the reflux rate is too low, it takes time for the degassing process. This results in a decrease in degassing efficiency.

第2図に詳しく示されるように、吸」二管16の周壁に
は5個の吹込口22a乃至22eが等角度間隔に設けら
れており、それ等吹込口22a乃至22(!と不活性ガ
スが供給されるヘッダ24との間には吹込管路20)l
乃至20Cが接続されている。そして、それ等吹込管路
20a乃至20eには、不活性ガスの流量を検出する流
量センサ28a乃至28eと流量を調節する流量調節弁
30a乃至30eとがそれぞれ介挿されている。
As shown in detail in FIG. 2, five inlets 22a to 22e are provided at equal angular intervals on the peripheral wall of the two suction pipes 16, and these inlets 22a to 22(! and inert gas A blowing pipe 20) is connected to the header 24 to which the
20C to 20C are connected. Flow rate sensors 28a to 28e that detect the flow rate of the inert gas and flow rate control valves 30a to 30e that adjust the flow rate are inserted into the blowing pipes 20a to 20e, respectively.

流量センサ28 In乃至28 (lは、オリフィス等
によってガス流量を検知するとともにそのガス流量を表
わすアナログ量の電気信号である管路流電信号SFa乃
至S F eをそれぞれ流級調節泪32a乃至82Qに
出力する。第1制御手段である流量調節計828乃至3
2cは、所謂カスケード式調節計であって、後述の主調
節用34がら供給される目標信号SCが表わす目標値と
管路流量信号SFa乃至SFtうが表わす実際のガス流
計とをそれぞれ比較し、それ等の差が零となるように流
量調節弁30a乃至3oeの開度を変更する駆動信号S
 、D a乃至SDeをそれ等流量調節弁3oa乃至3
0eにそれぞれ出力する。流量調節弁Boa乃至80e
はダイヤフラムや電動モータ等のアクチュエータを備え
ており、供給された駆動信号SDa乃至SDeに従って
弁開度を変更する。
Flow rate sensors 28 In to 28 (l) detect the gas flow rate by an orifice or the like, and send pipe current signals SFa to SFe, which are analog electric signals representing the gas flow rate, to flow rate adjustment sensors 32a to 82Q, respectively. The flow rate controllers 828 to 3 which are the first control means
Reference numeral 2c is a so-called cascade type controller, which compares a target value represented by a target signal SC supplied from a main controller 34 to be described later with an actual gas flow meter represented by pipe flow rate signals SFa to SFt. , a drive signal S that changes the opening degree of the flow rate regulating valves 30a to 3oe so that the difference between them becomes zero.
, D a to SDe are connected to the flow rate control valves 3 oa to 3.
Output each to 0e. Flow control valve Boa to 80e
is equipped with an actuator such as a diaphragm or an electric motor, and changes the valve opening according to the supplied drive signals SDa to SDe.

前記管路流量信号8Fa乃至8 F Oは加算器36に
も供給され、それ等の信号S 、F a乃至8 F 1
!の内容(電流信号または電圧信号)が加算されて総ガ
ス流量を表わす総流量信号STが加算器36から遅れ要
素38を介して主調節計34に供給される。したがって
、流量センサ28a乃至28eおよび加算″i86が吹
込管路20&乃至20eに流されるガスの流量および総
ガス流量を検出する流量検出装置を構成している。
Said line flow signals 8Fa to 8F O are also supplied to an adder 36, and their signals S , F a to 8 F 1
! (current signal or voltage signal) are added together to provide a total flow signal ST representing the total gas flow rate from adder 36 via delay element 38 to master controller 34 . Therefore, the flow rate sensors 28a to 28e and the adder "i86" constitute a flow rate detection device that detects the flow rate of gas flowing into the blowing lines 20& to 20e and the total gas flow rate.

第2制御手段である主調節計34においては、吸上管6
内に吹込まれるべき望ましい一定値Mのガス流量が予め
設定されており、総流量信号8Tが表わす実際の総ガス
流量Xとその一定値Mとを比較し、それ等の差が零とな
るように目標信号SCが決定される。たとえば、総ガス
流量をXとすると目標信号SCの内容である目標値Aは
次式によって制御される。
In the main controller 34 which is the second control means, the suction pipe 6
A desired constant value M of gas flow rate to be blown into the gas chamber is set in advance, and the actual total gas flow rate X represented by the total flow rate signal 8T is compared with the constant value M, and the difference between them becomes zero. The target signal SC is determined as follows. For example, assuming that the total gas flow rate is X, the target value A, which is the content of the target signal SC, is controlled by the following equation.

ここで、Kはゲイン、Eは偏差(M−X)、Tiは積分
時間である。このように、主調節計34と流量調節計8
2a乃至82Bが吸上管16内に吸き込まれる総ガス流
量を一定に制御するとともに、各々の吹込管路20a乃
至20eのガス流量を均 9− 一に制御する制御装置を構成しているのである。
Here, K is the gain, E is the deviation (M-X), and Ti is the integration time. In this way, the main controller 34 and the flow controller 8
2a to 82B constitute a control device that controls the total gas flow rate sucked into the suction pipe 16 to a constant value, and uniformly controls the gas flow rate of each of the blowing pipes 20a to 20e. It is.

尚、遅れ要素38は、その伝達間@ G (s)が1/
(1−1−T8)である−次遅れ要素として構成されて
おり、制御系を安定させるために制御系の応答特性に基
づいてその時定数Tが適宜定められている。
Note that the delay element 38 has a transmission time @ G (s) of 1/
(1-1-T8), and its time constant T is appropriately determined based on the response characteristics of the control system in order to stabilize the control system.

以下、本実施例の作動を説明する。The operation of this embodiment will be explained below.

吸入口22)1乃至22(]等における異物の固着が少
ない場合には、各流電調節弁301L乃至30eが流量
調節計8211乃至32eからの駆動値すSDa乃至S
DOに従ってガス流量を調節し、それぞれの吹込管路2
0a乃至200のガス流量を目標値Aに一致させる。こ
の目標値Aは主調節計34において(1)式に従って決
定されるのであるが、各吹込管路20&乃至20eの詰
まりがなくそれ等の流量が目標値に制御されている−1
−記の場合には、通常殆んど偏差Eが零である。たとえ
ば、吸上管16内に吹込む予め定められた一定の値Mが
lo o o N g/minとすると、目標値Aハ(
1)式ニ従って2 Q Q N l / +ninとな
り、その値を表わす目標信号SCに従って各流量調節語
32+1乃至32()10− が定値制御を為し、吸上管16内に吹込まれる総ガス流
量が100ONe/minとなる。
When there is little foreign matter adhering to the suction ports 22) 1 to 22(), each of the current control valves 301L to 30e adjusts the driving values SDa to S from the flow rate controllers 8211 to 32e.
Adjust the gas flow rate according to the DO and each blowing line 2
The gas flow rate from 0a to 200 is made to match the target value A. This target value A is determined by the main controller 34 according to equation (1), and the flow rate of each blowing line 20 & to 20e is controlled to the target value without clogging -1
- In the case described above, the deviation E is usually almost zero. For example, if the predetermined constant value M to be blown into the suction pipe 16 is lo o o N g/min, then the target value A (
1) Therefore, 2 Q Q N l / +nin is obtained, and each flow rate adjustment word 32+1 to 32()10- performs constant value control according to the target signal SC representing the value, and the total amount blown into the suction pipe 16 is The gas flow rate is 100ONe/min.

次に、吸入I’m 22 a乃至22eに酸化鉄等の異
物の固着が進行するのに伴って、たとえば吹込管路20
+Lの詰まりによって流量調節弁80aの弁が全開とさ
れてもガス流量が目標値Aよりも下回る状態となると、
総ガス流量Xが低下し始めることになる。しかし、1ミ
調節計34によって目標値Aが自動的に高められるので
、一部の吹込管路2Q aの流量低下に拘らず、吸上管
16内に吹込まれる総ガス流量が一定に維持されるので
ある。
Next, as the adhesion of foreign substances such as iron oxide progresses in the suction I'm 22a to 22e, for example, the blowing pipe 20
If +L is clogged and the gas flow rate falls below the target value A even if the flow rate control valve 80a is fully opened,
The total gas flow rate X will begin to decrease. However, since the target value A is automatically increased by the 1mm controller 34, the total gas flow rate blown into the suction pipe 16 is maintained constant regardless of the decrease in the flow rate of some of the blowing pipes 2Qa. It will be done.

すなわち、たとえば総流量信号STが表わす総ガス流量
Xが900 N l / rninとなったとすると主
調節用34において(1)式に従って目標値Aが222
5 N l /minとなる。このため、他の吹込管路
20j)乃至20(うのガス流量がそれぞれ225N/
!/minに調節されるので、吸上管16内に吹込まれ
る総ガス流量が1000 N l / minとされる
That is, for example, if the total gas flow rate X represented by the total flow rate signal ST is 900 Nl/rnin, the target value A is set to 222 in the main adjustment 34 according to equation (1).
5 Nl/min. For this reason, the gas flow rate of the other blowing pipes 20j) to 20(u) is 225N/2, respectively.
! /min, so the total gas flow rate blown into the suction pipe 16 is 1000 Nl/min.

このように、本実施例によれば、吸」二管16内に吹込
まれる総ガス流量が予め定められた9(ましい一定値M
となるように目標値Aが決定され、各吹込管路20 I
L乃至20(うの流量がその共通の11標値Aに一致す
るように制御されるので、吹込管路20の一部に詰まり
が生じても、その詰まりに起因する流量低1;搭と他の
正常な吹込管路の流[1[増加量とが等しくなるように
目標値Aが決定されて、総ガス流量が一定に維持される
。したがって、吹込管路20a乃至20eの一部の詰ま
りに拘らず吸上管16内において溶鋼の一定の流速が得
られるので、常に一定の脱ガス効果が得られて製品品質
が高く維持され得るとともに、吹込口22ル乃至22e
の詰まりに対する保全周期が長くし得るのである。しか
も、吹込管路20+1乃至201!の未だ詰まりが生じ
ない管路が共通の目標値Aに従って均等流電に制御され
るので、吹込ガスの特定の管路への集中によって真空槽
IO内に跳ねる溶鋼の飛沫高さが高くなり真空槽10内
頂−1一部の耐火物19を溶損させることが防止される
のである。
As described above, according to this embodiment, the total gas flow rate blown into the two suction pipes 16 is set to a predetermined value of 9 (preferably constant value M
The target value A is determined so that each blowing pipe 20 I
Since the flow rate of the pipes L to 20 is controlled to match the common 11 standard value A, even if a part of the blowing pipe 20 is clogged, the flow rate is low due to the blockage. The target value A is determined so that the flow rate [1 Since a constant flow rate of molten steel can be obtained in the suction pipe 16 regardless of clogging, a constant degassing effect can always be obtained and product quality can be maintained at a high level.
The maintenance cycle against blockage can be extended. Moreover, the blowing pipes 20+1 to 201! Since the pipes that have not yet been clogged are controlled to have a uniform current flow according to the common target value A, the height of the molten steel splashing into the vacuum chamber IO increases due to the concentration of the blown gas in the specific pipes, and the vacuum This prevents the part of the refractory 19 at the top of the tank 10 from being eroded and damaged.

次に、本発明の他の実施例を説明する。尚、前述の実施
例と共通する部分には同一の符号を付して説明を省略す
る。
Next, another embodiment of the present invention will be described. Incidentally, the same reference numerals are given to the parts common to those of the above-mentioned embodiment, and the explanation thereof will be omitted.

前述の実施例において、第2図の2点鎖線で囲まれる調
節装置は所謂テジタルコンピュータによっても構成され
る。すなわち、第3図において、管流量信号SFa乃至
S li’ cはA/Dコンバータ40を介してT10
ボート42に供給されている。
In the exemplary embodiments described above, the adjustment device enclosed by the dash-dot line in FIG. 2 is also constituted by a so-called digital computer. That is, in FIG. 3, the pipe flow signals SFa to S li'
It is supplied to boat 42.

T10ボート42はそれ等の信号8Fa乃至SFeをデ
ータバスラインを介してCPU44.RAM46、RO
M48に供給する。CPU44はELAM46の記憶機
能を利用しつつROM48に予め記憶された制御プログ
ラムに従って信号8Fa乃至SFeを処理し、総ガス流
量および目標値Aを決定するとともに、駆動信号8Da
乃至8Deを算出し、T10ボート42およびA/Dフ
ンバータ40を介して流量制御弁30a乃至30eにそ
れぞれ供給する。
The T10 boat 42 sends these signals 8Fa to SFe to the CPU 44. RAM46, R.O.
Supply to M48. The CPU 44 processes the signals 8Fa to SFe according to the control program stored in advance in the ROM 48 while utilizing the storage function of the ELAM 46, determines the total gas flow rate and the target value A, and also uses the drive signal 8Da.
8De is calculated and supplied to the flow rate control valves 30a to 30e via the T10 boat 42 and the A/D humbator 40, respectively.

すなわち、第4図のフローチャートに示されるように、
制御プログラムが図示しない起動信号に13− よってスタートさせられると、ステップslにおいて管
流量信号8Fa乃至S F eが読み込まれる。
That is, as shown in the flowchart of FIG.
When the control program is started by a start signal 13- (not shown), the pipe flow signals 8Fa to S Fe are read in step sl.

次に、ステップS2においてそれ等信号SF 1に乃至
SFeが加算されて総ガス流量が算出されるとともに、
予め記憶された一定値Mとその総ガス流iXとに基づい
て、たとえば前記(1)式から総ガス流量Xが一定値M
と一致するような目標値Aを算出する。以−Hのステッ
プslおよびS2が第2制御手段である。
Next, in step S2, the signals SF1 to SFe are added to calculate the total gas flow rate, and
Based on the pre-stored constant value M and its total gas flow iX, for example, from the above equation (1), the total gas flow rate X is a constant value M
Calculate a target value A that matches. Steps sl and S2 below-H are the second control means.

次に、ステップS3乃至S6が実行され、そのが゛ 新たな目標値Af制御系を安定にするため一定時間T後
に更新されるとともに、その一定時間内に吹込管路20
B乃至20eのガス流量を一定にする制御が為される。
Next, steps S3 to S6 are executed, and the new target value Af is updated after a certain time T in order to stabilize the control system, and the blowing pipe 2
Control is performed to keep the gas flow rates of B to 20e constant.

すなわち、ステップS3において割り込みが許可される
とともにステップS4において一定時間Tだけ制御プロ
グラムが無作動とされ、ステップS5において一定時間
T後に割り込みが不許可とされた後、ステップS6にお
いてステップS2において決定された新たな11標値A
に目標値が県新される。そして、1−記ステップ14− S3と85との間に、第5図に示される第1制御手段で
ある割り込みルーチンが繰返し実行され、各吹込管路2
0&乃至2(lのガス流量が制御される。割り込みルー
チンは、吹込管路20&乃至20Cのそれぞれの同様な
制御サブルーチンがステップ881乃至885に連らな
って構成されており、たとえば、吹込管路20aの制御
す7’ ルーチンS81は第6図に示されるように構成
される。
That is, in step S3, interrupts are permitted, and in step S4, the control program is made inactive for a certain period of time T. In step S5, after a certain period of time T, interrupts are not permitted, and then in step S6, the control program determined in step S2 is new 11 target price A
New target values will be set for the prefecture. Then, between step 14-S3 and 85, an interrupt routine, which is the first control means shown in FIG.
The gas flow rates of 0& to 2(l) are controlled. The interrupt routine is configured by a similar control subroutine for each of the blowing lines 20& to 20C being continued in steps 881 to 885. The control routine S81 of 20a is constructed as shown in FIG.

すなわち、先ず、ステップSB1が実行されて管流車信
号S F aが表わす実際のガス流量が読み込まれると
ともに、ステップSB2が実行されて実際の吹込管路2
0+1のガス流量と目標値Aとが比較され、実際のガス
流量が目標値Aを上回るか否かが判断される。上回って
いない場合にはステップsn3が実行されて流量調節弁
30aを一定の開度だけ開かせる駆動信号SDaが出力
され、実際のガス流量が目標値Aに近ずくように増量さ
れるが、ト回っている場合には某テップSB4が実行さ
れて流量調節弁30aを一定の開度だけ閉じさせる駆動
信号Sl’laが出力され、実際のガス流量が目標値A
に近ずくように減少させられる。
That is, first, step SB1 is executed to read the actual gas flow rate represented by the pipe flow wheel signal SFa, and step SB2 is executed to read the actual gas flow rate represented by the pipe flow wheel signal SFa.
The gas flow rate of 0+1 and the target value A are compared, and it is determined whether the actual gas flow rate exceeds the target value A. If the actual gas flow rate does not exceed the target value A, step sn3 is executed and a drive signal SDa that opens the flow rate control valve 30a by a certain opening degree is output, and the actual gas flow rate is increased so that it approaches the target value A. If it is rotating, a certain step SB4 is executed and a drive signal Sl'la is output that closes the flow rate regulating valve 30a by a certain opening degree, and the actual gas flow rate becomes the target value A.
It is decreased so that it approaches .

そして、このような制御サブルーチンが繰返し実行され
、吹込管路20aのガス流量が目標値Aと一致するよう
に制御されるのである。
Then, such a control subroutine is repeatedly executed, and the gas flow rate of the blowing pipe 20a is controlled to match the target value A.

したがって、本実施例によれば、共通の1−1標値Aに
従って各吹込管路20 a乃至20(−のガス流量が一
定に制御されるとともに、その目標値Aは総ガス流量X
が一定値Mとなるように決定されるの目的のための制御
コンピュータと共用し得る利点がある。
Therefore, according to this embodiment, the gas flow rate of each blowing pipe 20a to 20(-) is controlled to be constant according to the common 1-1 target value A, and the target value A is equal to the total gas flow rate
It has the advantage that it can be shared with a control computer for the purpose of determining M to be a constant value M.

以−1−1本発明の一実施例を示す図面に基づいて説明
したが、本発明はその他の態様においても適用される。
Although the following description has been made based on the drawings showing one embodiment of the present invention in 1-1, the present invention is also applicable to other embodiments.

たとえば、吸1=、管16内に吹込まれる総ガス流量は
、ヘッダ24に不活性ガスを供給する管に設けられた流
量センサによって検出されてもよい。
For example, suction 1 = the total gas flow rate blown into the tube 16 may be detected by a flow sensor installed in the tube supplying the inert gas to the header 24 .

この場合には管流量信号SFa乃至S F (5を加算
演算する手段が不要となる利点がある。
In this case, there is an advantage that there is no need for means for adding and calculating the pipe flow rate signals SFa to S F (5).

また、吹込管路20&乃至20eの本数、流量センサ2
8a乃至28eおよび流量調節弁30a乃至30C3の
型式等は種々選択され得るものである。
In addition, the number of blowing pipes 20& to 20e, the flow rate sensor 2
The types of the flow control valves 8a to 28e and the flow control valves 30a to 30C3 can be selected from various types.

更に、流量調節計30a乃至30e1ステツプSB3お
よびS R4において決定される流量調節弁30a乃至
3〇0操作量は目標値Aと実際の各吹込管路20a乃至
20eのガス流量との偏差に対して必要に応じて比例、
積分、微分した量が用いられ得ることは勿論である。
Furthermore, the operating amounts of the flow rate control valves 30a to 300 determined in steps SB3 and SR4 of the flow rate regulators 30a to 30e1 are determined based on the deviation between the target value A and the actual gas flow rate of each blowing pipe 20a to 20e. proportionally, if necessary;
Of course, integrated and differentiated quantities can be used.

尚、上述したのはあくまでも本発明の一実施例であり、
本発明はその精神を逸脱しない範囲において種々変更が
加えられ得るものである。
It should be noted that the above is just one embodiment of the present invention,
The present invention can be modified in various ways without departing from its spirit.

以上詳記したように、本発明の吹込ガス制御装置によれ
ば、吸」二管内に吹込まれる総ガス流量が予め定められ
た望ましい一定値となるように決定され、各吹込管路の
ガス流量がその共通の目標値と一致するように制御され
るので、吸込管路の一部に詰まりが生じても、その詰ま
りに起因する流量減少量に相当して他の正常な吹込管路
のガス流17− 量が増加させられて、総ガス流計が一定に制御3きれる
。したがって、一部の吹込管路の詰まりに拘らず吸上管
内における溶鋼の・定の流速が得らねるので、常に一定
の脱ガス効果が得られて製品品質が高く維持されるので
ある。同時に、吹込管路の一部の詰まりに拘らず他のi
lE常な管路のガス流量が共通の目標値に従って均等に
制御されるので、吹込ガスの特定の管路への集中に起因
する真空レロl内における溶鋼の飛沫高さのに昇が防【
l−されて、特に真空槽内項り部の耐火物の溶損が防上
される7、
As described in detail above, according to the blown gas control device of the present invention, the total gas flow rate blown into the two suction pipes is determined to be a predetermined desirable constant value, and the gas in each blown pipe is Since the flow rate is controlled to match its common target value, even if a part of the suction line becomes clogged, the amount of flow reduction caused by the blockage will be reduced by a proportionate amount in other normal blow line lines. Gas Flow 17 - The amount is increased so that the total gas flow meter remains constant. Therefore, even if some of the blowing pipes are clogged, a constant flow rate of molten steel in the suction pipe cannot be obtained, so a constant degassing effect can always be obtained and the product quality can be maintained at a high level. At the same time, regardless of the blockage of a part of the blowing line, other i
Since the gas flow rate in the regular pipes is uniformly controlled according to a common target value, the height of the splash of molten steel in the vacuum tank is prevented from increasing due to the concentration of the blown gas in a particular pipe.
l- to prevent melting and damage of the refractories especially in the openings in the vacuum chamber7.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される環流式σ【空脱/jス装置
の構成を示す断面図である。第2図は本発明の一実施例
の構成を示す説明図である。第3図は本発明の他の実施
例を示す第2図に相当する図である。第4図乃至第6図
は第3図の実施例にHi−するプログラムをそれぞれ示
すフローチャー1・である。 1〇−真空槽     14;溶鋼 16:吸上管     18:排出管 −18= 20a〜20 +! :吹込管路 22a〜22 (j :吹込1−1 出願人 大同特殊鋼株式会社 19− 第4図      第5図 第6図
FIG. 1 is a cross-sectional view showing the configuration of a circulation type σ air removal/j gas device to which the present invention is applied. FIG. 2 is an explanatory diagram showing the configuration of an embodiment of the present invention. FIG. 3 is a diagram corresponding to FIG. 2 showing another embodiment of the present invention. FIGS. 4 to 6 are flowcharts 1, respectively, showing programs that make the embodiment of FIG. 3 Hi-. 10-Vacuum tank 14; Molten steel 16: Suction pipe 18: Discharge pipe -18 = 20a~20 +! :Blowing pipes 22a to 22 (j:Blowing 1-1 Applicant: Daido Steel Co., Ltd. 19- Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 真空槽と該真空槽に連通し溶鋼容器内の溶鋼中に浸漬さ
れる吸上管および排出管と該吸上管に設けられた複数の
吹込口にそれぞれ接続された複数の吹込管路とを備え、
該吹込管路から該吸上管内に不活性ガスを吹込むことに
よって該真空槽内に溶鋼を環流させる環流式真空脱ガス
装置の吹込ガス制御装置であって、 前記吹込管路に流されるガスの各々の管路流量およびそ
れ等吹込管路の総ガス流量を検出し、該管路流量を表わ
す管路流量信号および該総ガス流量を表わす総流量信号
を出力する流量検出装置と、前記吹込管路の各々に設け
られ、該吹込管路に流されるガスの流量を調節する流量
調節弁と、前記管路流量信号が表わすそれぞれの管路流
量と共通の目標値とを比較してその差が零となるように
前記流量制御弁を駆動し、前記各々の吹込管路のガス流
量を該目標値に一致させる第1制御手段と、前記総流量
信号が表わす総ガス流量と「め定められた一定値とを比
較してそれ等の差が零となるように前記共通の目標値を
決定し、前記吸I−管内に吸込まれる総ガス量を該一定
値に一致させる第2制御手段とを有する制御装置と、を
含むことを特徴とする環流式真空脱ガス装置の吹込ガス
制御装置
[Scope of Claims] A vacuum tank, a suction pipe that communicates with the vacuum tank and is immersed in molten steel in a molten steel container, a discharge pipe, and a plurality of suction pipes each connected to a plurality of inlets provided in the suction pipe. Equipped with a blowing pipe line,
A blowing gas control device for a circulation type vacuum degassing device that circulates molten steel into the vacuum chamber by blowing an inert gas into the suction pipe from the blowing pipe, the gas flowing into the blowing pipe. a flow rate detection device that detects the flow rate of each of the pipes and the total gas flow rate of the blowing pipes, and outputs a pipe flow rate signal representing the pipe flow rate and a total flow rate signal representing the total gas flow rate; A flow rate control valve provided in each of the pipes to adjust the flow rate of gas flowing into the blowing pipe, compares each pipe flow rate represented by the pipe flow rate signal with a common target value, and calculates the difference. a first control means that drives the flow rate control valve so that the gas flow rate of each of the blowing pipes becomes zero, and makes the gas flow rate of each of the blowing pipes match the target value; a second control means that determines the common target value so that the difference between the two constant values becomes zero, and makes the total amount of gas sucked into the suction I-pipe match the constant value; A blowing gas control device for a recirculation type vacuum degassing device, characterized in that it includes a control device having the following.
JP1777982A 1982-02-05 1982-02-05 Blowing gas control device for reflux type vacuum degassing device Granted JPS58136730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1777982A JPS58136730A (en) 1982-02-05 1982-02-05 Blowing gas control device for reflux type vacuum degassing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1777982A JPS58136730A (en) 1982-02-05 1982-02-05 Blowing gas control device for reflux type vacuum degassing device

Publications (2)

Publication Number Publication Date
JPS58136730A true JPS58136730A (en) 1983-08-13
JPS625210B2 JPS625210B2 (en) 1987-02-03

Family

ID=11953199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1777982A Granted JPS58136730A (en) 1982-02-05 1982-02-05 Blowing gas control device for reflux type vacuum degassing device

Country Status (1)

Country Link
JP (1) JPS58136730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246700A (en) * 1986-04-15 1987-10-27 Tlv Co Ltd Operation control device for steam using apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142416A (en) * 1987-11-28 1989-06-05 Fuji Electric Co Ltd Ultrasonic wave level detector
JPH0436620A (en) * 1990-02-19 1992-02-06 Jgc Corp Device detecting boundary surface between two liquid layers by utilizing ultrasonic wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246700A (en) * 1986-04-15 1987-10-27 Tlv Co Ltd Operation control device for steam using apparatus

Also Published As

Publication number Publication date
JPS625210B2 (en) 1987-02-03

Similar Documents

Publication Publication Date Title
CN107530716B (en) Centrifugal separator and method relating thereto
JPS58136730A (en) Blowing gas control device for reflux type vacuum degassing device
JPS6233156B2 (en)
CN111765757B (en) System and method for controlling oxygen content in flue gas hood of sintering machine
JP2538894Y2 (en) Pressurizer water level control device
RU2113505C1 (en) Method of melt treatment in ladle with varying position of lance
JP4715617B2 (en) Abnormality detection method, abnormality detection system, and abnormality detection device for detecting abnormality of vacuum degassing device
KR100383276B1 (en) System and method for controlling slushy level at a conmstant density of slushy
JP4412007B2 (en) Abnormality diagnosis method for flow control device
JP2000297390A (en) Continuous pickling method and continuous pickling apparatus
JP2008282306A (en) True-value estimation method and control method for opening of flow control valve, and metal refining method using the same
JPS6028560B2 (en) Control method for activated sludge water treatment equipment
SU964334A1 (en) Method of adjusting green liquor level in soda regeneration boiler unit melt solution tank
JPS588313B2 (en) Dissolved oxygen control device for aeration tank
JPS6221447A (en) Method for controlling blowing of gas with immersion nozzle for continuous casting
SU689716A1 (en) Alunite ore reduction method
JPH07150223A (en) Rh vacuum degassing control method
JPH02152519A (en) Method for controlling amount of slurry circulated in wet stack gas desulfurizing device
JPH0438474B2 (en)
SU1615190A1 (en) Arrangement for monitoring converter bath variables
JPH10290941A (en) Method of suppressing coal from falling to pyrite hopper of mill in coal fired boiler equipment
JPH07100631A (en) Pouring method for molten metal
JPS5893782A (en) Control of discharge of lump coke in dry cooling tower
SU1313513A1 (en) Method of automatic control of flotation
JPH03258400A (en) Dissolved oxygen concentration control apparatus