JPS58136017A - Manufacture of electrode plate for liquid-crystal display body - Google Patents

Manufacture of electrode plate for liquid-crystal display body

Info

Publication number
JPS58136017A
JPS58136017A JP57018206A JP1820682A JPS58136017A JP S58136017 A JPS58136017 A JP S58136017A JP 57018206 A JP57018206 A JP 57018206A JP 1820682 A JP1820682 A JP 1820682A JP S58136017 A JPS58136017 A JP S58136017A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
crystal alignment
alignment film
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57018206A
Other languages
Japanese (ja)
Other versions
JPH0235285B2 (en
Inventor
Kenji Nakamura
賢二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP1820682A priority Critical patent/JPH0235285B2/en
Publication of JPS58136017A publication Critical patent/JPS58136017A/en
Publication of JPH0235285B2 publication Critical patent/JPH0235285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To provide a uniform-thickness oriented film in a desired shape at a prescribed position accurately and to realize cost reduction by using base-resisting resist ink consisting principally of asphalt. CONSTITUTION:On a glass substrate, a conductive film is formed in a desired shape and a material soluble in a basic solution such as polyimide resin or polyparabanic acid resin is used to form a liquid-crystal oriented film of 50-5,000Angstrom . Then, a resist film consisting of base-resisting resist ink is formed on said oriented film in a desired shape. The resist ink uses asphalt as a principal component and is mixed with a filler and a solvent. The resist film is formed by a screen printing method preferably to 5-50mum film thickness. After the oriented film is etched by a basic etching solution such as an aqueous hydrazine solution and aqueous ammonia, the resist film is removed. Then, the oriented film is rubbed.

Description

【発明の詳細な説明】 力法に関する。さらに詳しくは本発明は液晶表示体用電
極板を構成する液晶配向膜を所望の形状に整形するため
の方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to force law. More specifically, the present invention relates to a method for shaping a liquid crystal alignment film constituting an electrode plate for a liquid crystal display into a desired shape.

最近、液晶材料の光学的異方性を利用した液晶表示体が
時計、各種測定装置等の表示部品として広く実用される
ようになった。液晶表示体は負の誘電異方性を有するネ
マチック液晶材料に電界を印加した場合に得られる該液
晶材料の光散乱効果を利用した動散乱型(D’S型)と
、正の誘電異方性を有するネマチック液晶材料に電界を
印加した場合に得られる該液晶羽村の旋光効果を利用し
た電界効果型(FE型)とに分類される。
Recently, liquid crystal displays that utilize the optical anisotropy of liquid crystal materials have come into widespread use as display components for watches, various measuring devices, and the like. There are two types of liquid crystal displays: a dynamic scattering type (D'S type) that utilizes the light scattering effect of a nematic liquid crystal material that has negative dielectric anisotropy when an electric field is applied to the material, and a dynamic scattering type (D'S type) that utilizes the light scattering effect of a nematic liquid crystal material that has negative dielectric anisotropy. It is classified as a field-effect type (FE type) that utilizes the optical rotation effect of the liquid crystal Hamura obtained when an electric field is applied to a nematic liquid crystal material having a magnetic field.

Ds型、FB型を問わず、液晶表示体はスペーサーによ
って一定の間隔を保って対向せしめられた一対の電極機
.I司に成品羽村が挟持され、密封された基本的構造を
有する。電極板は基板、導電膜(電極)および液晶配向
膜−、?− にさらに液晶配向膜が形成されたものである。
Regardless of whether it is a Ds type or an FB type, a liquid crystal display consists of a pair of electrodes facing each other with a constant distance between them by a spacer. It has a basic structure in which the finished product Hamura is held between the I-tsuka and sealed. The electrode plate is a substrate, a conductive film (electrode), and a liquid crystal alignment film. − A liquid crystal alignment film is further formed on the top.

基板として一般にガラス板が用いら石る。電極である導
電膜の材料としては酸化インジウム(”z03)、酸化
錫(sno2)eの導電性合端酸化物、あるいはアルミ
ニウム、銀等の嚇体金属が用いらゎる。一般に前者は透
明な光透過性導電膜を向え、=一方後者は不透明な光反
射性導電膜を与える。液晶表示体を構成する一対の電極
板そnそゎIこ(j一般にJF状の異なZ導電膜か設け
られており、この形状の異なる導電膜は一対の電極板が
重ね合わされる時所望の表示形状を含む導電膜の重畳が
得られるように設計されている。また、液晶表示体4一
構成する一対の電極板の少tIりとも−・方の導電膜(
?l″なわち、少なくとも観察側電極板の導電膜)は光
透過性導電膜てあ2・。
A glass plate is generally used as the substrate. As the material for the conductive film that is the electrode, conductive bonded oxides such as indium oxide (Z03) and tin oxide (SNO2)E, or deterrent metals such as aluminum and silver are used. Generally, the former is a transparent material. On the other hand, the latter provides an opaque light-reflecting conductive film.A pair of electrode plates constituting a liquid crystal display (generally JF-shaped different Z conductive films) The conductive films having different shapes are designed so that when a pair of electrode plates are overlapped, a superposition of conductive films including a desired display shape can be obtained. The conductive film on the lower tI side of a pair of electrode plates (
? 1'', that is, at least the conductive film on the observation side electrode plate) is a light-transmissive conductive film.

電極板のhv部品向膜は液晶表示体内に密封される液晶
材料を配向させ、電極板間に電界が印加される時液晶材
料が光散乱効果あるいは旋光効果を示すようにするため
に設けられるものである。液晶配向膜の材料として酸化
珪素等の漫々の無機材料、あるいはポリイミド樹脂,弗
素樹脂,ポリビニルアルコール樹脂.ポリパラバン酸樹
脂等の種々の有機材料を使用することができることが従
来知られている。この液晶配向膜は用いられる側斜に応
じて蒸着法.回転塗布法.オフセット印刷法。
The HV component orientation film of the electrode plate is provided to orient the liquid crystal material sealed within the liquid crystal display so that the liquid crystal material exhibits a light scattering effect or an optical rotation effect when an electric field is applied between the electrode plates. It is. Various inorganic materials such as silicon oxide, polyimide resin, fluororesin, and polyvinyl alcohol resin are used as materials for liquid crystal alignment films. It is known in the art that various organic materials such as polyparabanic acid resins can be used. This liquid crystal alignment film is produced using a vapor deposition method depending on the side slope used. Spin coating method. Offset printing method.

スプレー塗布法等によって5θ〜S0θθAの摩。5θ to S0θθA polishing by spray coating method or the like.

さで形成され、その後その表面に配向処理が施されて液
晶配向性能が付与される。配向処理は例えば液晶配向膜
表面を一定方向に研摩することによって行なわわるが、
一般に配向処理が施されない場合には液晶配向膜はほ々
んど液晶配向性能を有しない。なお、本明細曹において
「液晶配向膜」と言う場合には、特に助りがない限り、
配向処理が施されていない液晶配向膜を意味するものと
する。
After that, the surface is subjected to alignment treatment to impart liquid crystal alignment performance. The alignment treatment is performed, for example, by polishing the surface of the liquid crystal alignment film in a certain direction.
Generally, when no alignment treatment is performed, a liquid crystal alignment film has almost no liquid crystal alignment performance. In addition, in this specification, when referring to "liquid crystal alignment film", unless otherwise specified,
It means a liquid crystal alignment film that has not been subjected to alignment treatment.

上述のように液晶配向膜は液晶表示体に必須のものであ
るか、必ずしも電極板全面に設けられる必要はなく、少
なくとも1!極板の液晶羽村と接する部分に設けらゎれ
ばよい,、むしろスペーサーが設けらゎ、また1!榛(
導電膜)のリ−1・部分が存在する電極板の結1辺部分
には、スペーサ−と電極板との密着性および′#M.極
リードリー1部分回路との電気的接続の点から液晶配向
膜は設けらイ1ないのが奸才しい。従って一般に、まず
導電膜を有する基板全面に液晶配向膜か形成され、しか
る復配肉処理前に液晶配向膜が整形され表示に不必要な
周辺部分か除去される。
As mentioned above, the liquid crystal alignment film is essential to the liquid crystal display, or it does not necessarily need to be provided on the entire surface of the electrode plate, and at least 1! All you need to do is install a spacer on the part of the electrode plate that touches the LCD Hamura, or rather, a spacer. Haru (
The adhesiveness between the spacer and the electrode plate and the '#M. From the point of view of electrical connection with the polar reedley 1 partial circuit, it is ingenious that no liquid crystal alignment film is provided. Therefore, in general, a liquid crystal alignment film is first formed on the entire surface of a substrate having a conductive film, and before the re-deposition process, the liquid crystal alignment film is shaped and peripheral parts unnecessary for display are removed.

従来、導電膜を有する基板全面に形成さゎた液晶配向膜
を整形し表示に不必要な部分を除去するのに、フォトレ
ジスト技術が利用されている。すなわちネカタイブフォ
トレジスト技術がネ11用される従来法においては、ま
ず導電膜を有する基板全面に形成された数品配向膜上に
光硬化性樹脂からなるフォトレジストインクが塗布さ石
、乾燥さゎてレジスト膜が形成される。次に所望の形状
σ)光透過部分を有するフォトマスクかレジスト膜土に
位置決めされて置か石、レジスト膜の露光が行なわわる
。露光後現像が行なわわ、所望の形状を有する硬化部分
を残してレジスI・膜の未硬化部分が除去され、その部
分の液晶配向膜が露出せしめられる。その後露出した液
晶配向膜がエツチングによって除去され、エツチアク後
残留レジスト膜が除去されて所望の形状を有する液晶配
向膜が得られる。またポジタイプフォトレジスト技術が
利用される従来法においては、上記光硬化性樹脂の代わ
りに光分解性樹脂が用いられ、レジスト膜は上記とは逆
のパターンに露光され、以下上記さ同様の作業が行なわ
れる。しかしながら、このフォトレジスト技術を利用す
る従来法は工程か複雑であり、このために得られる電極
板はコストが高いものとなる。
Conventionally, photoresist technology has been used to shape a liquid crystal alignment film formed over the entire surface of a substrate having a conductive film and to remove portions unnecessary for display. In other words, in the conventional method in which the Nekataive photoresist technology is used, a photoresist ink made of a photocurable resin is first applied onto several alignment films formed on the entire surface of a substrate having a conductive film, and then dried. A resist film is then formed. Next, a photomask having a desired shape (σ) and a light-transmitting portion is positioned on the resist film, and the resist film is exposed to light. After exposure, development is performed to remove the uncured portions of the resist I/film leaving the cured portions having the desired shape, thereby exposing the liquid crystal aligning film in those portions. Thereafter, the exposed liquid crystal alignment film is removed by etching, and the resist film remaining after etching is removed to obtain a liquid crystal alignment film having a desired shape. Furthermore, in the conventional method that uses positive photoresist technology, a photodegradable resin is used instead of the photocurable resin described above, the resist film is exposed to light in a pattern opposite to that described above, and subsequent operations similar to those described above are performed. will be carried out. However, the conventional method using this photoresist technology requires a complicated process, and the resulting electrode plate is therefore expensive.

また、簡便な方法として、上述の従来法のように一月基
板上に形成された液晶配向膜を整形し不要部分を除去す
るとさによって所望の形状を有する液晶配向膜を得るの
で(−1なく、オフセット印刷法、マスクを用いるスプ
レー塗布法等によって所望の形状を有す2・液晶配向膜
を直接基板上に形成する方法か試みらイアている。しか
しながらこの方法による場合、得られる液晶配向膜の膜
厚が不均一になりvJく、また液晶配向膜を所定の付置
に1)0確に形成するのか困難であり、液晶配向膜の(
V置ズレが生じ易い。液晶配向膜の膜厚が不均一である
場合には得らイする液晶表示体lこおいて液晶材料の配
向状態が悪化し、才た液晶配向膜の位置ズレが4トじた
場合には液晶表示体を構成する一対の電極板の液晶配向
膜の相対(2置にズレが生じ、いずれも液晶表示体1こ
とって好ましいことではない。
In addition, as a simple method, as in the conventional method described above, a liquid crystal alignment film formed on a substrate is shaped and unnecessary parts are removed. Attempts have been made to form a liquid crystal alignment film with a desired shape directly on a substrate by offset printing, spray coating using a mask, etc.However, when using this method, the resultant liquid crystal alignment film The film thickness of the liquid crystal alignment film becomes non-uniform, and it is difficult to form the liquid crystal alignment film in a predetermined position.
Misalignment of V is likely to occur. If the thickness of the liquid crystal alignment film is uneven, the alignment state of the liquid crystal material in the liquid crystal display device deteriorates and the position of the liquid crystal alignment film becomes misaligned. The liquid crystal alignment films of the pair of electrode plates constituting the liquid crystal display are misaligned in two positions, which is not preferable since both of them are relative to the liquid crystal display 1.

上述のような状況から、均一な膜厚を廟する所望の形状
の液晶配向膜が所定の付置に正確に設けらイ9.た液晶
表示体用!極板を簡単に、従って低コストで製造す2)
ことがh]能な欣晶表示体用itt榛板の製造方法が望
才ゎている。
Under the above-mentioned circumstances, it is difficult to provide a liquid crystal alignment film having a desired shape and a uniform film thickness at a predetermined location accurately9. For LCD display! Manufacture plates easily and therefore at low cost2)
There is a need for a method of manufacturing an IT plate for a crystal display that is capable of performing the following steps.

−X  − 従って、本発明の目的は均一な膜厚を有する所望の形状
の液晶配向膜が所定の位置に正確に設けられた液晶表示
体用電極板を簡単に。
-X- Therefore, an object of the present invention is to easily provide an electrode plate for a liquid crystal display in which a liquid crystal alignment film having a desired shape and a uniform film thickness is accurately provided at a predetermined position.

従って低コストで製造することが可能な液晶表示体用電
極板の製造方法を提供することにある。
Therefore, it is an object of the present invention to provide a method for manufacturing an electrode plate for a liquid crystal display that can be manufactured at low cost.

本発明者は上記目的を達成するため、液晶表示体用電極
板の製造方法に関して種々の研究を行なってきた。その
結果、導電膜が設けられた基板上に塩基性溶液に可溶な
材料を用いて液晶配向膜を形成し、この液晶配向膜をア
スファルトを生成分さする耐塩基性レジストインクを使
用するレノスト技術を利用して整形する場合には、膜厚
が均一であり、また位置ズレのない所望の形状の液晶配
向膜を鳴する電極板を、上記フォトレジスト技術を利用
する従来法よりもより簡単に、従ってより低コストで製
造することができることを見出し、本発明を完成するに
キった。
In order to achieve the above object, the present inventor has conducted various studies regarding methods of manufacturing electrode plates for liquid crystal displays. As a result, we formed a liquid crystal alignment film on a substrate provided with a conductive film using a material soluble in a basic solution, and used a base-resistant resist ink to form asphalt on this liquid crystal alignment film. When shaping using this technology, it is easier to create an electrode plate that has a uniform film thickness and a desired shape of the liquid crystal alignment film without misalignment than the conventional method that uses the above-mentioned photoresist technology. Therefore, it was discovered that it could be manufactured at a lower cost, and this led to the completion of the present invention.

本発明の液晶表示体用電極板の製造方法は、表面に導電
膜が形成された基板上にさらに液晶配向膜を形成してな
る液晶表示体用!極板の製造方法において、 1)表面に上記導電膜が形成された」二記基板上に塩基
性溶液にηI溶な材料からなZ、上記液晶配向膜を形成
し、 11)この液晶配向膜上にアスファルトを主成分とする
耐塩基性レンントインクからなるレジスト膜を所望の形
状に形成し、111)塩基性エツチング液によって上記
レジスト膜が積層されていない部分の上記液晶配向膜を
除去することにより上記液晶配向膜そ上記所望の形状に
整形し、しかる後 1v)上記レジスト膜を除去する ことを特徴とする。
The method for manufacturing an electrode plate for a liquid crystal display according to the present invention is for a liquid crystal display in which a liquid crystal alignment film is further formed on a substrate having a conductive film formed on the surface! In the method for manufacturing an electrode plate, 1) forming the liquid crystal alignment film Z made of a material soluble in a basic solution on the substrate having the conductive film formed thereon; 11) forming the liquid crystal alignment film on the substrate having the conductive film formed thereon; 111) By forming a resist film made of base-resistant lentic ink containing asphalt as a main component in a desired shape, and removing the liquid crystal alignment film in the portion where the resist film is not laminated using a basic etching solution. The liquid crystal alignment film is shaped into a desired shape, and then 1v) the resist film is removed.

レノスト技術はいろいろな方面で利用されているが、大
抵の場合レジストインクとして耐酸性レジストインクが
用いられ、この1T11酸性レンストインクが酸性エツ
チング液と組゛合わせられて使用されている。このよう
な一般的なレジスト技術とは異なり、本発明の製造方法
においてはレジストインクとしてアスファルトを主成分
とする耐塩基性レジストインクが用いられ、この耐塩基
性レジストインクる0 1)電極である導電膜は一般に酸に対する耐性が低い。
The Renost technology is used in various fields, but in most cases, acid-resistant resist ink is used as the resist ink, and this 1T11 acid resist ink is used in combination with an acidic etching solution. Unlike such general resist technology, in the manufacturing method of the present invention, a base-resistant resist ink containing asphalt as a main component is used as the resist ink. Conductive films generally have low resistance to acids.

11)液晶配向膜1と用いらイする材料の多くは塩基分
解性材料である。
11) Most of the materials used for the liquid crystal alignment film 1 are base-decomposable materials.

以下本発明の製造方法を詳細に説明する。The manufacturing method of the present invention will be explained in detail below.

本発明の製造方法においては、才ず表面に導電膜が形成
された基板が準備される。先に説明したように、一般1
こ基板としてガラス板が用いられ、また導電膜の材料と
して工ntos。
In the manufacturing method of the present invention, a substrate having a conductive film formed on its surface is prepared. As explained earlier, general 1
A glass plate is used as the substrate, and a glass plate is used as the material for the conductive film.

5n02等の導電性金属酸化物が用いられる。こ11 れら導電性材料の薄膜を基板上に形成し導電膜とするの
には、蒸着法、スパッタリング法等が利用される。
A conductive metal oxide such as 5n02 is used. Vapor deposition, sputtering, or the like is used to form a thin film of these conductive materials on a substrate to form a conductive film.

一般にまず基板全面に導電性材料のIfI−膜が形成さ
れ、その後フォトl/シスト技術等によって薄膜がす1
【形され不安部分が除去されてノ9「望の形状の導電膜
2:さイする。
In general, an IfI film of a conductive material is first formed on the entire surface of the substrate, and then a thin film is removed using photol/cyst technology.
[Conductive film 2 in the desired shape: Cut out.

次1こ、上記表面に導電膜が形成された基板上に塩基性
溶液に可溶な材料からなる液晶配向膜が形成される。従
来、M I!1?、配向膜lこ適した有機材料および無
機材料が椎々知らイしているが、これら材料のうち塩基
性溶液1こ可溶なものはいずれも本発明の製造方法に使
用することができる。液晶配向膜に用いらイーする材料
は配向処理1こよって高い液晶配向性能が付すされ得る
誹うな膜を!jえるもσ)であることが必要であるが、
こむに加えて電気絶縁性の高い膜を与えるものであるこ
と、および導[膜が形成さ石た基板との密着性の高いI
Iaをりえるものであ乙ことが1.要である。これら、
7つの点から、目下のところ最も優れた塩基性情MVに
可溶な11に品配向膜拐別はポリイミド樹脂およびポリ
パラバン酸樹脂である。従って本発明の製造方法におい
ては、液晶配向膜の材料としてポリイミド樹脂およびポ
リパラバン酸樹脂を用いるのが特に好ましい。
Next, a liquid crystal alignment film made of a material soluble in a basic solution is formed on the substrate on which the conductive film is formed. Previously, MI! 1? Various organic and inorganic materials suitable for the alignment film are well known, and any of these materials that are soluble in a basic solution can be used in the manufacturing method of the present invention. The material used for the liquid crystal alignment film is a film that can be given high liquid crystal alignment performance by alignment treatment 1! It is necessary that σ),
In addition to providing a film with high electrical insulating properties, it also has high adhesion to the substrate on which the conductive film is formed.
1. What you can do with Ia is A. It is essential. these,
From the 7 points, the 11 products that are soluble in basicity MV at present are polyimide resins and polyparabanic acid resins. Therefore, in the manufacturing method of the present invention, it is particularly preferable to use polyimide resin and polyparabanic acid resin as materials for the liquid crystal alignment film.

液晶配向膜は用いられる材料に応じて蒸着法、回転塗布
法、オフセラ1−印刷法、スプレー塗布法尋によって形
成される。才だ、液晶配向膜は一般にSO〜50θOA
の膜厚で形成される。
The liquid crystal alignment film is formed by a vapor deposition method, a spin coating method, an offset printing method, or a spray coating method depending on the material used. The liquid crystal alignment film is generally SO~50θOA
It is formed with a film thickness of .

塩基性溶液に可溶な材料からなる液晶配向膜が形成され
た後、この液晶配向膜上に耐塩基性レジストインクから
なるレジスト膜が所望の形状に形成される。耐塩基性レ
ジストインクは液晶配向膜との密着性が高すぎもせす、
才だ低すぎもしないレジスト膜を与えるものであること
が必要である。これはレジスト膜と液晶配向膜との密着
性が高すぎる場合にはエツチング後液晶配向膜からのレ
ジスト膜の除去が困難になるためであり、才だレジスト
膜と液晶配向膜との密着性が低すぎる場合にはエツチン
グ中にエツチング液の滲込みが生じ易くなるためである
After a liquid crystal alignment film made of a material soluble in a basic solution is formed, a resist film made of a base-resistant resist ink is formed in a desired shape on this liquid crystal alignment film. The base-resistant resist ink has too high adhesion with the liquid crystal alignment film.
It is necessary to provide a resist film that is neither too thin nor too low. This is because if the adhesion between the resist film and the liquid crystal alignment film is too high, it will be difficult to remove the resist film from the liquid crystal alignment film after etching. This is because if it is too low, the etching solution tends to seep in during etching.

このような条件を満す、本発明の製造方法に用いられる
耐塩基性レジストインクとして、アスファルト約qo−
to重−15N、フィラー約20〜.?S重jJ−X、
溶剤約15〜qoXからなり、さしに必要に応じてフロ
ー剤、消泡剤、増粘剤等の添加剤を少I配合したものか
らなる、アスファルトを主成分とするレジストインクが
使用される。
As a base-resistant resist ink used in the production method of the present invention that satisfies these conditions, asphalt is
to weight -15N, filler about 20~. ? S heavy jJ-X,
A resist ink whose main component is asphalt is used, which consists of a solvent of about 15 to qoX and a small amount of additives such as a flow agent, an antifoaming agent, and a thickener, if necessary. .

アスファルトとしては、JIS K 2.20’lで規
定されている針入度θ〜300のストレートアスファル
ト、針入度θ〜toのブローンアスファルト等が使用出
来るが、特に上記条件を満すものとして針入度5−ro
のブローンアスファルトが好適である。
As the asphalt, straight asphalt with a penetration of θ to 300 specified in JIS K 2.20'l, blown asphalt with a penetration of θ to to, etc. can be used. degree 5-ro
blown asphalt is preferred.

フィラーとしては、耐水性、耐塩基性のよいものであれ
ば特に制限ないが、タルク、マイカ、沈降性硫酸バリウ
12尋が代表的なものとして挙げらイする〇 特にタルクの如き鱗片状のものが透水を防止するので好
ましい。
There are no particular restrictions on the filler as long as it has good water resistance and base resistance, but representative examples include talc, mica, and precipitated barium sulfate 12 fathoms.In particular, scaly materials such as talc. is preferable because it prevents water permeation.

溶剤としては、液晶配向膜を溶解しないものであれば特
iこ制限ないが、遅乾性の溶剤が適当である。
The solvent is not particularly limited as long as it does not dissolve the liquid crystal alignment film, but slow-drying solvents are suitable.

このような耐塩基性レジストインクを用いて液晶配向膜
上に1ノジスト膜を形成するのには、所望の形状のレジ
スト膜が所定の位置に形成されるのであればいかなる方
法が用いられてもよいが、一般にレジスト膜はスクリー
ン印刷法によって印刷塗布されるのが好ましい。
Any method can be used to form a resist film on a liquid crystal alignment film using such a base-resistant resist ink as long as a resist film of a desired shape is formed at a predetermined position. However, it is generally preferable that the resist film be applied by screen printing.

また一般にレジスI・膜はS −Sθμの膜厚で形成さ
れる。
Further, the resist I/film is generally formed with a film thickness of S - Sθμ.

上述のように液晶配向膜上に耐塩基性レジストインクか
らなる所望の形状のレジスト膜が形成された後、レジス
ト膜が積層されていない部分の液晶配向膜が塩基性エツ
チング液によってエツチング除去され、レジスト膜が積
層さイ1.ている部分の1に晶配向膜のみが基板1−に
残留せしめられる。このエツチングはレジスト膜が設け
られた電極板を塩基性エツチング液中に浸漬することl
こよって行なわれる・エツチング時間、エツチング液の
温度叫び)゛[ツチング条件はクリティカルなものであ
るので、良好なエツチングが行なわわるようにこれらエ
ツチング条件が厳密に制御されなければならない。
After a resist film of a desired shape made of base-resistant resist ink is formed on the liquid crystal alignment film as described above, the portions of the liquid crystal alignment film where the resist film is not laminated are etched away using a basic etching solution. The resist film is laminated.1. Only the crystal orientation film is left on the substrate 1- in the portion 1 where the crystal orientation film is located. This etching is carried out by immersing the electrode plate provided with the resist film in a basic etching solution.
Since the etching conditions (e.g., etching time, etching solution temperature) are critical, these etching conditions must be strictly controlled to ensure good etching.

塩基性エツチング液は液晶配向膜材ネ→を考11 t、
て適宜選択される。例えば、ポリイミド樹脂からなる液
晶配向膜に適した地基性エツチンク液としてはヒドラジ
ン水溶液、塩基性脱脂用洗剤(例えば奥野製薬袈商品名
1−エースクリーン」)等が挙げらvlまたポリパラバ
ン酸樹脂からなるn+晶配向膜に適した塩基性エツチン
グ液としてはアンモニア水等が挙げられる。
The basic etching solution is for liquid crystal alignment film material →11t,
be selected as appropriate. For example, base-based etching liquids suitable for liquid crystal alignment films made of polyimide resin include hydrazine aqueous solutions, basic degreasing detergents (for example, Okuno Pharmaceutical Co., Ltd. trade name 1-A Clean), etc. Examples of basic etching solutions suitable for n+ crystal orientation films include ammonia water and the like.

エツチング後、電極板を充分に水洗し、塩基性エツチン
グ液を除去する。
After etching, the electrode plate is thoroughly washed with water to remove the basic etching solution.

上述の塩基性エツチング液によるエツチングの後、レジ
スト膜が除去される。一般にこのレジスト膜の除去は電
極板を剥離剤中に浸漬するか、あるいはレジスト膜に剥
離剤をスプレーすることIこよって行なわれる。電極板
を剥離剤中に浸漬することによってレジスト膜を除去す
る場合には、剥離槽を、2槽以上設け、これら剥n楡に
電極板を順次送りながらレジスト膜を1離除去するのが
液晶配向膜面を清浄に保つ上で好ましい。またこの場合
、超音波婢を用いて剥離剤を攪拌するのが好ましい。
After etching with the above-mentioned basic etching solution, the resist film is removed. Generally, this resist film is removed by immersing the electrode plate in a stripping agent or by spraying the resist film with a stripping agent. When removing a resist film by immersing an electrode plate in a stripper, two or more stripping tanks are provided, and the resist film is removed one by one while sequentially feeding the electrode plate into these stripping tanks. This is preferable in terms of keeping the alignment film surface clean. In this case, it is preferable to stir the release agent using ultrasonic waves.

ill 離削としてはキシレン等の芳香族有機溶剤、ト
リクレン、メチレンクロライド等のハロゲン化炭化水素
有機溶剤等が挙げらnる。
Examples of the removal agent include aromatic organic solvents such as xylene, halogenated hydrocarbon organic solvents such as trichloride, and methylene chloride.

レジスト膜の除去後、電極板はアルコール尋の溶剤で洗
浄され、乾燥さ石る。このようにして所望の形状ζこ整
形された液晶配向膜を有する電極板が得られる。
After removing the resist film, the electrode plate is cleaned with an alcohol-based solvent and dried. In this way, an electrode plate having a liquid crystal alignment film shaped into a desired shape ζ is obtained.

以上の説明から明らかなように、本発明のfR造方法は
フォトレジスト技術が利用される従来法において必須で
ある露光および現像ニー l 6− 程を必要とせす、従って本発明の製造方〃;によれば従
来法よりもより簡単に、従ってより低コストで所望の形
状に整形された液晶配向膜を肩する電極板を得ることが
できる。才だ、本発明の製造方法によりば従来法と同様
に均一な液晶配向膜を形成することができ、従って本発
明の製造方法化よって得られた電極板が用いられた成品
表示体においては、液晶材料は良好な配向状態を示す。
As is clear from the above description, the fR manufacturing method of the present invention requires exposure and development steps that are essential in conventional methods using photoresist technology. According to the method, it is possible to obtain an electrode plate supporting a liquid crystal alignment film shaped into a desired shape more easily and at lower cost than the conventional method. According to the manufacturing method of the present invention, a uniform liquid crystal alignment film can be formed in the same way as in the conventional method, and therefore, in a finished display body using the electrode plate obtained by the manufacturing method of the present invention, The liquid crystal material exhibits a good alignment state.

さらに、本発明の製造方法によれば従来法と同様に所望
の形状の液晶配向膜を所定の付置に正確に形成すること
ができる。本発明の製造方法によって得られた電極板の
液晶配向膜の位置ズレは非常に小さく、通常土Q、 /
 11m+以内である。
Furthermore, according to the manufacturing method of the present invention, a liquid crystal aligning film having a desired shape can be accurately formed in a predetermined position as in the conventional method. The positional deviation of the liquid crystal alignment film of the electrode plate obtained by the manufacturing method of the present invention is very small, and the normal soil Q, /
It is within 11m+.

以上散切したように、本発明は均一な膜厚を廟する所望
の形状の液晶配向膜が所定の位置ζこ正確に設けられた
液晶表示体用電極板を簡単に、従って低コストで製AI
i 4−るこ(!4Bl能にするものである。また付随
的に、本発明は成品表示体の品質を向上させ、Nlt 
m 表示体の品質を均一化させ、また液晶表示体の製造
Iこおける歩留才りを同士させるものである。
As described above, the present invention enables easy and low-cost manufacturing of an electrode plate for a liquid crystal display in which a liquid crystal alignment film having a desired shape and a uniform film thickness is precisely provided at a predetermined position. AI
Incidentally, the present invention also improves the quality of the product indicator and improves the quality of the product label.
(m) To make the quality of the display body uniform and also to improve the yield rate in manufacturing the liquid crystal display body.

このように本発明の工業的利用価値は非常に大きなもの
であZ、。
As described above, the industrial utility value of the present invention is extremely large.

次に実施例によって本発明を説明する。Next, the present invention will be explained by examples.

実  施  例  / 最晶表示体lθ個分!0枚のカラス基板が一体となった
ガラス基板を準備した。このカラス基板の表面には1個
の液晶表示体を構成する互に形状の異なる一対の導電膜
(電極)が交互に一列に打って形成されている。このガ
ラス基板上にポリイミドの先駆体であるポリアミック酸
の75Xジメチルアセトアミド溶液を回転塗布法によっ
て塗布し、塗膜を一5O℃で7時間加熱して重合させ、
乾燥した。
Implementation example / The most crystalline display body lθ! A glass substrate in which 0 glass substrates were integrated was prepared. A pair of conductive films (electrodes) having different shapes constituting one liquid crystal display are formed alternately in a row on the surface of this glass substrate. A 75X dimethylacetamide solution of polyamic acid, which is a precursor of polyimide, was applied onto this glass substrate by a spin coating method, and the coating film was heated at -50°C for 7 hours to polymerize.
Dry.

このようにしてカラス基板全面にポリイミド樹脂からな
る液晶配向膜を形成した。その後、? 、2 Kメツシ
ュのステンレろスチール網を使用したスクリーン版を用
いて、液晶配向膜の表示に必要な部分に剣人度10−一
〇のプローンアスファルトtIg重に%、タシクコ6重
Ii%。
In this way, a liquid crystal alignment film made of polyimide resin was formed on the entire surface of the glass substrate. after that,? , 2. Using a screen plate using a stainless steel filter mesh of 2K mesh, the areas necessary for displaying the liquid crystal alignment film were coated with 10-10 level of plane asphalt tIg% and Tashikuko 6x Ii%.

ソルベツソナl5O(エツゾ・スタンダードf:J油製
商品名)、29重1−X、添加剤2重1%からなるレジ
ストインクを印刷塗布し、710℃で7重分間乾燥して
レジスト膜を形成した。
A resist ink consisting of Solbetsusona 15O (Etsuzo Standard f: J Oil Co., Ltd. trade name), 29 weight 1-X, and additive 2 weight 1% was applied by printing and dried at 710°C for 7 weight minutes to form a resist film. .

次に、レジスト膜を形成したガラス基板を、?jγ〕の
40%ヒドラジン水溶jffliこ攪拌しながら7分間
浸漬し、レジスト膜が積層されていない部分の液晶配向
膜をエツチング除去した。エツチング後直ちに基板を水
洗し、残留ヒドラジン水溶液を除去した。充分に水洗を
行なった後、基板をイソプロピルアルコール中に浸漬し
て水を置換し、その後基板を超音波攪拌機を備えた3槽
のトリクレン検者々に3分間づつ浸漬し、レジスト層を
剥離除去した。その後、基板をイソプロピルアルコール
蒸気槽に入れ、蒸気洗浄および乾燥を行なったO   
  、・1 上述のような液晶配向膜整形処理を行なったカラス基板
を一定方向に研摩すること1こよって配向膜f!I!L
、 、lIt晶配向膜に液晶配向性能を・付与し7た。
Next, remove the glass substrate on which the resist film was formed. The substrate was immersed in a 40% aqueous hydrazine solution of 40% hydrazine [gamma] for 7 minutes while stirring, and the liquid crystal alignment film in the portion where the resist film was not laminated was removed by etching. Immediately after etching, the substrate was washed with water to remove residual hydrazine aqueous solution. After thoroughly rinsing with water, the substrate was immersed in isopropyl alcohol to replace the water, and then the substrate was immersed for 3 minutes each in 3 tanks of Triclean testers equipped with an ultrasonic stirrer to peel off the resist layer. did. After that, the substrate was placed in an isopropyl alcohol vapor bath, and the O
,・1 Polishing the glass substrate, which has been subjected to the liquid crystal alignment film shaping process as described above, in a certain direction1.Thus, the alignment film f! I! L
, , imparted liquid crystal alignment performance to the lIt crystal alignment film.

その後ガラス基板を切断して液晶表示体70個分20枚
の電極板を得、こわら電極板を用いて通常の方法で70
個の液晶表示体を製造し4−o得られた液晶表示体いず
れにおいても液晶羽村は良好な配向状態を示した。また
、MIL標準試験法20コD−/θ6Cに従って各液晶
表示体を温湿度サイクル試験したところ、IOサイクル
経過した後でも液晶表示体に何の異常も認められなかっ
た。
After that, the glass substrate was cut to obtain 20 electrode plates for 70 liquid crystal displays, and 70 electrode plates were obtained using a stiff electrode plate in the usual manner.
In all of the liquid crystal displays obtained by manufacturing 4-o liquid crystal displays, the liquid crystal Hamura exhibited a good alignment state. Further, when each liquid crystal display was subjected to a temperature/humidity cycle test according to MIL standard test method 20coD-/θ6C, no abnormality was observed in the liquid crystal display even after the IO cycle had passed.

実  施  例  λ 実施例1と同じガラス基板を準備した。このカラス基板
上にポリパラバン酸樹脂の396ジメチルホルムアミド
溶液を回転塗布法によって塗布し、塗膜をコθO℃で3
0分間加熱して乾燥した。このようにしてガラス基板全
面にポリパラバン酸樹脂からなる液晶配向膜を形成した
。その後、、?、25メツシュのステンレススチール網
を使用したスクリーン版を用いて、液晶配向膜の表示に
必要な部分に実施例−,20− lで使用したアスファルトヲ主成分とするレジストイン
クを印刷塗布し、770℃で7重分間乾燥してレジスト
膜を形成した。
Example λ The same glass substrate as in Example 1 was prepared. A solution of polyparabanic acid resin in 396 dimethylformamide was applied onto this glass substrate by a spin coating method, and the coating film was applied at θO℃ for 3
It was heated and dried for 0 minutes. In this way, a liquid crystal alignment film made of polyparabanic acid resin was formed on the entire surface of the glass substrate. after that,,? Using a screen plate using a 25-mesh stainless steel mesh, the resist ink containing asphalt as the main component used in Example 20-1 was printed and coated on the areas necessary for displaying the liquid crystal alignment film. A resist film was formed by drying at ℃ for 7 minutes.

次に、レジスト膜を形成したガラス基板をJs℃の10
%アンモニア水中に攪拌しながら2分間浸漬し、レジス
ト膜が積層さnてぃない部分の液晶配向膜ヲエッチング
除去した。
Next, the glass substrate on which the resist film was formed was heated to 10°C at Js°C.
% ammonia water for 2 minutes with stirring, and the portions where the resist film was not laminated were etched away.

エツチング後直ちに基板を水洗し、残留アンモニア水を
除去した。充分に水洗を行なった後、基板をインプロピ
ルアルコール中に浸漬して水を置換し、その後基板を超
音波攪拌機を備えた3槽のトリクレン検者々に3分間づ
つ浸漬し、レジスト層8@離除去した。その後、基板を
イソプロピルアルコール蒸気槽に入れ、蒸気洗浄および
乾燥を行なった。
Immediately after etching, the substrate was washed with water to remove residual ammonia water. After thoroughly rinsing with water, the substrate was immersed in inpropyl alcohol to replace the water, and then the substrate was immersed for 3 minutes each in 3 tanks of Triclean testers equipped with ultrasonic stirrers to form a resist layer 8@ Removed. Thereafter, the substrate was placed in an isopropyl alcohol vapor bath for steam cleaning and drying.

上述のような液晶配向膜整形処理を行なったガラス基板
を一定方向に研摩゛することによって配向処理し、液晶
配向膜lこ液晶配向性能を付与した。その後カラス基板
を切断して液晶表示体10個分−0枚の電極板を得、こ
れら1!極板を用いて通常の方法で70個の液晶表示体
を製造した。得られた液晶表示体いずれにおいても液晶
月料は良好な配向状態をボした。才だ、MIL標準試験
法二〇二D −tO乙Cに従って各液晶表示体を温湿度
サイクル試験したところ、10サイクル経過した後でも
液晶表示体に何の異常も認y〕られなかった。
The glass substrate subjected to the liquid crystal alignment film shaping treatment as described above was subjected to alignment treatment by polishing in a certain direction, thereby imparting liquid crystal alignment performance to the liquid crystal alignment film. After that, the glass substrate was cut to obtain 10 electrode plates minus 0 electrode plates for 10 liquid crystal displays, and these 1! Seventy liquid crystal displays were manufactured using the electrode plates in a conventional manner. In all of the obtained liquid crystal display bodies, the liquid crystal layer showed a good alignment state. When each liquid crystal display was subjected to a temperature/humidity cycle test in accordance with MIL Standard Test Method 202D-tOC, no abnormality was observed in the liquid crystal display even after 10 cycles had passed.

出願人:大日本塗料株式会社 −+2.3 −Applicant: Dainippon Toyo Co., Ltd. −+2.3 −

Claims (1)

【特許請求の範囲】 (1)  表面に導電膜が形成された基板上?こさらに
液晶配向膜を形成してなる液晶表示体用電極板の製造方
法において、 り表面に上記導電膜が形成された上記基板上に塩基性溶
液に可溶な材料からなる上記液晶配向膜を形成し、 11)この液晶配向膜上にアスファルトを主成分と下る
耐塩基性レジストインクからなるレジスト膜を所望の形
状に形成し、111)塩基性エツチング液によって上記
レジスト膜が積層されていない部分の上記液晶配向膜を
除去することにより上記液晶配向膜を上記所望の形状I
こ整形し、しかる後 1v)上記レジスト膜を除去することを特徴とする製造
方法。 (、/)  上記塩基性情lI&に可溶な材料かポリイ
ミi・位I脂であることを特徴とする特lPf竹求の範
囲第1m記載の製造力θ:。 (3)  上記塩基性溶液に可溶161拐木Iがポリパ
ラバン酸粒)月りであることを特徴とする特it′I−
R+?求の範囲第1項記載のI!! nI′ljJ法。 (4’l  上記レジスト膜をスクリーン印刷法1こよ
って形成す2ことを特徴とする特Y[請)Rの範囲第1
項乃+第、?項のいずv力)の項記載の製造方法 (5)上記トソスト膜の膜厚がS乃キ50μであるこ々
を特徴とする特許請求σ)範囲第1項乃キ第1I頌0)
いずれかの項記載の製造方法。 (6)  上記液晶配向膜の膜厚が50乃キA;0OO
Aであるこ、!:を特徴とする特許請求の範囲第1項乃
牟第S項のいすわかの項記載の製造方法。
[Claims] (1) On a substrate with a conductive film formed on the surface? Furthermore, in the method for producing an electrode plate for a liquid crystal display by forming a liquid crystal alignment film, the liquid crystal alignment film made of a material soluble in a basic solution is formed on the substrate on which the conductive film is formed. 11) forming a resist film made of a base-resistant resist ink containing asphalt as a main component on this liquid crystal alignment film in a desired shape; The liquid crystal alignment film is shaped into the desired shape I by removing the liquid crystal alignment film of
A manufacturing method characterized in that the resist film is shaped, and then 1v) the resist film is removed. (,/) Manufacturing capacity θ according to range 1m of the special Pf bamboo claim, characterized in that it is a material soluble in the above-mentioned basic material or polyimide resin. (3) The above-mentioned basic solution-soluble 161-gold tree I is characterized in that it is polyparabanic acid grains).
R+? I! ! nI′ljJ method. (4'l) The first range of special Y [requested] R characterized in that the above-mentioned resist film is formed by a screen printing method (2).
Nachino + No. 1? (5) A patent characterized in that the film thickness of the above-mentioned Tosost film is 50μ.
The manufacturing method described in any of the sections. (6) The thickness of the liquid crystal alignment film is 50 mm; 0OO
It's A! A manufacturing method according to the Isuwaka section of Claims 1 and 2, characterized in that:
JP1820682A 1982-02-09 1982-02-09 EKISHOHYOJITAIYODENKYOKUBANNOSEIZOHOHO Expired - Lifetime JPH0235285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1820682A JPH0235285B2 (en) 1982-02-09 1982-02-09 EKISHOHYOJITAIYODENKYOKUBANNOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1820682A JPH0235285B2 (en) 1982-02-09 1982-02-09 EKISHOHYOJITAIYODENKYOKUBANNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS58136017A true JPS58136017A (en) 1983-08-12
JPH0235285B2 JPH0235285B2 (en) 1990-08-09

Family

ID=11965164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1820682A Expired - Lifetime JPH0235285B2 (en) 1982-02-09 1982-02-09 EKISHOHYOJITAIYODENKYOKUBANNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0235285B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260531A (en) * 1985-05-14 1986-11-18 New Japan Radio Co Ltd Manufacture of heater for cathode
EP0368204A2 (en) * 1988-11-07 1990-05-16 Nissan Chemical Industries Ltd. Ferroelectric liquid crystal element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260531A (en) * 1985-05-14 1986-11-18 New Japan Radio Co Ltd Manufacture of heater for cathode
EP0368204A2 (en) * 1988-11-07 1990-05-16 Nissan Chemical Industries Ltd. Ferroelectric liquid crystal element
US5111318A (en) * 1988-11-07 1992-05-05 Nissan Chemical Industries Ltd. Ferroelectric liquid crystal element

Also Published As

Publication number Publication date
JPH0235285B2 (en) 1990-08-09

Similar Documents

Publication Publication Date Title
KR920005775B1 (en) Photosensitive polymer composition and electrophoretic deposition
US5185059A (en) Process for producing electrode plate structure for liquid crystal color display device
KR100691336B1 (en) Manufacturing Method of a Flexible Semiconductor Board By Build-Up Process
CN104882452B (en) A kind of manufacture method of array base palte, display panel and array base palte
JPS58136017A (en) Manufacture of electrode plate for liquid-crystal display body
US6802985B1 (en) Method for fabricating metal wirings
JPWO2020144960A1 (en) Manufacturing method of pattern plate for plating and wiring board
KR840002447B1 (en) Electrode plane manufaction method for liquid crystal display
JPH01189631A (en) Production of liquid crystal panel electrode
JPS581129A (en) Two-layer type and guest-host type liquid crystal display element and its manufacture
KR20170061096A (en) Method and apparatus for separating silver from etching waste solution
JP3821868B2 (en) Method for plating on insulating base material and plating product obtained by the method
CN112888174B (en) Preparation method of EPD display driving board
JPH1062799A (en) Wiring board, production of wiring board, liquid crystal element equipped with that wiring board and production of liquid crystal element
JPS5884964A (en) Production of pattern plating on insulator
JPS5817417A (en) Liquid crystal display element
JP2945727B2 (en) Method of patterning electroless plating film and method of manufacturing liquid crystal display element
KR100343592B1 (en) Methods of plating on insulating substrates and plating grants obtained by the methods
JPS63310513A (en) Manufacture of tin oxide transparent electrode
TW202337282A (en) Conductive structure and manufacturing method thereof
JPH1010554A (en) Wiring board, production of this wiring board, liquid crystal element having this wiring board and production of this liquid crystal element
KR101725204B1 (en) Selective etchant for metal oxide
JPS617839A (en) Method for mending hard mask
JPH03236477A (en) Partial electroless-plating method, electro-optical device and its production
JPH0611702A (en) Method for electroless plating on substrate with transparent conductive film