JPS58135671A - Insulation and isolation type bipolar transistor - Google Patents

Insulation and isolation type bipolar transistor

Info

Publication number
JPS58135671A
JPS58135671A JP141583A JP141583A JPS58135671A JP S58135671 A JPS58135671 A JP S58135671A JP 141583 A JP141583 A JP 141583A JP 141583 A JP141583 A JP 141583A JP S58135671 A JPS58135671 A JP S58135671A
Authority
JP
Japan
Prior art keywords
region
emitter
base
isolation
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP141583A
Other languages
Japanese (ja)
Other versions
JPH0316777B2 (en
Inventor
Toyoki Takemoto
竹本 豊樹
Tsutomu Fujita
勉 藤田
Hiroyuki Sakai
坂井 弘之
Haruyasu Yamada
山田 晴保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP141583A priority Critical patent/JPS58135671A/en
Publication of JPS58135671A publication Critical patent/JPS58135671A/en
Publication of JPH0316777B2 publication Critical patent/JPH0316777B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7325Vertical transistors having an emitter-base junction leaving at a main surface and a base-collector junction leaving at a peripheral surface of the body, e.g. mesa planar transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To reduce the base resistance and the parasitic capacity by a method wherein the side surface of an emitter is coated with an insulator, and an external base is formed by isolation from the emitter so as to reach from under the insulator to immediately under the emitter end part. CONSTITUTION:The side surface of an emitter region 111 is coated with insulation and isolation regions 108 and 114, and the capacity between the emitter and the base is very small and greatly contributed to the high speed property. The graft base region 107 is positioned immediately under the insulation and isolation region 108, and arranged at the position very close to the emitter region 111 from a planar view and slightly away therefrom in a vertical direction. Thereby, it has a structure wherein the base resistance is sufficiently low, thus the generation of leak currents, burst noises and the deterioration of withstand voltages generated by the contact of the emitter and the graft base is prevented, and the element areas are small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は絶縁分離型バイポーラトランジスタに関するも
ので、特に高密1度かつ高周波特性を有する絶縁分離型
バイポーラトランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an isolation type bipolar transistor, and more particularly to an isolation type bipolar transistor having high density and high frequency characteristics.

従来例の構成とその問題点 絶縁分離型バイポーラトランジスタは、MO8型半導体
装置に比し高速性に優れているが、集積度及び低消費電
力性に欠点があり、この欠点を克服することが大きな命
題であった。
Conventional configurations and their problems Although isolation type bipolar transistors are superior in high speed compared to MO8 type semiconductor devices, they have drawbacks in terms of integration and low power consumption, and it is important to overcome these drawbacks. It was a proposition.

MO3型半導体装置の初期においては、MO8素子が基
板の反転層すなわちチャネルを利用するものであったた
め、素子間の分離が不必要であったこと及びシリコンゲ
ートあるいはモリブデンゲート構造の素子において明ら
かなように、ソースとドレイン形成をゲートをマスクと
して行なうことが出来るため、ドレイン、ソース及びチ
ャネル形成を自己整合的に行なえる大きな利点があった
In the early days of MO3-type semiconductor devices, MO8 devices utilized the inversion layer, or channel, of the substrate, so there was no need for isolation between devices, and as is evident in devices with silicon gate or molybdenum gate structures. Secondly, since the source and drain can be formed using the gate as a mask, there is a great advantage that the drain, source and channel can be formed in a self-aligned manner.

しかしながら、MO8型半導体装置においてもその集積
度が進むに従い、素子と素子間の分離すなわち1つの素
子のドレイン、ソースと他の素子のドレイン、ソースと
の分離が必要となって来て、これが高密度化に大きな問
題となって来ている。
However, as the degree of integration of MO8 type semiconductor devices increases, it becomes necessary to separate the elements, that is, to separate the drain and source of one element from the drain and source of another element. Densification has become a major problem.

一方バイポーラ型半導体装置の初期においては、素子形
成を行なうエピタキシャル層が10μm程度と非常に厚
く、その分離に要する分離領域の面積も非常に広くなっ
ていた。
On the other hand, in the early days of bipolar semiconductor devices, the epitaxial layer for forming elements was extremely thick, about 10 μm, and the area of the isolation region required for isolation was also extremely large.

しかしながら、昨今では絶縁分離技術が進み、かつエピ
タキシャル層も薄いものでは2μm前後となって来て、
分離中もそれほど広く取る必要がなくなって来たこと及
びベース領域、コレクター領域等が絶縁分離領域と接す
る如く形成出来ることになったことにより、分離に関し
てはMO8型半導体装置と比較して著しるしい差は生じ
なくなりつつある。しかし、バイポーラ型半導体装置は
MO8型半導体装置のようにベース、エミッタ。
However, in recent years, insulation isolation technology has advanced, and epitaxial layers have become thinner, around 2 μm.
Since it is no longer necessary to take as much space during isolation and the base region, collector region, etc. can be formed so as to be in contact with the isolation region, the isolation is significantly improved compared to MO8 type semiconductor devices. The difference is starting to disappear. However, bipolar semiconductor devices have a base and an emitter like MO8 type semiconductor devices.

コレクタを自己整合的に製作するたくみな手段がないた
め縮少化が遅れている。
The lack of a sophisticated means to fabricate collectors in a self-aligned manner has slowed downscaling.

加えるにバイポーラ型半導体装置においては、ベース抵
抗を下げるために、グラフトベース(高濃度ベース)領
域形成が必要であり、このクラフトベース領域とベース
領域の不純物濃度には差があり、エミッタとクラフトベ
ースを接触させることは耐圧不良、雑音、洩れ電流等の
発生があり不利益を生じる。
In addition, in bipolar semiconductor devices, it is necessary to form a graft base (high concentration base) region in order to lower the base resistance, and there is a difference in impurity concentration between the craft base region and the base region. Contacting them causes disadvantages such as poor withstand voltage, noise, and leakage current.

このようにバイポーラ型半導体装置においては、MO8
素子の3領域(ドレイン、チャネル、ソース)と比較す
ると4領域(エミッター、コレクター、ベース、クラフ
トベース)を有することによりますます面積が増大する
こととなる。
In this way, in bipolar semiconductor devices, MO8
Compared to the three regions (drain, channel, and source) of the device, having four regions (emitter, collector, base, and craft base) increases the area.

以下、図面に従ってこれらのことを説明する。These will be explained below with reference to the drawings.

第1図はOXIM(Oxide l5olated M
onolithic)と呼−ばれる絶縁分離バイポーラ
型半導体装置を示すものである。同図において、11は
p型半導体基板、12はn+埋込領斌、13はn+領竣
でコレクタコンタクト領域、14はnコレクタ領域、1
6はp+グラフトベース領域、16はp活性ベース領域
、17はn+エミッタ領域、18a。
Figure 1 shows OXIM (Oxide l5olated M
This is an isolated bipolar semiconductor device called onolithic. In the figure, 11 is a p-type semiconductor substrate, 12 is an n+ buried region, 13 is an n+ region and is a collector contact region, 14 is an n collector region, and 1
6 is a p+ graft base region, 16 is a p active base region, 17 is an n+ emitter region, and 18a.

18b、18c絶縁分離領域、19M、19b。18b, 18c insulation isolation region, 19M, 19b.

19cはそれぞれベース、エミッタ、コレクタ電極であ
る。本例において、分離領域18bは、素子間分離の為
の分離領域18a、18cの形成と同時に形成している
。従って、分離領域18bはコレクタ領域14とエミッ
タ領域17間を僅かな距離でもって分離をしているもの
の、絶縁分離領域18bが深くなるため分離中も広くな
る欠点がある。                  
       1□ま′たこの構造においては、ベース
抵抗を下げるためグラフトベース領域16を設置し、特
性的には改善されているが、p+領領域あるグラフトベ
ース領域16とn+領領域あるエミッタ領域17とが接
触しているため、基本的な欠陥すなわち漏洩電流の発生
、雑音の発生、耐圧の劣化等の欠点も生じる。
19c are base, emitter, and collector electrodes, respectively. In this example, isolation region 18b is formed at the same time as isolation regions 18a and 18c for isolation between elements. Therefore, although the isolation region 18b isolates the collector region 14 and the emitter region 17 by a small distance, there is a drawback that the insulation isolation region 18b becomes deeper and becomes wider during isolation.
1 □ Also, in this structure, the graft base region 16 is provided to lower the base resistance, and the characteristics are improved, but the graft base region 16 is a p+ region and the emitter region 17 is an n+ region. Since they are in contact with each other, basic defects such as leakage current generation, noise generation, and deterioration of withstand voltage occur.

これを防ぐためグラフトベース領域16とエミッタ領域
17とを離すことが必要となる。この為にはホトリソ工
程の追加が必要となシ、そのマスク合わせの誤差を考慮
せねばならず、素子の拡大は避けられない。
To prevent this, it is necessary to separate the graft base region 16 and emitter region 17. For this purpose, an additional photolithography process is required, and errors in mask alignment must be taken into consideration, making enlargement of the element unavoidable.

第2図はこの改善を図ったバイポーラ型半導体装置を示
すものである。
FIG. 2 shows a bipolar semiconductor device with this improvement.

同図に於て、第1図と同一番号は同一物を示し、20は
多結晶シリコン、21は酸化膜である。この素子におい
ては、グラフトベース領域16とエミッタ領域17とを
引き離した構造をしており、第1図に示す構造の欠陥は
除去されている。また重装1置においては、グラフトベ
ース領jJ]tt15上に直接金属電極をつけた場合、
そのコンタクト開孔の際のマスクの余裕度の為の寸法の
増大を防ぐため、グラフトベース領域15を形成するに
当たり、多結晶Si20を用い拡散を実施し、この多結
晶シリコン20をそのまま電極として伸ばし、ベース金
属電極19aを絶縁分離領域18a上で接続せしめてい
る。
In this figure, the same numbers as in FIG. 1 indicate the same parts, 20 is polycrystalline silicon, and 21 is an oxide film. This element has a structure in which the graft base region 16 and the emitter region 17 are separated, and the defects of the structure shown in FIG. 1 have been removed. In addition, in heavy equipment 1, when a metal electrode is attached directly on the graft base region jJ]tt15,
In order to prevent the dimensions from increasing due to the margin of the mask when forming the contact hole, when forming the graft base region 15, diffusion is performed using polycrystalline silicon 20, and this polycrystalline silicon 20 is stretched as it is as an electrode. , the base metal electrode 19a is connected on the insulation isolation region 18a.

本装置は第1図に示した装置より多くの改善はあるか、
次の3点で欠点がある。すなわち、第1の欠点はグラフ
トベース領域16とエミッタ領域17間に活性ベース領
域16があるため、ベース抵抗が大きくなることであり
、第2の欠点は多結晶シリコ720を電極として引出し
ているため、グラフトベース領域16上に金属電極を設
置したものに比し、抵抗が高くなることである。すなわ
ち多結晶シリコンの抵抗は、金属被膜抵抗に比し数桁高
く、特に高集積比が進み素子の容量並びに抵抗が小さく
なりつつある時に、ベース抵抗の増加は問題となる。第
3の欠点は絶縁分離領域18bが深いことであシ、これ
は第1図でのOXIM構造での欠点と同じである。
Does this device have many improvements over the device shown in Figure 1?
There are three drawbacks: That is, the first drawback is that the active base region 16 is located between the graft base region 16 and the emitter region 17, which increases the base resistance, and the second drawback is that the polycrystalline silicon 720 is extracted as an electrode. , the resistance is higher than that in which a metal electrode is placed on the graft base region 16. That is, the resistance of polycrystalline silicon is several orders of magnitude higher than that of a metal film resistor, and an increase in base resistance becomes a problem, especially when higher integration rates progress and the capacitance and resistance of elements become smaller. The third drawback is that the isolation region 18b is deep, which is the same as the drawback of the OXIM structure in FIG.

他の高密度化のガとして、三重拡散型のパイポ−ラ型半
導体装置の例をM3図に示す。同図に於て、第1図、第
2図と同一番号は同一物を示す。
As another example of higher density, an example of a triple diffusion type bipolar type semiconductor device is shown in Fig. M3. In this figure, the same numbers as in FIGS. 1 and 2 indicate the same parts.

第3図は活性ベース領域16、エミ・アター領域17、
グラフトベース領域16の位置関係は第2図と同じであ
り、先にのべた利点をもってbる。
FIG. 3 shows an active base region 16, an emitter region 17,
The positional relationship of the graft base region 16 is the same as in FIG. 2, and has the advantages mentioned above.

更に、この構造はグラフトペース16上の多結晶シリコ
ン20の直上に、ベース金属電極19δを配しているた
め、電極引出しのだめのベース抵抗は小さ利点をもって
いる。
Furthermore, this structure has the advantage that the base metal electrode 19δ is disposed directly above the polycrystalline silicon 20 on the graft paste 16, so that the base resistance of the electrode extraction basin is small.

しかしながらこの素子においても次にのべる3つの欠点
を持っている。その1,2は第2図でのべたものと同様
な欠点であシ、その1は活性ゝ−ス領域16がグラフト
ベース領域16、エミッタ領域17間に存在する為、ペ
ース抵抗が増大することであり、その2は絶縁分離領域
18bが素子間分離用の分離領域18a、18cと同じ
深さであるため、必然的に絶縁分離領域18bは巾が広
くなり、素子面積の増大が避けられないことである。そ
の3は、三重拡散型素子に共通な欠点であるがコレクタ
ー抵抗を下げるに必要なn+(高濃度のn型)領域とし
ての埋込み層が入っていないことである。
However, this element also has the following three drawbacks. Points 1 and 2 are the same drawbacks as those mentioned in FIG. The second reason is that the insulation isolation region 18b has the same depth as the isolation regions 18a and 18c for isolation between elements, so the insulation isolation region 18b inevitably becomes wider, and an increase in the element area is unavoidable. That's true. The third problem is that a buried layer as an n+ (high concentration n-type) region necessary for lowering the collector resistance is not included, which is a common drawback of triple diffusion type elements.

以上述べて来たように、現在公表されているバイポーラ
型半導体装置は、いずれも2,3の欠点を有している。
As described above, all of the currently published bipolar semiconductor devices have a few drawbacks.

発明の目的 本発明は以上の欠点にかんがみなされたもので、本発明
はより高密度でかつ高周波特性を向上した絶縁分離型バ
イポーラトランジスタを提供しようとするものである。
OBJECTS OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide an isolated bipolar transistor with higher density and improved high frequency characteristics.

発明の構成 本発明はエミッタの側面を絶縁物で被覆し、外部ベース
を前記絶縁物下からエミッタ端部直下に及ぶ様にエミッ
タと分離形成することによって、ペース抵抗及び寄生容
量の低下を実現した絶縁分離型バイポーラトランジスタ
である。
Structure of the Invention The present invention realizes reduction in paste resistance and parasitic capacitance by coating the side surface of the emitter with an insulating material and forming an external base separated from the emitter so as to extend from under the insulating material to just below the end of the emitter. It is an isolation type bipolar transistor.

実施例の説明 以下、本発明を図面とともに説明する。Description of examples The present invention will be explained below with reference to the drawings.

第4図は本発明に係る絶縁分離型バイポーラトランジス
タの一実施例の構造断面図を示すものである。同図にお
いて、101はp形基体で上面にn+形の埋込み領域1
02が拡散形成され、コレクタ抵抗を下げる役目をして
いる。103は素子間分離の絶縁物分離領域であり、1
04はp+形の反転防止のチャネルストッパーである。
FIG. 4 shows a structural cross-sectional view of an embodiment of an isolation type bipolar transistor according to the present invention. In the figure, 101 is a p-type substrate with an n+ type buried region 1 on the top surface.
02 is formed by diffusion and serves to lower the collector resistance. 103 is an insulator isolation region for isolation between elements;
04 is a p+ type channel stopper for preventing inversion.

106はn形のエピタキシャル層で、通常0.5〜6Ω
鳴の抵抗値の層が2〜5μm形成されコレクタとなる。
106 is an n-type epitaxial layer, usually 0.5 to 6Ω
A layer with a resistance value of 2 to 5 μm is formed and serves as a collector.

106はベース領域でp形不純物濃度で1×1017/
c111前後の値である。107はペース抵抗を下げる
に必要なグラフトベース領域で、ベース。
106 is the base region and the p-type impurity concentration is 1×1017/
The value is around c111. 107 is the graft base area necessary to lower pace resistance.

エミッタ間絶縁分離領域108直下に形成されている。It is formed directly under the inter-emitter isolation region 108.

109はベースコンタクト下のグラフトベース領域であ
る。11Qはコレクタ領域105のコンタクト抵抗を下
げるためのn+拡散層であり、エミッタ領域111の形
成拡散と同時に行なわれる。112a 、112b、1
12cは多結晶シリコン層テ、ベース、エミッタ、コレ
クタ(7)Alt極113a、113b、のアロイビッ
トを防止する役目をし、又、シリコン層112b、11
2Gはそれぞれエミッタ領域111及びコレクタコンタ
クト領域110の拡散源となる。114はエミッター領
域111とコレクター領域106の絶縁分離領域である
109 is a graft base region under the base contact. 11Q is an n+ diffusion layer for lowering the contact resistance of the collector region 105, and is formed and diffused simultaneously with the formation and diffusion of the emitter region 111. 112a, 112b, 1
12c serves to prevent alloy bits of the polycrystalline silicon layer te, base, emitter, collector (7) Alt poles 113a, 113b, and also serves to prevent alloy bits of the polycrystalline silicon layer 112b, 11
2G serve as diffusion sources for the emitter region 111 and collector contact region 110, respectively. 114 is an insulating isolation region between the emitter region 111 and the collector region 106.

本装置においては、エミッタ領域111の側面は絶縁分
離領域108,114により覆われており、エミッタ、
ベース間容量は非常に少なくなっており、高速性に大き
く寄与をしている。またグラフトベース領域107は絶
縁分離領域108直下に位置しており、エミッタ領域1
11とは平面的には非常に近接してかつ紙面の上下方向
にわずかはなれた位置に配置されている。このためペー
ス抵抗は十分低く、かつエミッタとグラフトベースが接
触することにより生じる、漏洩電流、バーストノイズ、
耐圧劣化の発生を防ぎかつ素子面積の小さい構造となっ
ている。バーストノイズについて、グラフトベースとエ
ミッタとが接触した第1図に示す様な例ではバーストノ
イズは1分間の測定で10Q回以上発生するが、本発明
に係るバイポーラ型半導体装置ではクラフトベースとエ
ミッタを紙面上下方向にて離して形成しているので、0
・2〜0・3μm位のわずかの距離に設定することが出
来る。従って、この位の距離だと3分間に0〜1回の程
度であり、第1図に示す従来例とは非常に顕著な差異が
ある。又エミッター領域111、コレクター領域105
を分離している絶縁分離領域114は素子間分離領域1
03に比し絶縁物の深さは浅く、そのため絶縁分離領域
114の巾は非常に狭く出来ることが特長であり、高密
度化に関して理想的な構造となっている。
In this device, the side surfaces of the emitter region 111 are covered with insulating isolation regions 108 and 114, and the emitter and
The capacitance between bases is extremely small, which greatly contributes to high speed. Furthermore, the graft base region 107 is located directly under the insulation isolation region 108, and the emitter region 1
It is located very close to 11 in plan view and slightly away from it in the vertical direction of the paper. Therefore, the pace resistance is sufficiently low, and leakage current and burst noise caused by contact between the emitter and the graft base are reduced.
The structure prevents breakdown voltage deterioration and has a small element area. Regarding burst noise, in the example shown in FIG. 1 where the graft base and emitter are in contact, burst noise occurs more than 10Q times in one minute of measurement, but in the bipolar semiconductor device according to the present invention, the graft base and emitter are in contact with each other. Since they are formed apart in the vertical direction of the paper, the
- It can be set to a small distance of about 2 to 0.3 μm. Therefore, at this distance, the number of times is about 0 to 1 per 3 minutes, which is a very noticeable difference from the conventional example shown in FIG. Also, an emitter region 111 and a collector region 105
The insulation isolation region 114 that separates the element isolation region 1
Compared to 03, the depth of the insulator is shallower, so the width of the insulation isolation region 114 can be made very narrow, which is an ideal structure for high density.

またエミッタ、コレクタ、ベースの電極取出し位置は多
結晶シリコン112によりあらかじめ位置決めがされて
いるため、新たにコンタクトのための開孔工程をするこ
となしに位置が決まっており、かつエミッタ領域111
.コレクタ領域106゜ベース領域109の周辺は全て
酸化被膜で覆われ、電極の取出しに必要な多結晶シリコ
ン領域のみが表面に導体部分として露出しているため、
マスク合わせ誤差を考慮することなしに、すなわち多少
のマスク合わせ誤差を許容できうる構造となっている。
Furthermore, since the electrode extraction positions of the emitter, collector, and base are predetermined using the polycrystalline silicon 112, the positions can be determined without the need for a new hole-opening process for contact, and the emitter region 111
.. The entire periphery of the collector region 106° and the base region 109 is covered with an oxide film, and only the polycrystalline silicon region necessary for taking out the electrode is exposed on the surface as a conductor.
The structure is such that a certain amount of mask alignment error can be tolerated without considering mask alignment error.

次に、本発明に係る絶縁分離型バイポーラトランジスタ
の製造方法を示す。
Next, a method for manufacturing an isolation type bipolar transistor according to the present invention will be described.

第6図はその工程断面図を示すもので、以下工程順に説
明する。
FIG. 6 shows a cross-sectional view of the process, and the process will be explained below in order.

^ p形半導体基板121上に、絶縁分離されたトラン
ジスタ形成の為の島領域122、分離領域123、n+
埋込層124を形成する。島領域122は比抵抗0.6
〜2Ω偶のn形単結晶層であり、この島領域122上に
は選択酸化用のS i3N4124’が形成されている
。この構造は通常の選択酸化技術を用いて容易に構成す
ることが出来る。
^ On a p-type semiconductor substrate 121, an island region 122 for forming an isolated transistor, an isolation region 123, and an n+
A buried layer 124 is formed. The island region 122 has a specific resistance of 0.6
This is an n-type single crystal layer of ~2Ω even, and Si3N4124' for selective oxidation is formed on this island region 122. This structure can be easily constructed using conventional selective oxidation techniques.

(I3)  コレクタ及びベースを分離する領域126
上の5t3N4124を除去した後、残ったS i3N
4124をマスクとして選択酸化を行ない、ベースとコ
レクタを分離する酸化膜(以下BC分離膜と称す。)1
26を形成する。このB       、。
(I3) Region 126 separating collector and base
After removing the 5t3N4124 above, the remaining Si3N
Selective oxidation is performed using 4124 as a mask to form an oxide film that separates the base and collector (hereinafter referred to as BC isolation film) 1
Form 26. This B.

C分離膜126の深さは、分離酸化膜123よりも浅く
形成し、これにより横方向の酸化膜の広がりを少なくす
る。また選択酸化前に、BC分離領域125の島領域1
22をエツチングしてもよい。
The depth of the C isolation film 126 is formed to be shallower than the isolation oxide film 123, thereby reducing the spread of the oxide film in the lateral direction. Also, before selective oxidation, island region 1 of BC isolation region 125 is
22 may be etched.

(qBC分離膜126と分離膜領域123によって形成
されたコレクタ領域127上にイオン注入の阻止膜とし
てレジスト膜128を通常のホトエッチ技術を用いて形
成する。このレジスト膜128、BC分離膜126、分
離領域123をマスクとしてイオン注入によりボロンを
島領域122に打ち込む。このイオン注入に上り活性ベ
ース層129が形成される。この時の注入条件を60 
KeV 、 0.5〜3X 10103ato /(1
4とすると、不純物分布は、島領域122表面から0.
2〜0.3μmに位置する。この様に注入ドーズ量を、
少なくすると、イオン注入によりStに誘起される欠陥
を減らすことが出来、コレクタ・エミッタ間のリーク電
流の減少、及びトランジスタ歩留りを上げるのに効果が
ある。
(A resist film 128 is formed as an ion implantation blocking film on the collector region 127 formed by the qBC separation film 126 and the separation film region 123 using a normal photoetching technique. This resist film 128, the BC separation film 126, and the isolation Boron is implanted into the island region 122 by ion implantation using the region 123 as a mask.The active base layer 129 is formed by this ion implantation.The implantation conditions at this time are
KeV, 0.5~3X 10103ato/(1
4, the impurity distribution is 0.4 from the surface of the island region 122.
Located between 2 and 0.3 μm. In this way, the implantation dose is
By reducing the amount, defects induced in St by ion implantation can be reduced, which is effective in reducing collector-emitter leakage current and increasing transistor yield.

q レジスト膜128を除去した後全面に多結晶Si 
膜130及びSi3N4膜131を堆積する。ベースと
エミッタを分離する領域132、ベースとコレクタを分
離する領域133のそれぞれの窓をレジスト膜134に
よって形成する。
q After removing the resist film 128, polycrystalline Si is deposited on the entire surface.
A film 130 and a Si3N4 film 131 are deposited. A resist film 134 is used to form windows in a region 132 separating the base and emitter and a region 133 separating the base and collector.

(勾 開孔窓132 、133を有するレジスト膜13
4をマスクにして、513N4131、多結晶81層1
22を少なくともエミッタとなる領域の側面が露出され
るまでエツチングを行なうと良い。つまり活性ベース層
129に達する如くエツチングすると良い。その後レジ
スト膜134を除去する。
(Resist film 13 with slope opening windows 132 and 133
4 as a mask, 513N4131, polycrystalline 81 layer 1
22 is preferably etched until at least the side surface of the region that will become the emitter is exposed. In other words, it is preferable to perform etching so as to reach the active base layer 129. After that, the resist film 134 is removed.

CF) Si3N4膜131をマスクとして選択酸化を
行なう。これにより、エミッタを形成する領域136と
ベースコンタクトを形成する領域136を分離する酸化
膜137(以後EB分離膜と称す)を形成する。このE
B分離膜により、エミッタを形成する領域136の側面
は絶縁物で被覆されることになる。
CF) Selective oxidation is performed using the Si3N4 film 131 as a mask. As a result, an oxide film 137 (hereinafter referred to as an EB isolation film) is formed that separates the region 136 where the emitter is to be formed and the region 136 where the base contact is to be formed. This E
Due to the B isolation film, the side surfaces of the region 136 forming the emitter are covered with an insulator.

0 その後、Si3N4膜131を除去した後、ベース
コンタクトを形成する領域136上をレジスト膜138
で被覆し、これをマスクとしてほぼPolysi層13
00表面付近にAsをイオン注入して熱処理を施すこと
によシエミソタ139とコレクタコンタクト140を形
成する。
0 After that, after removing the Si3N4 film 131, a resist film 138 is formed over the region 136 where the base contact is to be formed.
Using this as a mask, approximately Polysi layer 13 is coated with
By ion-implanting As into the vicinity of the 00 surface and subjecting it to heat treatment, a Siemi contact 139 and a collector contact 140 are formed.

この時エミッタ139の側面はBC分離膜126、EB
分離膜137により囲まれている。
At this time, the side surfaces of the emitter 139 are the BC separation film 126 and the EB
It is surrounded by a separation membrane 137.

(ロ) レジスト膜138を除去した後、コレクタコン
タクト領域140上を少なくともレジスト膜141で被
覆し、これをマスクとして高濃度のボロンをイオン注入
する。これにより高濃度のグラフトベース142が形成
されかつエミッタ139に対しセルファライン構造であ
る。この時エミッタ139上に多結晶層130が存在す
るため、イオン注入のエネルギーを適当な値に選ぶこと
によって、エミッタ139直下の活性ベース129に及
ぼす影響を少なくできる。
(b) After removing the resist film 138, the collector contact region 140 is covered with at least a resist film 141, and high concentration boron ions are implanted using this as a mask. As a result, a highly concentrated graft base 142 is formed and has a self-line structure with respect to the emitter 139. At this time, since the polycrystalline layer 130 exists on the emitter 139, the influence on the active base 129 directly under the emitter 139 can be reduced by selecting an appropriate value for the ion implantation energy.

なお、エミッタ139にはボロンが注入されるがエミッ
タ139が高濃度であるので問題はない。このように形
成されたグラフトベース142はエミッタ139の周辺
まで形成されているのでベース抵抗を下げることが可能
と夕る。またエミッタ139となる周辺部を酸化した後
、高濃度ボロンのイオン注入を行なっているので、エミ
ッタ139に接するBC分離膜126の直下にはボロン
が打ち込まれない。例えばエミッタ139に接するEB
分離膜137の厚さを0.2〜0.4μmに形成すると
、注入時において、エミッタ139と、高濃度グラフト
ベース142を接することなく分離することができる。
Although boron is implanted into the emitter 139, there is no problem since the emitter 139 has a high concentration. Since the graft base 142 formed in this manner is formed up to the periphery of the emitter 139, it is possible to lower the base resistance. Further, since high concentration boron ions are implanted after oxidizing the peripheral portion that will become the emitter 139, boron is not implanted directly under the BC isolation film 126 in contact with the emitter 139. For example, EB in contact with emitter 139
When the separation film 137 is formed to have a thickness of 0.2 to 0.4 μm, the emitter 139 and the high concentration graft base 142 can be separated from each other without coming into contact with each other during implantation.

またこの高濃度ボロンイオン注入は、エミッタ139お
よび活性ベース129の形成後に行なうので、この工程
後において高温の熱処理工程の必要がなく、不純物プロ
フィールをインプラ後とほぼ変わらない形で、最終工程
まで進めることができる。特にエミッタ139直下への
、高濃度層の入り込みを抑えることができる。このため
、エミッタ139と活性ベース129間の耐圧を下げる
ことなく、また、バーストノイズ、コレクタとエミッタ
のリーク等も十分下げることができる。
Furthermore, since this high-concentration boron ion implantation is performed after the emitter 139 and the active base 129 are formed, there is no need for a high-temperature heat treatment step after this step, and the impurity profile can proceed to the final step with almost no change from that after implantation. be able to. In particular, it is possible to prevent the highly concentrated layer from entering directly under the emitter 139. Therefore, burst noise, leakage between the collector and emitter, etc. can be sufficiently reduced without lowering the breakdown voltage between the emitter 139 and the active base 129.

(I)  それぞれのコンタクト領域にAl配線を施し
、ベース電極143.エミッタ電極144、コレクタ電
極145が形成される。そして、それぞれの電極構造は
Al配線−多結晶Si層−単結晶Si層構造になってい
るので、シンター処理を行なってもAlの突き抜けによ
る接合の破壊を防ぐことができる。
(I) Al wiring is applied to each contact region, and a base electrode 143. An emitter electrode 144 and a collector electrode 145 are formed. Since each electrode structure has an Al wiring-polycrystalline Si layer-monocrystalline Si layer structure, even if sintering is performed, breakdown of the bond due to penetration of Al can be prevented.

以上述べたトランジスタの製造法において、活性ベース
層の形成を、第5図工程台のグラフトベースインプラ直
前に、活性ベース用のイオン注入を行なって形成しても
よい。この工程でも同じ効果を生むことができることは
云うまでもない。
In the above-described method of manufacturing a transistor, the active base layer may be formed by performing active base ion implantation immediately before graft base implantation on the process table in FIG. It goes without saying that this process can also produce the same effect.

発明の効果 以上のように本発明は、エミッタと外部ベースが接する
ことなく縦方向に分離され、かつ外部ベースは絶縁物下
からエミッタ端部直下に及んでおり、エミッタと外部ベ
ースが接していないためにエミッターベース間耐圧が高
く、外部ベースとエミッタとは縦方向に分離され近接す
る構造となるためベース抵抗が小さく、エミッター外部
ベースが平面的に重なりを生じ面積を小さくすること力
玉でき、さらにエミッタ側面は絶縁物で覆われかつエミ
ッタはその底面で低濃度の活性ベースのみと接する構造
となるため、ベース−エミッタ間容量が小さくなる。し
たがって、本発明によれば高周波特性が極めて良く、耐
圧的にもすぐれ、高密度なバイポーラトランジスタ分有
する高性能なバイポーラ半導体集積回路を実現すること
ができる。
Effects of the Invention As described above, in the present invention, the emitter and the external base are separated in the vertical direction without being in contact with each other, and the external base extends from under the insulator to just below the end of the emitter, so that the emitter and the external base are not in contact with each other. Therefore, the withstand voltage between the emitter and base is high, and the external base and emitter are vertically separated and close to each other, so the base resistance is low, and the emitter and external base overlap planarly, reducing the area. Furthermore, since the emitter side surface is covered with an insulating material and the emitter is in contact with only the low concentration active base at its bottom surface, the base-emitter capacitance is reduced. Therefore, according to the present invention, it is possible to realize a high-performance bipolar semiconductor integrated circuit having extremely good high frequency characteristics, excellent voltage resistance, and a high density of bipolar transistors.

【図面の簡単な説明】[Brief explanation of drawings]

を示す工程断面図である。 103.123・・・・・・素子間分離絶縁膜、1晃。 129 ”””活性ベース領域、107,142−拳・
・・・嶋グラフトベース領域、 1o8+ 137・■
・・・・・・エミッタ・ベース間分離絶縁膜、111゜
139 ”””エミッタ領域、141,126−−−・
・・・・・コレクタ・ベース間分離絶縁膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名帛 
l 図 w42図 13図 第4図 sat
FIG. 103.123... Inter-element isolation insulating film, 1 Akira. 129 """Active base area, 107,142-Fist・
...Shima graft base area, 1o8+ 137・■
...Emitter-base isolation insulating film, 111゜139 """ Emitter region, 141, 126----
...Collector-base isolation insulating film. Name of agent: Patent attorney Toshio Nakao and one other person
l Figure w42 Figure 13 Figure 4 sat

Claims (1)

【特許請求の範囲】[Claims] 側面が絶縁物でおおわれたエミッタ領域と、前記エミッ
タ領域直下に形成された活性ベース領域と、前記活性ベ
ース領域に接続され、前記絶縁物下から前記エミッタ領
域端部直下に及ぶ様に前記エミッタ領域と分離されて形
成された外部ベース領域とを有することを特徴とする絶
縁分離型バイポーラトランジスタ。
an emitter region whose side surfaces are covered with an insulator; an active base region formed directly below the emitter region; and an emitter region connected to the active base region and extending from below the insulator to immediately below an end of the emitter region. 1. An isolated bipolar transistor characterized in that it has a separate external base region and a separate external base region.
JP141583A 1983-01-07 1983-01-07 Insulation and isolation type bipolar transistor Granted JPS58135671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP141583A JPS58135671A (en) 1983-01-07 1983-01-07 Insulation and isolation type bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP141583A JPS58135671A (en) 1983-01-07 1983-01-07 Insulation and isolation type bipolar transistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15599679A Division JPS5679469A (en) 1979-11-30 1979-11-30 Semiconductor device and its preparing method

Publications (2)

Publication Number Publication Date
JPS58135671A true JPS58135671A (en) 1983-08-12
JPH0316777B2 JPH0316777B2 (en) 1991-03-06

Family

ID=11500843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP141583A Granted JPS58135671A (en) 1983-01-07 1983-01-07 Insulation and isolation type bipolar transistor

Country Status (1)

Country Link
JP (1) JPS58135671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114573A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Hetero junction bipolar transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852184A (en) * 1971-10-29 1973-07-21
JPS4879980A (en) * 1972-01-26 1973-10-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852184A (en) * 1971-10-29 1973-07-21
JPS4879980A (en) * 1972-01-26 1973-10-26

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114573A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Hetero junction bipolar transistor
JPH0744182B2 (en) * 1984-11-09 1995-05-15 株式会社日立製作所 Heterojunction bipolar transistor

Also Published As

Publication number Publication date
JPH0316777B2 (en) 1991-03-06

Similar Documents

Publication Publication Date Title
US4546536A (en) Fabrication methods for high performance lateral bipolar transistors
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
US4323913A (en) Integrated semiconductor circuit arrangement
JP3113426B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JPH0513426A (en) Semiconductor device
JPS58135671A (en) Insulation and isolation type bipolar transistor
KR20070088352A (en) Semiconductor device and manufacturing method thereof
JP2765132B2 (en) Manufacturing method of vertical field effect transistor
JPH0363210B2 (en)
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
JPS6159775A (en) Semiconductor device
JPS637665A (en) Lateral p-n-p transistor
JPS6115372A (en) Semiconductor device and manufacture thereof
JPH04116933A (en) Manufacture of semiconductor device
JPS63124576A (en) Field effect transistor
JPS6350062A (en) Semiconductor device
JPH0682789B2 (en) Method for manufacturing semiconductor device
JPH0550856B2 (en)
JPH01164068A (en) Semiconductor device
JPS59145570A (en) Lateral bipolar transistor and manufacture thereof
JPS59175766A (en) Semiconductor device and manufacture thereof
JPS59231833A (en) Semiconductor device and manufacture thereof
JPS6065566A (en) Semiconductor device
JPH02298037A (en) Semiconductor device
JPS62194672A (en) Semiconductor device and manufacture thereof