JPS58135636A - Heat treatment equipment for semiconductor wafer - Google Patents

Heat treatment equipment for semiconductor wafer

Info

Publication number
JPS58135636A
JPS58135636A JP1861182A JP1861182A JPS58135636A JP S58135636 A JPS58135636 A JP S58135636A JP 1861182 A JP1861182 A JP 1861182A JP 1861182 A JP1861182 A JP 1861182A JP S58135636 A JPS58135636 A JP S58135636A
Authority
JP
Japan
Prior art keywords
temperature
core tube
wafer
furnace core
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1861182A
Other languages
Japanese (ja)
Inventor
Masanobu Mito
水戸 政信
Fumio Shimura
史夫 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP1861182A priority Critical patent/JPS58135636A/en
Publication of JPS58135636A publication Critical patent/JPS58135636A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate

Abstract

PURPOSE:To enable to perform heat treatment eliminated with the temperature difference inside of the reaction tube face of the heat treatment equipment when the semiconductor wafers of the plural number are to be taken in and out from the reaction tube by a method wherein the condition of the most suitable temperature rise or temperature drop is bestowed to the whole wafers. CONSTITUTION:Non contacting temperature detecting means 8, 9 measure the temperatures at the voluntary points on the surfaces of the semiconductor wafers w1, wn to input the results thereof to a control means 10, while a scanning means to make the non contacting temperature sensors 8, 9 to transfer in the vertical, lateral, and voluntary directions is provided, and the transferring direction and the distance thereof are controlled by the control means 10. Independent heating elements a1-an having temperature sensors and equipped circularly at the circumference of the core tube 1 are set respectively at the voluntary temperatures according to the informations outputted from the control means 10 to form temperature distribution of voluntary largeness at the voluntary positions in the core tube 1. An autoloader 5 controls the rotation of a motor according to the informations outputted from the control means 10, and by pushing and drawing a connected quartz bar 4, a wafer-boat 3 mounting the semiconductor wafers of the plural number is made to transfer into the inside of the core tube 1.

Description

【発明の詳細な説明】 本発明は、半導体ウェハーの熱処理装置に関するもので
、特に種々の熱処理を施す製造プロセスにおいて、ウェ
ハーのそりあるいはスリップ転位等の欠陥の発生を防止
する半導体ウェハーの熱処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat treatment apparatus for semiconductor wafers, and more particularly to a heat treatment apparatus for semiconductor wafers that prevents the occurrence of defects such as wafer warpage or slip dislocation in manufacturing processes that perform various heat treatments. It is something.

半導体装置例えば、ICを製造するときにれ。When manufacturing semiconductor devices, for example, ICs.

通常シリコン等の半導体ウェハーをII数孜互シ1が平
行になるようにボートに並立して設置し、このボートを
筒形反応管にそう人し、反応管軸心にその主面が垂直に
なるようKして加熱し、半導体ウェハーに所定の熱処理
を行なう。
Usually, semiconductor wafers such as silicon are placed in parallel in a boat so that the wafers are parallel to each other, and the boat is placed in a cylindrical reaction tube so that its main surface is perpendicular to the axis of the reaction tube. The semiconductor wafer is heated at K such that the semiconductor wafer is subjected to a predetermined heat treatment.

通常これらの熱処理は高温で行なわれる為に、ウェハー
のそりやスリップ等の転位が生じ、ウェハーの特性不良
の原因となり、半導体装置製造の歩留りを著しく低下さ
せることになる。
Since these heat treatments are usually performed at high temperatures, dislocations such as warping and slipping of the wafer occur, causing poor characteristics of the wafer and significantly reducing the yield of semiconductor device manufacturing.

従来はこれらそりゃスリップをできる限り#宏する為に
反応管内に、ボートを出し入れする時には、試料の自動
移動手段(以後オート・ローダ−と記す)を用いて、極
力低速でウェハー・&−)の、出し入れを行なう等の考
慮がなされて来た。
Conventionally, when loading and unloading the boat into and out of the reaction tube, in order to minimize the slippage, an automatic sample moving means (hereinafter referred to as an autoloader) was used to load the wafers at the slowest possible speed. , and consideration has been given to things like loading and unloading.

しかし、処理濃度が高温になると上述の対策では充分で
はなく、転位等の欠陥を、防止することとその温度分布
を示すように、反応管1の長さ方向には、棒状発熱体2
によって作られた、破線で示した均熱帯(11度が一定
となる領域)を中心として、反応管10前後方向に向か
って低くなる山形の温度勾配を持っている。その為Kf
f応管1に半導体ウェハーを挿入、あるいは引き出しを
行なう際には、反応管1に対して前部に置かれた半導体
ウェハーと、後部に置かれたウェハーでは反応管1内の
、温度勾配に従って半導体ウェハー各々の温度が異なっ
ている。
However, when the processing concentration becomes high temperature, the above-mentioned measures are not sufficient, and in order to prevent defects such as dislocations and to show the temperature distribution, a rod-shaped heating element 2 is installed in the length direction of the reaction tube 1.
It has a mountain-shaped temperature gradient that decreases toward the front and rear of the reaction tube 10, centered around the soaking zone (area where the temperature is constant at 11 degrees) shown by the broken line. Therefore Kf
f When a semiconductor wafer is inserted into or pulled out from the reaction tube 1, the semiconductor wafer placed at the front of the reaction tube 1 and the wafer placed at the rear of the reaction tube 1 are heated according to the temperature gradient inside the reaction tube 1. Each semiconductor wafer has a different temperature.

又、第2図に示すように第1図のウェハー・ボート3の
上に置かれた半導体ウェハーWでは、面内の各点a +
 b +  e Hd +では、それぞれの間に温度差
があり、その温度差がそり、スリップ転位等を招く原因
になる。
Further, as shown in FIG. 2, in the semiconductor wafer W placed on the wafer boat 3 of FIG. 1, each point a + in the plane
There is a temperature difference between b + e Hd +, and this temperature difference causes warpage, slip dislocation, etc.

このウェハー面内に生じる温度差は、従来の熱処理にお
いては不可避と言わなければならなかった0 つまり従来方法では第2図に示す、ウェハーWの面内の
各点as bs e、a、%にaとCに生じる温度差Δ
t(cはウェハー・ボート3に接触している為に冷却速
度が他の点よりも速く、他の点と比べて相対的に低い温
度となっている)の為にウェハー外周より中心方向に走
るスリップが発生しやすい傾向にあった。
This temperature difference that occurs within the wafer surface is unavoidable in conventional heat treatment.In other words, in the conventional method, as shown in FIG. Temperature difference Δ occurring between a and C
t (because c is in contact with the wafer boat 3, the cooling rate is faster than other points, and the temperature is relatively lower than other points), so Running slips tended to occur more easily.

このスリップの発生を極力防止する為に従来方法ではj
tをなるべく小さくする為にウェハーの出し入れに長時
間を要していた。
In order to prevent the occurrence of this slip as much as possible, the conventional method
In order to make t as small as possible, it took a long time to load and unload the wafer.

しかし実際の半導体製造プ四七スにおいては、プ田七ス
の時間効率、製造コストの低減等の理由から、ウェハー
の出し入れに長時間を要するのは得策ではない。
However, in actual semiconductor manufacturing processes, it is not a good idea to take a long time to load and unload wafers for reasons such as time efficiency of the process and reduction of manufacturing costs.

通常、半導体装置の製造においては、このよう    
  )□な熱処理が何回も繰返えされるので、ブ田セス
を経るに従い、熱歪み、欠陥の増加をもたらし最終的な
製品の歩留りを著しく低下させることになる。
Normally, in the manufacturing of semiconductor devices, this type of
) □ heat treatment is repeated many times, and as the material undergoes cessation, thermal distortion and defects increase, resulting in a significant decrease in the yield of the final product.

第3図は、従来装置を模式的に表わしたものである。従
来装置ではウェハーを反応管1に挿入又は、取り出すと
きには、ウェハーを乗せたウェハー、ボート3に石英棒
4の先端を固定し、終端を取り付は金具6に固定し、制
御回路7からの命令により、オート・ローダ−5は半導
体ウェハーを、挿入する際には、石英棒4を一定の速度
で押し、文字導体ウェハーを取り出す際には、一定の速
度で石英棒4を引いて行く。
FIG. 3 schematically represents a conventional device. In the conventional apparatus, when inserting or removing a wafer from a reaction tube 1, the tip of a quartz rod 4 is fixed to the wafer or boat 3 carrying the wafer, and the terminal end is fixed to a fitting 6, and the command from the control circuit 7 is used. Accordingly, the autoloader 5 pushes the quartz rod 4 at a constant speed when inserting a semiconductor wafer, and pulls the quartz rod 4 at a constant speed when taking out a character conductor wafer.

このような従来装置においては、炉芯管1に、ウェハー
・ボート3を出し入れするとき、第1囚で示したように
反応管1内に存在する温度勾配の為に複数の半導体ウェ
ハーのうち一枚だけについては、最適条件のもとに反応
管1への出し入れが行なわれても、他の多数の半導体ウ
エノ1−については保障のかぎりではなかった。又、第
2図で示した半導体ウェハー面内に存在する温度差を是
正するなんらの対策も施されていなかった。
In such a conventional apparatus, when loading and unloading the wafer boats 3 into and out of the furnace core tube 1, one of the plurality of semiconductor wafers is removed due to the temperature gradient that exists within the reaction tube 1, as shown in the first example. Even if only one semiconductor wafer was taken in and out of the reaction tube 1 under optimal conditions, this could not be guaranteed for many other semiconductor wafers 1-. Furthermore, no measures were taken to correct the temperature difference existing within the plane of the semiconductor wafer shown in FIG.

本発明の目的はこのような従来装置の欠点を除来して、
熱処理を施す為に、豪数の半導体ウェハーを反応管IK
出し入れするとき、壷数の半導体ウニへ−全てについて
、最適な温度上昇あるいは濃度降下の条件を与え、さら
に各々の半導体ウェハーについては面内の温度差をなく
した熱処理を可能にする熱処理装置を提供するととにあ
る。
The purpose of the present invention is to eliminate the drawbacks of such conventional devices,
A large number of semiconductor wafers are placed in a reaction tube IK for heat treatment.
When loading and unloading semiconductor wafers, we provide heat treatment equipment that provides optimal temperature rise or concentration drop conditions for all semiconductor wafers, and also enables heat treatment that eliminates in-plane temperature differences for each semiconductor wafer. Then there it is.

本発明によれば炉芯管と骸炉芯管の周りを環状に取りま
くように分割された複数個の独立した発熱体と、該発熱
体ごとに温度を検出する濃度センサーとを備えた電気炉
と、前記炉芯管内に半導体ウェハーを挿入する試料の自
動移動手段と、前記炉芯管内に挿入される半導体ウェハ
ーの面内温度を検出する一対の非接触型温度検出手段と
を備えかつ該非接触型温度検出手段から検出された半導
体ウェハーの面内温度、および前記発熱体ごとに設けら
れた温度センサーからの温度をもとに前記各発熱体およ
び前記試料の自動移動手段を制御する制御手段を備えて
いることを特徴とする半導体ウェハーの熱処理装置が得
られる。
According to the present invention, an electric furnace includes a furnace core tube and a plurality of independent heating elements that are divided so as to surround the skeleton furnace core tube in an annular manner, and a concentration sensor that detects the temperature of each heating element. and an automatic sample moving means for inserting a semiconductor wafer into the furnace core tube, and a pair of non-contact type temperature detection means for detecting the in-plane temperature of the semiconductor wafer inserted into the furnace core tube, and the non-contact method includes: A control means for controlling each of the heating elements and the automatic movement means for the sample based on the in-plane temperature of the semiconductor wafer detected by the mold temperature detection means and the temperature from a temperature sensor provided for each of the heating elements. A semiconductor wafer heat treatment apparatus is obtained.

以下図面を用いて本発明を具体的に説明する。The present invention will be specifically explained below using the drawings.

第4図は本装置の概略図を示し、第5図は第4図の発熱
体層辺部を炉芯管の長さ方向から見た図を示し、図中の
al 〜&m+ bt 〜b、、 cl 〜(!@1 
dl 〜dn+et〜ell fl〜fm+gt〜ge
t hx −hll は炉芯管の周りを取り巻く、分割
されたそれぞれ独立した発熱体を示し、各発熱体にはそ
れぞれの発熱体に量も近い炉芯f1の湿度を測定する温
度センサー81〜Shnが具備されていて、温度センサ
ーs&1〜Shnによって得られた炉芯管1の各部位の
温度は、制御手段lOに入力される。
FIG. 4 shows a schematic diagram of this device, and FIG. 5 shows a view of the heating element layer side part of FIG. 4 viewed from the longitudinal direction of the furnace core tube. , cl ~(!@1
dl ~dn+et~ell fl~fm+gt~ge
thx - hll indicates divided and independent heating elements surrounding the furnace core tube, and each heating element has temperature sensors 81 to Shn that measure the humidity of the furnace core f1, which is close in amount to the respective heating element. The temperature of each part of the furnace core tube 1 obtained by the temperature sensors s&1 to Shn is inputted to the control means IO.

第6因は第5図を炉芯管の横方向から見た図を示し、第
6図では第5図で発熱体a1〜h、のうちa I 〜a
n ! e I −@tr を図示している。
The sixth factor shows a view of FIG. 5 viewed from the side of the furnace core tube, and in FIG. 6, among the heating elements a1 to h, a I to a
n! e I −@tr is illustrated.

そして集6図のa 1−&t* + 61〜efl に
は第5図に図示していなかった各発熱体の具備する温度
センサーより得られた炉芯t1の各点の温度を制御手段
10に入力するリード線と、制御手段10より各熱体a
1〜hfi に電力を供給するリード線を、それぞれ各
熱体a、〜a”+e)〜・1から制御手段1゜に向う矢
印と、制御手段10から、各発熱体に向う矢印を用いて
表わしている。
In a 1- & t* + 61 to efl in Figure 6, the temperature at each point of the furnace core t1 obtained from the temperature sensor included in each heating element, which was not shown in Figure 5, is sent to the control means 10. The input lead wire and each heating element a from the control means 10
Connect the lead wires that supply power to the heating elements a, ~a''+e)~・1 to the control means 1° and the arrows from the control means 10 to the respective heating elements. It represents.

第4図に示すように、シリコン7オトセルによって試料
の温度を検知する非接触屋温度センサーに自動焦点調節
機構を具備した非接触湿温度検出手段8,9は、半導体
ウェハ−WJ 、 v、の表面上の任意の点の温度を測
定して、その結果を制御手段10に入力する。
As shown in FIG. 4, the non-contact humidity and temperature detection means 8 and 9 are equipped with a non-contact temperature sensor that detects the temperature of the sample using a silicon 7 cell, and is equipped with an automatic focusing mechanism. The temperature at any point on the surface is measured and the result is input to the control means 10.

非接触型温度検出手段8.9には、それぞれ上下・左右
、任意の方向に非接触型温度センサー8゜9を移動させ
る、走査手段(図示せず)を有し、その走査手段の移動
方向と距離は制御手段10が制御する。
The non-contact temperature detection means 8.9 each have a scanning means (not shown) for moving the non-contact temperature sensor 8.9 in any direction such as up and down, left and right, and the movement direction of the scanning means and the distance are controlled by the control means 10.

炉芯vlの周辺に環状に取り付けられた。それぞれに温
度センサーを持つ独立した発熱体11〜−はそれぞれ制
御手段10により出力された情報によりそれぞれ任意の
温度に設定され、炉芯t1内の任意の位置に任意の大き
さの温度分布を作り出す。
It was attached in a ring around the furnace core vl. The independent heating elements 11 to 11, each having a temperature sensor, are each set to an arbitrary temperature based on the information output by the control means 10, thereby creating a temperature distribution of an arbitrary size at an arbitrary position within the furnace core t1. .

オート・ローダ−5は、制御手段lOより出力された情
報によりオート・ローダ−KA備したモーターの回転を
制御することにより、オート・p−グー5に接続した石
英棒4を押したり、引いたりする。それによって複数の
半導体ウェハーを乗せたウェハー・ボート3を炉芯管l
内を移動させる。
The auto loader 5 pushes or pulls the quartz rod 4 connected to the auto p-goo 5 by controlling the rotation of the motor equipped with the auto loader KA based on the information output from the control means lO. do. As a result, the wafer boat 3 carrying a plurality of semiconductor wafers is transferred to the furnace core tube l.
move inside.

tig7図は、第4図中制御手段1oで示したブロック
図である。
FIG. 7 is a block diagram showing the control means 1o in FIG. 4.

非接触型温度検出手段8,9で測定したウェハWj 、
 W、の表面温度は、ウェハー表面温度久方部11に入
力されA/D変換器12を経て、比較演算部14に入力
される。
Wafer Wj measured by non-contact temperature detection means 8, 9,
The surface temperature of W is input to a wafer surface temperature measurement section 11, passes through an A/D converter 12, and is input to a comparison calculation section 14.

非接触型温度検出手段の走査機構l1IIII部13で
は、あらかじめ設定したピッチにより赤外線温度計8は
、それに具備した上下方向の駆動機構19及び、左右方
向の駆動機構20.非接触型温度検出手段9は、それに
具備した上下方向の駆動機構21、左右方向の駆動機構
22を、それぞれ駆動して、非接触型温度検出手段8,
9を任意の位置く移動させる。
In the scanning mechanism 11III section 13 of the non-contact temperature detection means, the infrared thermometer 8 is moved by a vertical driving mechanism 19, a horizontal driving mechanism 20, and a horizontal driving mechanism 20. The non-contact temperature detection means 9 drives a vertical drive mechanism 21 and a left-right drive mechanism 22 provided therein to detect the non-contact temperature detection means 8,
Move 9 to any position.

炉芯管温度入力部15は、独立した発熱体a1〜h、に
それぞれの発熱体の温度センサー81〜IJ。
The furnace core tube temperature input section 15 includes temperature sensors 81 to IJ for the independent heating elements a1 to h, respectively.

が接する部位の炉芯管lの温度が入力される。炉芯管温
度入力部15がら入った炉芯管1の温度側室値は、A/
D変換器16を経て、比較演算部14に入力される。
The temperature of the furnace core tube l at the point in contact with is input. The temperature side chamber value of the furnace core tube 1 containing the furnace core tube temperature input section 15 is A/
The signal is input to the comparison calculation section 14 via the D converter 16.

発熱体電力制御部17では、炉芯管温度入力部15に入
力された炉芯管1の温度側室値に従って又場合によって
は、比較演算部14から出力された値によって、各々の
発熱体a1〜h、のうち最適な発熱体に供給する電力を
調節する。
In the heating element power control section 17, each heating element a1 to a Adjust the power supplied to the optimum heating element among h.

オート1112−グーの制御部18はオート−ローダ−
5の駆動機構2oを、制御して、ウェハー・ボート3を
炉芯管1内を移動させる。
The auto 1112-goo control unit 18 is an auto-loader.
5 is controlled to move the wafer boat 3 within the furnace core tube 1.

゛又場合によって比較演算部14がら出方された値によ
って、オート・四−グー5の移動速度の加減も行う。
Furthermore, depending on the case, the moving speed of the auto/four-goo 5 is adjusted based on the value output from the comparison calculation section 14.

比較演算部14は、ウェハー表面温度については、A/
D変換器12を通して非接触型温度検出手段8,9が測
定したウェハーW4 、 VBについてそれぞれ表面上
の任意の点の温度が入力され、それによって内部で最適
な演算を行なうことにより熱処理ウェハーW1 、 W
gB それぞれについて表面の温度分布、 wlとwf
lの個々場所についての温度差を求めることができる。
Regarding the wafer surface temperature, the comparison calculation unit 14 calculates A/
The temperatures at arbitrary points on the surfaces of the wafers W4 and VB measured by the non-contact temperature detection means 8 and 9 through the D converter 12 are inputted, and the temperature of the heat-treated wafers W1 and W1 is determined by internally performing optimal calculations. W
gB surface temperature distribution for each, wl and wf
The temperature difference for individual locations of l can be determined.

それによって熱処理ウェハー全体の立体的な温度分布を
求めることができる。
Thereby, the three-dimensional temperature distribution of the entire heat-treated wafer can be determined.

又炉芯管温度に関しては、デ芯管温度入力部15よりA
/D変換器16を経て、各々の発熱体が具備した温度セ
ンサーea1〜5hflが測定した炉芯管1の各点の温
度測定値に基づき、内部で最適な演算を行なうことによ
って、炉芯管1の長さ方向の温度分布と、それぞれの発
熱体の置かれている炉芯管1の径方向の温度分布を合わ
せた、炉芯管1の立体的な温度分布を作り出すことがで
きる。これら、炉芯管の立体的な温度分布を、その時々
に最適に変化させることにより、熱処理ウェハー全体の
立体的な温度分布が制御され、次に述べる、熱処理ウェ
ハーの挿入、引き出し、熱処理中それぞれに適した形に
、発熱体電力制御部17に出力する値を変化させること
によって実現される。
Regarding the furnace core tube temperature, A is input from the core tube temperature input section 15.
/D converter 16, based on the temperature measurement values at each point of the furnace core tube 1 measured by the temperature sensors ea1 to 5hfl included in each heating element, the furnace core tube is A three-dimensional temperature distribution of the furnace core tube 1 can be created by combining the temperature distribution in the length direction of the furnace core tube 1 with the temperature distribution in the radial direction of the furnace core tube 1 in which each heating element is placed. By optimally changing the three-dimensional temperature distribution of the furnace core tube from time to time, the three-dimensional temperature distribution of the entire heat-treated wafer is controlled. This is realized by changing the value output to the heating element power control section 17 in a form suitable for the above.

次にこれら制御系の動作を熱処理ウェハーの挿入と熱処
理について具体的に説明する。
Next, the operations of these control systems will be specifically explained regarding insertion of a heat-treated wafer and heat treatment.

まず熱処理ウェハーの挿入時は、実際に炉芯管1内にウ
ェハーを挿入する前に、まず発熱体電力制御部17は熱
処理ウェハーの枚数に従って炉芯管中央部には処理ウェ
ハーの枚数に要する長さよりも、いくぶん長目に均熱ゾ
ーンを作り、さらに均熱ゾーンへのウェハーの挿入方向
から見て手前と向こう側には適当な温度勾配を持たせて
、第1図に示したような炉芯管1の横方向に′台形状の
温度勾配を作り、さらに炉芯管1の径方向については、
炉芯管上部の発熱体al−JL、、が相対的に炉芯管1
の下部の発熱体・1〜・ゎよりも高めになるような径方
向の温度勾配を作る。
First, when inserting a heat-treated wafer, before actually inserting the wafer into the furnace core tube 1, the heating element power control unit 17 first sets a length required for the number of heat-treated wafers in the center of the furnace core tube according to the number of heat-treated wafers. Rather, we created a somewhat longer soaking zone, and created an appropriate temperature gradient between the front and back sides of the soaking zone when viewed from the direction of insertion of the wafer into the soaking zone, as shown in Figure 1. A trapezoidal temperature gradient is created in the lateral direction of the core tube 1, and in the radial direction of the furnace core tube 1,
The heating element al-JL on the upper part of the furnace core tube is relatively close to the furnace core tube 1.
Create a radial temperature gradient that is higher than the heating element at the bottom of the heating element.

このときに社、非接触型温度検出手段8,9によるウェ
ハーWl、Wゎの表面の温度測定と、その具備した走査
機構(19〜22)による、非接触型温度検出手段の駆
動及び、オートローダ−は停止している。
At this time, the non-contact temperature detection means 8 and 9 measure the surface temperature of the wafers Wl and W, the scanning mechanisms (19 to 22) provided therein drive the non-contact temperature detection means, and the autoloader - is stopped.

前記した炉芯管1の温度勾配が1発熱体に具備した温度
センサーと、その欄定値によって各々の発熱体に供給を
制御する発熱体電力制御部によるフィード・バック制御
により、完成したとき、熱処理ウェハ−Wi−v、、を
乗せたウェハーポー)3に石英棒4の一端を固定し、他
の一端を取り付は金具6に固定する。
When the temperature gradient of the furnace core tube 1 described above is completed by the feedback control by the temperature sensor provided in each heating element and the heating element power control section that controls the supply to each heating element according to the predetermined value of the temperature sensor, heat treatment is performed. One end of a quartz rod 4 is fixed to a wafer port 3 on which a wafer Wi-v is placed, and the other end is fixed to a fitting 6.

そして、オート・p−ポー5を設定した移動速度でオー
ト・p−ポー制御部18によりオート・p−ポー駆動機
構23を駆動し、熱処理ウェハーW】〜v、を炉芯管I
Kそう人する。
Then, the auto p-pow drive mechanism 23 is driven by the auto p-pow control unit 18 at the set moving speed of the auto p-pow 5, and the heat-treated wafers W ~ v are transferred to the furnace core tube I.
K Yes, there are people.

それと同時に、非接触型温度検出手段8,9はその具備
した走査機構(19〜23)に上り熱処理ウェハーw1
〜町の任意の位置の表面温度を次々に測定し、それを比
較演算部14に出力し、比較演算部14では、次々に非
接触型温度検出手段8.9より入力されるWl 、 W
@の温度測定値よりWl 、 Wllの表面の温度分布
を演算により求め1その結果ウェハーVr1 、 Wヶ
それぞれの温度分布が一様でなければ、比較演算部14
では炉芯管1の立体的な温度分布から、発熱体の設定温
度を変更すべき発熱体と、その設定温度を演算により求
めその発熱体と、設定温度を発熱体電力制御1117に
出力する。発熱体制御部17では比較演算部14より入
力された発熱体と設定温度の情報に従って電力を加減す
べき発熱体が具備する温度センサー8m1〜8h、が測
定した温度の値によって比較演算1B14が設定した温
度に到達するように供給する電力を加減して、WIW、
の表面の温度分布が一様になるようにし、又WIW、の
温度差が常にある一定値内に保つようにするが1発熱体
の温度制御だけでは、前記した、条件が作り出せないと
きには比較演算部14はオートローダ−制御部に対して
発熱体の温度制御によって前記した条件が作り出される
までの間だけ、オート・曹−ポーの移動速度を遅くする
ような情報をオート・−−ポー制御部18に出力し、オ
ート・ローダ−制御1118では比較演算部14より入
力された情報に従ってオー)・交−ポー5の移動速度を
遅くする。
At the same time, the non-contact temperature detecting means 8 and 9 move onto the scanning mechanism (19 to 23) provided therein to detect the heat-treated wafer w1.
~Surface temperatures at arbitrary positions in the town are measured one after another and outputted to the comparison calculation section 14, where Wl, W are input one after another from the non-contact temperature detection means 8.9.
Calculate the temperature distribution on the surfaces of Wl and Wll from the temperature measurement value of
Then, from the three-dimensional temperature distribution of the furnace core tube 1, the heating element whose set temperature should be changed and its set temperature are calculated, and the heating element and set temperature are output to the heating element power control 1117. In the heating element control unit 17, the comparison calculation 1B14 is set based on the temperature value measured by the temperature sensor 8m1 to 8h included in the heating element whose power is to be adjusted according to the information on the heating element and set temperature inputted from the comparison calculation unit 14. WIW, adjust the power supplied to reach the specified temperature.
To make the temperature distribution on the surface of The section 14 transmits information to the autoloader control section 18 to slow down the moving speed of the autoloader only until the above conditions are created by controlling the temperature of the heating element. The autoloader control 1118 slows down the moving speed of the autoloader 5 in accordance with the information input from the comparison calculation section 14.

以上の動作を熱処理ウェハーW1−WBが全て均熱ゾー
ンに到達するまでくり返し、到達した所でオーF・ロー
ダ−5は停止する。さらに、熱処理ウェハーWl  v
、、の面内の温度が均一で、熱処理ウェハーW) W@
の温度差がなくなった時に、熱処理が開始される。
The above operations are repeated until all of the heat-treated wafers W1-WB reach the soaking zone, at which point the OF loader 5 stops. Furthermore, the heat-treated wafer Wl v
The in-plane temperature of , , is uniform, and the heat-treated wafer W) W@
The heat treatment is started when the temperature difference disappears.

熱処理終了後の熱処理ウェハーW1〜W、の取り出し′
については、挿入時と同様の動作を行ない、炉芯管lよ
り熱処理ウェハーW1〜W、を全で引き出し、各熱処理
ウェハーw1〜W、及び、ウェハーボート3が充分に冷
却された後、石英棒4を取り付は金具6と、ウェハ−・
ボート3より取りはずす。
Removal of heat-treated wafers W1 to W after heat treatment is completed'
, perform the same operation as when inserting the quartz rod, pull out all the heat-treated wafers W1 to W from the furnace core tube l, and after each heat-treated wafer w1 to W and the wafer boat 3 have been sufficiently cooled, remove the quartz rod. 4 is attached to the metal fitting 6 and the wafer.
Remove from boat 3.

以上のような操作で、挿入、熱処理、引き出しの各行程
を行なう本発明による装置では、ウェハーの出し入れ時
には、発熱体11〜a、までの最適な発熱体の集合1群
付近の炉芯管の温度よりも相対的に発熱体d1〜d1ま
での適当な発熱体の集合6群及び発熱体f、〜f、まで
の適当な発熱体の集合f群等の温度を高めることKより
、ウェハーの出し入れに要する時間を短縮しても、ウェ
ハー面内の温度均一性が保たれ、スリップ等の発生がお
さえられる。
In the apparatus according to the present invention, which performs each process of insertion, heat treatment, and withdrawal through the operations described above, when loading and unloading wafers, the furnace core tube near the first group of optimal heating elements 11 to a is heated. By increasing the temperature of the six groups of suitable heat generating elements from d1 to d1 and the f group of suitable heat generating elements from f to f, relative to the temperature, the temperature of the wafer can be increased. Even if the time required for loading and unloading is shortened, temperature uniformity within the wafer surface is maintained, and occurrence of slips and the like is suppressed.

上記の効果により、半導体製造プルセスの時間が短縮さ
れる為に、IO等の半導体装置の製造コスシの大巾な低
減が実現される。
As a result of the above-mentioned effects, the time required for semiconductor manufacturing process is shortened, so that the cost of manufacturing semiconductor devices such as IOs can be significantly reduced.

以上述べた本発明の半導体ウェハーの熱鑑理装置には従
来装置にない次に述べるような顕著な効果が得られる。
The semiconductor wafer thermal inspection apparatus of the present invention described above has the following remarkable effects that are not found in conventional apparatuses.

1)半導体ウェハーの面内各点の温度を連続的に測定し
、反応管の屑HO個々の発熱体に、独立した個々の温度
を与える為に半導体ウェハー面内に温度差を作らない。
1) The temperature at each point within the surface of the semiconductor wafer is continuously measured, and no temperature difference is created within the surface of the semiconductor wafer in order to give independent individual temperatures to each heating element of the waste HO in the reaction tube.

2)半導体ウェハーの熱処理の際に最前部に位置する半
導体ウェハー及び最後部に位置する半導体ウェハーの双
方の温度を連続的に測定し、反応管周囲の個々の発熱体
に、独立した個々の温度を与える為Kl)  と合わせ
て、熱処理ウェハー全てに対し、最適な温度条件のもと
に熱処理が行なえる。               
         I゛3)更には、半導体ウェハーの
温度検出を反応管の外側で行なう為に非接触型温度検出
手段による反応管、ウェハー・ボート等へO汚染ひいて
は、熱処理ウェハーへの汚染を防止する。
2) During heat treatment of semiconductor wafers, the temperature of both the semiconductor wafer located at the forefront and the semiconductor wafer located at the rear is continuously measured, and each heating element around the reaction tube is individually controlled to have an individual temperature. In order to give Kl), all heat-treated wafers can be heat-treated under optimal temperature conditions.
I3) Furthermore, since the temperature of the semiconductor wafer is detected outside the reaction tube, O contamination of the reaction tube, wafer boat, etc. by the non-contact temperature detection means is prevented, and further contamination of the heat-treated wafers is prevented.

又、非接触型温度検出手段が高温にさらされない為に非
接触型温度検出手段の寿命も伸びる等である。
Furthermore, since the non-contact temperature detection means is not exposed to high temperatures, the life of the non-contact temperature detection means is extended.

特に上記1)、 2)で述べた効果により、従来装置で
問題となっていた、半導体φエバーのスリップ、そり等
を著しく低減することを可能とし、半導体素子製造の歩
留りの飛皐的な向上をもたらすことができる。
In particular, the effects described in 1) and 2) above make it possible to significantly reduce the slippage and warping of the semiconductor φ-ever, which were problems with conventional equipment, and dramatically improve the yield of semiconductor device manufacturing. can bring.

以上ここでは本装置の具体的説明を半導体ウェハーの熱
処理を例に取って行なったが、他の物質のウェハー試料
の熱処理においても有効であることは言を待たない。
Here, the present apparatus has been specifically explained using heat treatment of semiconductor wafers as an example, but it goes without saying that it is also effective in heat treatment of wafer samples made of other materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の炉芯管及びその管内の温度勾配を示す図
。 第2図は半導体ウェハー面内各点に温度差があることを
示す図。 &r bg e@ (1:半導体ウェハー面内の各点。 第3図は従来装置の概略図。 第4図は本装置の概略図。 s :l路管、3 ;ウェハー・ボート、4:石英棒、
5;オーシ・シーダー、6:石英欅取り付は金具、8.
9:赤外線温度針、10;制御回路、wllw、−半導
体ウニバー(点は関Kll数の半導体ウェハーが存在す
ることを示す)(図中の矢印は制御回路と各機器間の信
号の流れを示す。)115図ならびに第6図は本発明に
おいて反応管周囲に設置された複数の発熱体を示す。 第5図は反応管の長さ方向から見た図、al〜hn:発
熱体、8&1〜sh、 ;発熱体に具備した温度検出機
構。 第6図線反応管の横方向から見た図(図中の矢印は制御
回路と各発熱体間の信号の流れを示す。)第7図は第4
図に示す制御手段lOのブロック図を示し、図中の破線
内拡制御手段10内部Oプリッタ図。 破線外は情報を入力する検出器及び制御手段10より出
力される情報により制御される器機を示す。 一点鎖線内はそれぞれ非接触型温度検出手段8゜9とそ
の駆動機構を表わしている。 11;ウェハー表面温度入力部、12 ; A/D変換
器、13;非接触型温度検出手段の走査機構制御部、1
4:比軸演算部、15;炉芯管温度入力部、(点は多数
の情報が入・出力されることを示す)、16−ム/D変
換器(点は多数の情報が入・出力されることを示す)、
17:発熱体電力制御部(出力部点は多数の発熱体に電
力を供給する供給線を表わす)、19;非接触型温度検
出手段8に具備した上下方向の駆動機構、20;非接触
型温度検出手段8に具書した左・右方向の駆動機構。 21:非接触型温度検出手段9に具備した上下方向の駆
動機構、22:非接触型温度検出手段9に具備した左右
方向の駆動機構、23ニオ−)ジオ  1 口 *7’T:、管内位置 矛20 第3口 第4胆
FIG. 1 is a diagram showing a conventional furnace core tube and the temperature gradient inside the tube. FIG. 2 is a diagram showing that there is a temperature difference at each point within the surface of a semiconductor wafer. &r bg e@ (1: Each point on the semiconductor wafer surface. Figure 3 is a schematic diagram of the conventional device. Figure 4 is a schematic diagram of the present device. s: L pipe, 3: Wafer boat, 4: Quartz rod,
5; Oshi cedar, 6: Quartz zelkova mounting with metal fittings, 8.
9: Infrared temperature needle, 10: Control circuit, wllw, - semiconductor univer (dots indicate that there are Kll number of semiconductor wafers) (arrows in the figure indicate the flow of signals between the control circuit and each device ) Figure 115 and Figure 6 show a plurality of heating elements installed around the reaction tube in the present invention. FIG. 5 is a view seen from the length direction of the reaction tube, al~hn: heating element, 8 &1~sh; temperature detection mechanism provided in the heating element. Figure 6 is a view of the reaction tube viewed from the side (arrows in the diagram indicate the flow of signals between the control circuit and each heating element).
FIG. 2 is a block diagram of the control means 10 shown in the figure, and is an internal O splitter diagram of the control means 10 inside the broken line in the figure. Areas outside the broken line indicate a detector into which information is input and equipment controlled by information output from the control means 10. The dashed-dotted lines each represent the non-contact temperature detecting means 8.9 and its driving mechanism. 11; Wafer surface temperature input unit, 12; A/D converter, 13; Scanning mechanism control unit for non-contact temperature detection means, 1
4: Ratio axis calculation section, 15: Furnace tube temperature input section, (dots indicate that a large amount of information is input/output), 16- Mo/D converter (dots indicate that a large amount of information is input/output) ),
17: heating element power control unit (the output point represents a supply line that supplies power to a large number of heating elements), 19; vertical drive mechanism provided in the non-contact type temperature detection means 8, 20; non-contact type A left/right direction drive mechanism is specified in the temperature detection means 8. 21: Vertical drive mechanism provided in the non-contact temperature detection means 9, 22: Lateral drive mechanism provided in the non-contact temperature detection means 9, 23 Ni-)Geo 1 mouth*7'T:, inside the pipe Position spear 20 3rd mouth 4th gall

Claims (1)

【特許請求の範囲】[Claims] 炉芯管と該炉芯管の周りを環状に取りまくように分割さ
れた複数個の独立した発想体と、該発熱体ごとに温度を
検出する温度センサーとを備えた電気炉と、前記炉芯管
内に半導体ウェハーを挿入する試料の自動移動手段と、
前記炉芯管内に挿入される半導体ウェハーの面内温度を
検出する一対の非接触型温度検出手段とを備え、かつ該
非接触型温度検出手段から検出された半導体ウェハーの
面内温度、および前記発熱体ごとに設けられた温度上ン
す−からの温度をもとに前記各発熱体および前記試料の
自動移動手段を制御する制御手段を備えていることを特
徴とする半導体ウェハーの熱処理装置。
An electric furnace comprising a furnace core tube, a plurality of independent ideas divided into annular surroundings around the furnace core tube, and a temperature sensor for detecting the temperature of each heating element, and the furnace core. automatic sample moving means for inserting a semiconductor wafer into the tube;
a pair of non-contact temperature detection means for detecting the in-plane temperature of the semiconductor wafer inserted into the furnace core tube, and the in-plane temperature of the semiconductor wafer detected by the non-contact temperature detection means, and the heat generation. 1. A heat processing apparatus for semiconductor wafers, comprising a control means for controlling each of the heating elements and the automatic movement means for the sample based on the temperature from a temperature riser provided for each body.
JP1861182A 1982-02-08 1982-02-08 Heat treatment equipment for semiconductor wafer Pending JPS58135636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1861182A JPS58135636A (en) 1982-02-08 1982-02-08 Heat treatment equipment for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1861182A JPS58135636A (en) 1982-02-08 1982-02-08 Heat treatment equipment for semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS58135636A true JPS58135636A (en) 1983-08-12

Family

ID=11976425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1861182A Pending JPS58135636A (en) 1982-02-08 1982-02-08 Heat treatment equipment for semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS58135636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603772A (en) * 1994-08-16 1997-02-18 Nec Corporation Furnace equipped with independently controllable heater elements for uniformly heating semiconductor wafers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603772A (en) * 1994-08-16 1997-02-18 Nec Corporation Furnace equipped with independently controllable heater elements for uniformly heating semiconductor wafers

Similar Documents

Publication Publication Date Title
KR0177486B1 (en) Continuous heat treatment system of semiconductor wafers for eliminating thermal donor
JP2003045881A (en) Method and device for performing heat treatment of substrates
JP2824003B2 (en) Substrate temperature measurement device
JPH11354529A (en) Heat treatment method of silicon wafer and silicon wafer
JP2010056469A (en) Apparatus and method for heat treatment, and storage medium
US4938655A (en) Wafer transfer method
US6780795B2 (en) Heat treatment apparatus for preventing an initial temperature drop when consecutively processing a plurality of objects
JPS58135636A (en) Heat treatment equipment for semiconductor wafer
JPH06349909A (en) Probe inspection device
KR102619328B1 (en) Method for controlling temperture of chuck for wafer test process
JP3670142B2 (en) Pre-processing method for recombination lifetime measurement of silicon substrate
CN107492492A (en) The monitoring method of annealing device technological ability
JP2869300B2 (en) Semiconductor wafer heat treatment equipment
JPH1012689A (en) Method for inspecting semiconductor substrate and semiconductor substrate for monitoring used therefor
JP3772755B2 (en) Method for automatically processing semiconductor crystal inspection sample, automatic processing system and semiconductor crystal inspection method
JPS6218032Y2 (en)
JPS62101037A (en) Control system of temperature of wafer in oxidizing and diffusing device
JP2003297710A (en) Treatment system and method
JP2002243556A (en) Temperature measuring device for inline type heat treatment equipment
JPH0469422B2 (en)
KR100735744B1 (en) wafer transfer method for semiconductor device manufacture
JPS6245109A (en) Thermal treatment equipment
JPH06291125A (en) Heat treatment furnace for semiconductor wafer
JPH01248626A (en) Device for heat treatment of wafer
JPH0291930A (en) Device for heat-treating substrate