JPS58133505A - Controller for feed pump - Google Patents

Controller for feed pump

Info

Publication number
JPS58133505A
JPS58133505A JP1491082A JP1491082A JPS58133505A JP S58133505 A JPS58133505 A JP S58133505A JP 1491082 A JP1491082 A JP 1491082A JP 1491082 A JP1491082 A JP 1491082A JP S58133505 A JPS58133505 A JP S58133505A
Authority
JP
Japan
Prior art keywords
water supply
pressure
pump
turbine
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1491082A
Other languages
Japanese (ja)
Other versions
JPH059682B2 (en
Inventor
草山 義男
雅之 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1491082A priority Critical patent/JPS58133505A/en
Publication of JPS58133505A publication Critical patent/JPS58133505A/en
Publication of JPH059682B2 publication Critical patent/JPH059682B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は給水ポンプ制御装置に係夕、特に発電プラント
等における蒸気発生装置に給水をする複数の給水ポンプ
を所定の運転指令に基づいて制御するよう圧した給水ポ
ンプ制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a water supply pump control device which is configured to control a plurality of water supply pumps that supply water to a steam generator in a power plant or the like based on a predetermined operation command. Regarding equipment.

従来のこの極の給水ポンプ制御装置は、発電プラント等
における蒸気発生装置KII数の給水ポンプ、を用いて
給水する際、に%所定の運転指令を制御回路に取り込み
、この制御回路によって給水ポンプの運転を制御するよ
うに構成されていた。さらに詳細に述べれば、蒸気発生
装置に給水をする給水ポンプは、一般的な発電プラント
等においては。
The conventional water pump control device of this type inputs a predetermined operation command into a control circuit when water is supplied using a water pump with a KII number of steam generators in a power generation plant, etc., and this control circuit controls the water pump. It was configured to control driving. To be more specific, a water supply pump that supplies water to a steam generator is used in a typical power generation plant.

起動用の給水ポンプとしての電動機駆動給水ポンプと、
起動後の通常運転用の給水ポンプとしての二台のタービ
ン駆動給水ポンプとが、各吸入側及び各吐出側をそれぞ
れ共通に接続して用−られてiる。上記給水ポンプFi
%当初の起動時には電動機駆動給水ポンプを運転してか
き、蒸気発生器からの圧力が所定の圧力となったときに
、該タービン駆動給水ポンプを運転するというように、
その運転が制御されていた。このタービン駆動給水ポン
プの昇速制御XIFi、駆動用タービンの回転数をめら
かしめ定め九一定目橡筐まで上昇させる制御方式であっ
たが、このような制御方式では、タービン駆動給水ポン
プの吐出圧が給水ポンプ吐出側合流点後の配管における
給水圧力に打ち勝つ点す攻わち、該タービン駆動給水ポ
ンプの給水の開始点に相当する回転数まで上昇させる必
要がめった。
an electric motor-driven water pump as a starting water pump;
Two turbine-driven water supply pumps are used as water supply pumps for normal operation after startup, with each suction side and each discharge side connected in common. Above water supply pump Fi
%At the time of initial start-up, the electric motor-driven water feed pump is operated, and when the pressure from the steam generator reaches a predetermined pressure, the turbine-driven water feed pump is operated.
Its operation was controlled. This speed increase control XIFi of the turbine-driven water supply pump was a control method that smoothed and determined the rotational speed of the driving turbine and increased it to the 9th constant speed. In order for the discharge pressure to overcome the water supply pressure in the piping after the water pump discharge side confluence point, it became necessary to increase the rotational speed to the point where the turbine-driven water pump started supplying water.

この結果、タービン駆動給水ポンプによる給水制御に移
行させることが円滑でないという欠点がめった。
As a result, the disadvantage is that it is not easy to shift to water supply control using a turbine-driven water supply pump.

第1図は給水系の吐出圧HK対する流量Qの関係を示す
特性図でめ夛、横軸に流量Qを、縦軸に吐出圧Hをそれ
ぞれとった亀のでるる。また1図中、N、、Nt及びN
、Fi給水ポンプの回転数、h、は定圧運転プラントの
システムヘッド特性、hTは変圧運転プラントのシステ
ムヘッド特性を示している。定圧運転プラントの場合は
、図に示すように、システムヘッド曲線h1が平坦とな
っているため、タービン駆動給水ポンプの回転数変化に
よる吐出圧変化は小さく、従来の制御方式のように回転
数目標値を一定値としても上記欠点の影響は小さい、し
かしながら、変圧運転プラントの場合には、負荷に応じ
て主蒸気圧力が変化するため、給水系のシステムヘッド
h!は定圧運転プラントのシステムヘッド11sK比べ
大きく変化するととになる。したがって、特に、変圧プ
ラントの場合、タービン駆動給水ポンプの給水開始点相
当の回転数は一律に定まらな−ととになり、その回転数
目標値を一定@に定めてしまうことは好ましくなかった
。このため、給水ポンプの制御が。
FIG. 1 is a characteristic diagram showing the relationship between the flow rate Q and the discharge pressure HK of the water supply system, with the horizontal axis representing the flow rate Q and the vertical axis representing the discharge pressure H. In addition, in Figure 1, N, , Nt and N
, Fi, the rotation speed of the water supply pump, h, indicates the system head characteristics of a constant pressure operation plant, and hT indicates the system head characteristics of a variable pressure operation plant. In the case of a constant-pressure operation plant, as shown in the figure, the system head curve h1 is flat, so the change in discharge pressure due to changes in the rotation speed of the turbine-driven water pump is small, and the rotation speed target is maintained as in the conventional control system. Even if the value is set to a constant value, the effect of the above drawback is small. However, in the case of a variable pressure operation plant, the main steam pressure changes depending on the load, so the system head of the water supply system h! When the system head 11sK of a constant pressure operation plant changes significantly, it becomes . Therefore, especially in the case of a variable pressure plant, the rotational speed corresponding to the water supply start point of the turbine-driven water supply pump is not uniformly determined, and it is not preferable to set the rotational speed target value to a constant value. For this reason, the control of the water pump.

困難であるという欠点がめった。The disadvantage is that it is difficult.

本発明の目的は、上記従来技術の欠点を解消し。The object of the present invention is to overcome the drawbacks of the prior art described above.

給水系のシステムヘッドの変化に係夛なく安定で円滑な
給水制御のできる給水ポンプ制御装置を提供するKTo
る。
KTo provides a water supply pump control device that can perform stable and smooth water supply control regardless of changes in the system head of the water supply system.
Ru.

本発明は、上記目的を達成するため、タービン駆動給水
ポンプの吐出圧力と給水ポンプ吐出側合流点における圧
力との差圧に基づいて給水ポンプの給水開始点相当の回
転数を得て、これに応じて給水ポンプの回転数を制御す
るようKしたものである。
In order to achieve the above object, the present invention obtains the rotation speed corresponding to the water supply start point of the water supply pump based on the differential pressure between the discharge pressure of the turbine-driven water supply pump and the pressure at the water supply pump discharge side confluence point, and The rotation speed of the water supply pump is controlled accordingly.

以下1本発明の一実施列を図面に基づいて説明する。One embodiment of the present invention will be described below with reference to the drawings.

第2図は1本発明に係る給水ポンプ制御装置が゛適用さ
れる発電プラントの概略構成を示す系統図でるる0図K
Thいて、蒸気発生装置としてのボイラIOKは、ター
ビン駆動給水ポンプ12及び14並びに電動機駆動給水
ポンプ16から給水100が供給されるよう和なってお
り、また前記ボイラlOKは図示しない燃料ポンプから
燃料が供給されると共に、ファンから空気が供水される
ようになっている。このボイラ10は、前記燃料の燃焼
に応じて給水100を蒸気102とし、これを蒸気10
2の制御弁18を介してタービン2011’C供給する
よう和なっている。このタービン20は、制御弁18で
制御された蒸気102Aに応じた回転仕事を発生するよ
うに構成されておシ、かつその回転仕事を発電機22に
一伝達できるように構成されている。この発電機20は
、その仕事に応じた電力を発生できるように構成されて
いる。
Figure 2 is a system diagram showing the schematic configuration of a power generation plant to which the feed water pump control device according to the present invention is applied.
Th, the boiler IOK as a steam generator is configured to be supplied with feed water 100 from turbine-driven feed water pumps 12 and 14 and an electric motor-driven feed water pump 16, and the boiler IOK is supplied with fuel from a fuel pump (not shown). At the same time, air is supplied from the fan. This boiler 10 converts feed water 100 into steam 102 according to the combustion of the fuel, and converts this into steam 102.
The turbine 2011'C is supplied through the two control valves 18. This turbine 20 is configured to generate rotational work according to the steam 102A controlled by the control valve 18, and is configured to be able to transmit the rotational work to the generator 22. This generator 20 is configured to be able to generate electric power according to its work.

また、前記タービン20は、その蒸気102Aのほとん
どを複水器24に送るようになっておシ、複水器24は
蒸気102At−複水104としてポンプ12.14及
び16に戻すよう尤なって−る。
Additionally, the turbine 20 is configured to send most of its steam 102A to the double water tank 24, which in turn sends most of its steam 102A to the pumps 12, 14 and 16 as steam 102At-double water 104. -ru.

前記給水ポンプ12゜14及び16の吸入側は共通にさ
れると共に1それら吐出側は、逆止弁26゜30及び3
4と止弁28.32及び36とを図示の如くそれぞれ直
列したものを介して共通にして合流点に接続して、かつ
給水100としてボイラ10に供給されるようKなって
いる。さらに、タービン駆動給水ポンプ12.及び14
は、タービン20からの抽気106を各加減弁38及び
40で制御することによって回転するタービン42及び
44をもって駆動するよう和なっている。これら給水ポ
ンプ12及び14Kusその回転数を検出する回転検出
器46及び48が設けられている。
The suction sides of the water supply pumps 12, 14 and 16 are common, and their discharge sides are connected to check valves 26, 30 and 3.
4 and stop valves 28, 32 and 36 are connected in series to the confluence point as shown in the figure, and are supplied to the boiler 10 as water supply 100. Additionally, a turbine-driven water pump 12. and 14
is adapted to drive the turbines 42 and 44 to rotate by controlling the bleed air 106 from the turbine 20 with respective control valves 38 and 40. Rotation detectors 46 and 48 are provided to detect the rotational speed of these water supply pumps 12 and 14Kus.

なお、50は電動機でめる。さらに、52及び54は、
タービン駆動給水ポンプ12及び14の吐出側に設けた
圧力検出器でTop、56は給水ポンプ12.14及び
16の吐出側合流点後の部分に設けた圧力検出器でるる
。また、給水配管には給水100の流量を検出する流量
検出器58で設けられておシ、さらに、蒸°気配管には
蒸気102の流量及び圧力を検出する流量検出器60及
び圧力検出器62が設けられている。加えて、発電機2
2の出力には1発電量を検出する検出器64が設けられ
ている。
Note that 50 is powered by an electric motor. Furthermore, 52 and 54 are
Top and 56 are pressure detectors provided on the discharge sides of the turbine-driven feedwater pumps 12 and 14, respectively. Further, the water supply pipe is provided with a flow rate detector 58 for detecting the flow rate of the water supply 100, and the steam pipe is further provided with a flow rate detector 60 and a pressure detector 62 for detecting the flow rate and pressure of the steam 102. is provided. In addition, generator 2
A detector 64 for detecting the amount of power generated is provided at the second output.

上記発電プラントを制御する制御回路66は。A control circuit 66 controls the power generation plant.

発電の各種指令68と、各種検出器46.4g。Various commands for power generation 68 and various detectors 46.4g.

52.54.56.58.60.62及び64からの検
出信号とを取り込み、これらに基づいて制御弁18と加
減弁38及び40とを制御して発電電力の発生量を制御
するようになっている。
Detection signals from 52, 54, 56, 58, 60, 64 are taken in, and based on these, the control valve 18 and regulating valves 38 and 40 are controlled to control the amount of generated power. ing.

上記のように構成された発電プラントは、各種指令68
に基づ−て制御回路66でボイラ10を燃焼制御すると
共和、制御弁18を加減制御してタービン20の回転を
制御し1発電機22の発電量を制御する。このとき、制
御回路66は、各種指令68に基づき、各種検出−52
,54,56゜58.60.62及び64からの検出信
号によシ制御弁18と加減弁38及び40とその他操作
部とを制御する。
The power generation plant configured as described above is
When the control circuit 66 controls combustion of the boiler 10 based on the control circuit 66, the control valve 18 is controlled to control the rotation of the turbine 20 and the amount of power generated by the generator 22. At this time, the control circuit 66 performs various detections based on various commands 68.
, 54, 56° 58, 60, 62 and 64 to control the control valve 18, adjusting valves 38 and 40, and other operating parts.

上記のような発電プラントに適用される給水ポンプ制御
装置の具体的構成的を第3図に示す、こめ図において、
第2図の轟誼実施的部分を拡大して示したものであるの
で、同一符号を付して、その構成の説明を省略して、簡
単に符号の説明をするに止める。12及び14はタービ
ン駆動給水ポンプでTo夛、蒸気タービン42及び44
により駆動される。また、16は電動機駆動給水ポンプ
でめシ、電動機50によシ駆動される。26.30及び
28.32はそれぞれタービン駆動給水ポンプ12及び
14用の逆止弁及び止弁でToシ、34及び36は、電
動機駆動給水ポンプ16用の逆止弁及び、止弁である。
The specific configuration of the water supply pump control device applied to the above-mentioned power generation plant is shown in FIG.
Since this is an enlarged view of the practical part of FIG. 2, the same reference numerals are given, and the explanation of the structure will be omitted, and only a brief explanation of the reference numerals will be given. 12 and 14 are turbine-driven water pumps, and steam turbines 42 and 44
Driven by. Further, reference numeral 16 denotes an electric motor-driven water supply pump, which is driven by an electric motor 50. 26.30 and 28.32 are check valves and stop valves for the turbine-driven water pumps 12 and 14, respectively, and 34 and 36 are check valves and stop valves for the motor-driven water pump 16.

プラント起動時は電動機駆動給水ポンプ16に、よシボ
イラ給水を行ない、規定負荷到達後タービン駆動給水ポ
ンプ12を起動し、給水負荷をタービン給水ポンプ12
または14側へ移行させ、さらにタービン駆動給水ポン
プ1492台目を追加するが、タービン駆動給水ポンプ
12または14の起動に際しては、前述のように、給水
開始点相当の回転数まで昇速し待機させておき1円滑に
給水制御へ移行できる状態としておくことが望ましい、
そして、52.54及び56はこれを笑行する九めの圧
力検出器でめ夛、この圧力検出器52.54及び56か
らの検出信号を制御回路66Km!0込んで上記制御を
するものである。
When starting up the plant, water is supplied to the motor-driven water supply pump 16 for the boiler, and after reaching the specified load, the turbine-driven water supply pump 12 is started, and the water supply load is transferred to the turbine water supply pump 12.
Alternatively, the turbine-driven water supply pump 1492 is added to the 14 side, but when starting the turbine-driven water supply pump 12 or 14, as described above, the rotation speed is increased to the rotation speed equivalent to the water supply start point and the turbine drive water supply pump 14 is placed on standby. It is desirable to maintain a state in which the system can smoothly transition to water supply control.
And, 52, 54 and 56 are the ninth pressure detectors that perform this, and the detection signals from these pressure detectors 52, 54 and 56 are transferred to the control circuit 66Km! 0 is included to perform the above control.

第4図は、制御回路66の本実施例部分を示すブロック
図である。第4図において、圧力検出器52からの検出
信号70と圧力検出器56からの検出信号72とを減算
器74に堆9込み、この減算器74は差圧信号()P)
76を出力するように構成されている。この差圧信号7
6を減算器78に取プ込むと共に%目標差圧指令68A
からの信号、を同様に減算器78に取シ込み、この減算
器78は差圧偏差80を出力するよう罠なっている。こ
の差圧偏差8Gは、比例積分演算器82に取シ込まれ、
この演算4e!82で回転数設定値84を形成するよう
罠なっている。該回転数検出器46からの実回転数信号
86は、前記回転数設定値84と共に減算器88に堆り
込まれ、演算器88で回転数偏差90を形成するように
なっている。この回転数偏差90は、比例演算器92を
介して低値選択器94に供給されるようKなっておシ、
かつ、加速率設定68Bからの信号を取り込み、いずれ
か低値の方を出力して比例積分演算器96に供給できる
ようになっている。この比例積分演算器96は、タービ
ン42の加減弁38を制御するようKなっている。
FIG. 4 is a block diagram showing this embodiment of the control circuit 66. In FIG. 4, a detection signal 70 from the pressure detector 52 and a detection signal 72 from the pressure detector 56 are input into a subtractor 74, and this subtractor 74 is used to generate a differential pressure signal ()P).
76. This differential pressure signal 7
6 into the subtractor 78 and the % target differential pressure command 68A.
The signal from . This differential pressure deviation 8G is taken into the proportional integral calculator 82,
This calculation 4e! 82 to form a rotational speed set value 84. The actual rotational speed signal 86 from the rotational speed detector 46 is input into a subtracter 88 together with the rotational speed set value 84, and a rotational speed deviation 90 is formed in the arithmetic unit 88. This rotational speed deviation 90 is supplied to a low value selector 94 via a proportional calculator 92.
Further, the signal from the acceleration rate setting 68B can be taken in, and the lower value can be outputted and supplied to the proportional-integral calculator 96. This proportional-integral calculator 96 is designed to control the regulator valve 38 of the turbine 42.

上記のように構成された制御回路の動作を次に説明する
The operation of the control circuit configured as described above will be explained next.

第4図において、信号90はタービン駆動給水ポンプ1
2の回転数を検出する回転検出器46で検出された実回
転数信号86と回転数設定値84とを減算器88によシ
演算し九偏差でめ9、この偏差信号90によって、前記
比例演算器92および比例積分演算696を介し操作端
である駆動用タービン42の加減弁38を駆動制御し、
設定回転数までの昇速を行なう。さらに、回転数変化率
設定器68B及び前記低値選択器94は昇速初期の実回
転数、目標回転数の偏差が大麦る場合の変化率制限を目
的としている1本実施的は、前述の如く回転数設定l[
84を可変としたことに特徴がある。なお、52及び5
4は第2図で説明した如くタービン駆動給水ポンプ吐出
口給水圧力、吐出側合流部の給水圧力検出器でめシ、減
算器74によシ、圧力信号70と71との差圧(ΔP)
76を演算し、これと目標差圧0を設定した信号発生器
68Aの信号との偏差80を比例積分演算器82を介す
るととくよ夕差圧が0となる回転数設定置84を求める
ことができる。
In FIG. 4, signal 90 indicates turbine-driven water pump 1
The actual rotational speed signal 86 detected by the rotational speed detector 46 which detects the rotational speed of 2 and the rotational speed set value 84 are calculated by a subtractor 88 to give 9 deviations. Controlling the control valve 38 of the driving turbine 42, which is the operating end, via the computing unit 92 and the proportional integral computing 696;
Increase the speed to the set rotation speed. Further, the rotational speed change rate setter 68B and the low value selector 94 are used to limit the rate of change when there is a deviation between the actual rotational speed and the target rotational speed at the initial stage of acceleration. Rotation speed setting l[
The feature is that 84 is variable. In addition, 52 and 5
As explained in FIG. 2, 4 indicates the water supply pressure at the outlet of the turbine-driven water supply pump, the water supply pressure detector at the discharge side confluence section, and the subtractor 74, which indicates the differential pressure (ΔP) between the pressure signals 70 and 71.
76, and the deviation 80 between this and the signal of the signal generator 68A which has set the target differential pressure to 0 is passed through the proportional-integral calculator 82 to find the rotation speed setting position 84 at which the differential pressure becomes 0. can.

本実施的によれば、給水ポンプ12または14の給水圧
力(圧力検出器52により検出した信号)と吐出側合流
部の給水圧力(圧力検出器56で検出した信号)の差圧
力Oとなる回転数(84)、すなわち、給水開始点相当
の回転数までタービン駆動給水ポンプ12を自動的に昇
速することができる。なお、給水ポンプ14も同様に制
御回路が構成されている。
According to this embodiment, the rotation is such that the difference pressure O between the water supply pressure of the water supply pump 12 or 14 (signal detected by the pressure detector 52) and the water supply pressure at the discharge side junction (signal detected by the pressure detector 56) is obtained. It is possible to automatically increase the speed of the turbine-driven water supply pump 12 to the number (84), that is, the rotation speed corresponding to the water supply starting point. Note that the water supply pump 14 is also configured with a control circuit in the same manner.

本実施的によれば、給水系のシステムヘッド変化に無関
係に給水ポンプ12ま九は14の回転数を給水開始点相
当まで昇速することができ、以後の給水制御への移行が
円滑となる利点かめる。
According to this implementation, the rotation speed of the water supply pumps 12 and 14 can be increased to the equivalent of the water supply starting point regardless of changes in the system head of the water supply system, and the subsequent transition to water supply control becomes smooth. Enjoy the benefits.

以上述べたように本発明によれば、給水系のシステムヘ
ッドの変化に関係なく安定で円滑な給水制御ができる効
果がめる。
As described above, according to the present invention, stable and smooth water supply control can be achieved regardless of changes in the system head of the water supply system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は給水系の吐出圧と流量の関係を示す特性図、第
2図は本発明の一実施例か適用される発電プラントの概
略構成を示す系統図、第3図は本発明の一実施例を示す
系統図、第4図は本発明に係る一実施例の制御回路の構
成を示すブロック図である。 12.14・・・タービン駆動給水ポンプ、16・・・
電動機駆動給水ポンプ、38.40・・・加減弁。 42.44・・・タービン、52.54・・・圧力検出
器。 56・・・合流部の圧力検出器、66・・・制御回路、
68・・・指令、74.78.88・=・減算器、82
゜第 1 口 5免 責 O ぞ2図
Fig. 1 is a characteristic diagram showing the relationship between the discharge pressure and flow rate of the water supply system, Fig. 2 is a system diagram showing the schematic configuration of a power generation plant to which an embodiment of the present invention is applied, and Fig. 3 is a diagram showing the schematic configuration of a power generation plant to which an embodiment of the present invention is applied. FIG. 4 is a block diagram showing the configuration of a control circuit according to an embodiment of the present invention. 12.14... Turbine-driven water pump, 16...
Electric motor driven water supply pump, 38.40...Adjustment valve. 42.44...Turbine, 52.54...Pressure detector. 56... Pressure detector at the confluence section, 66... Control circuit,
68...command, 74.78.88...=subtractor, 82
゜1st mouth 5 disclaimer O zo 2 figure

Claims (1)

【特許請求の範囲】[Claims] L 蒸気発生装置に給水をする複数の給水ポンプと、該
給水ポンプの運転を所定の運転指令に基づ−て制御する
制御回路とを備えた給水ポンプ制御装置にお−て、前記
給水ポンプの各吐出側に設けた第1の圧力検出器と、前
記複数のポンプの吐出側合流部に設けた第2の圧力検出
器と、各給水ポンプにそれぞれ設けられ、かつ給水ポン
プの回転数をそれぞれ検出する回転数検出器とを備え、
前記制御回路を、前記両正力検出器からの圧力信号に基
づ−て目標回転数指令を形成し、かつ、前記回転数検出
器からの回転数信号と該目標回転数指令とく基づいて給
水ポンプの回転数を制御するように構成したことを特徴
とする給水ポンプ制御装置。
L A water supply pump control device comprising a plurality of water supply pumps that supply water to a steam generator and a control circuit that controls the operation of the water supply pumps based on a predetermined operation command. A first pressure detector provided on each discharge side, a second pressure detector provided at the discharge side confluence of the plurality of pumps, and a second pressure detector provided on each water supply pump, and a second pressure detector provided on each of the water supply pumps, and a second pressure detector provided on each of the water supply pumps, and a second pressure detector provided on the discharge side of each of the plurality of pumps, and a second pressure detector provided on each of the water supply pumps. Equipped with a rotation speed detector to detect
The control circuit is configured to form a target rotational speed command based on pressure signals from both positive force detectors, and to supply water based on the rotational speed signal from the rotational speed detector and the target rotational speed command. A water supply pump control device characterized by being configured to control the rotation speed of a pump.
JP1491082A 1982-02-03 1982-02-03 Controller for feed pump Granted JPS58133505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1491082A JPS58133505A (en) 1982-02-03 1982-02-03 Controller for feed pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1491082A JPS58133505A (en) 1982-02-03 1982-02-03 Controller for feed pump

Publications (2)

Publication Number Publication Date
JPS58133505A true JPS58133505A (en) 1983-08-09
JPH059682B2 JPH059682B2 (en) 1993-02-05

Family

ID=11874127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1491082A Granted JPS58133505A (en) 1982-02-03 1982-02-03 Controller for feed pump

Country Status (1)

Country Link
JP (1) JPS58133505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083050A (en) * 2010-10-13 2012-04-26 Mitsubishi Heavy Ind Ltd Control device of power generation system, power generation system, and method of controlling power generation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692784U (en) * 1979-12-18 1981-07-23
JPS5712202A (en) * 1980-06-24 1982-01-22 Tokyo Shibaura Electric Co Turbine controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692784U (en) * 1979-12-18 1981-07-23
JPS5712202A (en) * 1980-06-24 1982-01-22 Tokyo Shibaura Electric Co Turbine controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083050A (en) * 2010-10-13 2012-04-26 Mitsubishi Heavy Ind Ltd Control device of power generation system, power generation system, and method of controlling power generation system

Also Published As

Publication number Publication date
JPH059682B2 (en) 1993-02-05

Similar Documents

Publication Publication Date Title
CA1082057A (en) Boiler feed water pump control systems
JPS6158644B2 (en)
JPH0333495A (en) Control device for condensate pump
JPS60222511A (en) Thermal power generating equipment
JPS58133505A (en) Controller for feed pump
JPS5938506A (en) Automatic speed increaser for turbine driving feed pump
JPS6154927B2 (en)
JPS6326802B2 (en)
JP2677561B2 (en) Water supply control device
JP2885346B2 (en) Combined plant control method and apparatus
JP2000097403A (en) Controller for turbine-drive water supply pump
JP2999884B2 (en) Method and apparatus for controlling turbine for feeding water pump
JPS5941003B2 (en) Turbine control device for driving water pump
JPS5934843B2 (en) steam generator
JPS63223489A (en) Condensate control system
JPH0256481B2 (en)
JPS62291494A (en) Control method for compressor
JPS6024284B2 (en) Steam turbine back pressure control method
JPS6025685B2 (en) Automatic operation method of steam turbine for driving boiler feed water pump
JPS59217195A (en) Reactor feedwater flowrate control device
JPS61167103A (en) Turbine control device
JPH06337103A (en) Controller for water supply flow rate in water supply pump
JPS5872802A (en) Controller for feed pump of boiler
JPH04269331A (en) Control method for fuel gas flow
JPS6358005A (en) Feedwater flow controller for boiler