JP2677561B2 - Water supply control device - Google Patents

Water supply control device

Info

Publication number
JP2677561B2
JP2677561B2 JP62138149A JP13814987A JP2677561B2 JP 2677561 B2 JP2677561 B2 JP 2677561B2 JP 62138149 A JP62138149 A JP 62138149A JP 13814987 A JP13814987 A JP 13814987A JP 2677561 B2 JP2677561 B2 JP 2677561B2
Authority
JP
Japan
Prior art keywords
water supply
speed
control
rotation speed
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62138149A
Other languages
Japanese (ja)
Other versions
JPS63302201A (en
Inventor
隆 水野
武二 羽生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62138149A priority Critical patent/JP2677561B2/en
Publication of JPS63302201A publication Critical patent/JPS63302201A/en
Application granted granted Critical
Publication of JP2677561B2 publication Critical patent/JP2677561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Earth Drilling (AREA)
  • Paper (AREA)
  • Revetment (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は変圧運転を行なう火力発電プラントの給水制
御装置に関する。 (従来の技術) 火力発電プラントには、ボイラ出口主蒸気圧力が定格
負荷時と部分負荷時で一定な定圧発電プラントと、部分
負荷時には低下させる変圧発電プラントがあるが、部分
負荷時の運転における熱効率は後者の方が優れており、
近年変圧発電プラントは増々増加傾向にある。 この変圧運転では、部分負荷時ボイラ出口主蒸気圧力
が比較的低いので、ボイラの要求するボイラ入口給水流
量を送給する給水ポンプの吐出圧力と回転数は低いとこ
ろで運転される。そして、負荷を増加するのに従い、ボ
イラ出口主蒸気圧力と給水ポンプ吐出圧力、回転数を増
加して運転される。 このときの給水系統図を第3図に示す。第3図におい
て、給水ポンプ駆動タービン1の回転数は蒸気加減弁2
のカ開度を調節することにより制御される。給水ポンプ
3は給水ポンプ駆動タービン1により駆動され、両者の
回転数は等しい。給水ポンプ3から吐出された給水は逆
止弁4、出口弁5止め弁6を通過して、他の給水ポンプ
からの給水と管寄せ部で合流し、総和の給水が高圧ヒー
タ7で熱せられボイラ8へ送給される。給水はボイラ8
で熱せられる主蒸気となって、図示しない主タービンへ
と送られる。他の給水ポンプ廻りの系統は図示した1台
の給水ポンプ3廻りの系統に同等なので図示を省略し
た。尚、逆止弁4は給水ポンプ3から出口弁5の向きに
給水を流すが、この逆向きには流れない。出口弁5は調
節弁で、中間開度にして給水運転が行なわれる場合もあ
る。止め弁6は給水運転中は常に全開している。 次に、給水ポンプの吐出圧力Pと給水流量Qと回転数
Nの関係を第4図のP−Q曲線に示す。第4図におい
て、給水ポンプ回転数Nは、N1から順に上に行くに従っ
て高く、回転数Nが高くなるに従って吐出圧力Pが大き
くなり給水流量Qが多くなる特性をもっている。システ
ムヘッド曲線11は、部分負荷から定格負荷へと負荷上昇
させるときの、給水圧力Pと給水流量Qの関係を示すも
のである。システムヘッド曲線上の給水圧力Pは第3図
で示した給水ポンプ出口管寄せ部の給水圧力センサ9か
ら得るヘッダ圧力P1と考えてよい。ボイラ入口給水圧力
はヘッダ圧力P1に等しい。従って、給水ポンプ3からボ
イラ8へ給水が送られている給水運転の状態では第3図
で示した給水ポンプ3の吐出口の吐出圧力センサ10から
得る吐出圧力P2は必ずヘッダ圧力P1より高い。逆に、吐
出圧力P2がヘッダ圧力P1より低い場合は、給水は送れ
ず、逆止弁4により管路は閉じられている。 次に、従来の給水制御装置の例を第2図に示す。第2
図において、給水ポンプの昇速は、昇降制御回転数設定
NREFを零から増加することにより開始される。その増加
の様子を第6図に示す。時刻tの経過とともに一定の変
化率で上昇し、上限値NREFmaxに至る。第2図で示した
ように、昇速制御回転数設定NREFと給水ポンプ回転数N
の偏差を減算器12で演算し、得た偏差を比例制御器13に
通して昇速制御蒸気加減弁開度指令14を得る。昇速制御
蒸気加減弁開度指令14は低値優先回路15を通過し、この
信号は変換器16により電気信号を油圧信号に変換し、図
示しない油圧回路とレバー機構を介して第3図に示した
蒸気加減弁2の開度を決める。即ち、昇速制御回転数設
定NREFを増加することにより蒸気加減弁2の開度が増加
し、給水ポンプ回転数Nが増加する。 一方、第2図で示すように、蒸気の昇速制御中は、給
水制御回転数設定NRには信号発生器17により所定の一定
値NRminが与えている(NR=NRmin)。給水制御回転数設
定NRと給水ポンプ回転数Nの偏差を減算器18で演算し、
得た偏差を比例制御器19に通して給水制御蒸気加減弁開
度指令20を得る。給水制御上記加減弁開度指令20は、昇
速開始後しばらくの間は低値優先回路15において昇速制
御蒸気加減弁開度指令14よりも大きいため、選択されな
い。昇速制御回転数設定NREFが比較的に高くなり、給水
ポンプ回転数ンが給水制御回転数設定NRに近づいてくる
と、やがて給水制御蒸気加減弁開度指令20の方が昇速制
御蒸気加減弁開度指令14より低くなり、以後は給水制御
蒸気加減弁開度指令20が定値選択回路15を通過すること
になる。給水ポンプ回転数Nを更に増加させるためには
手動設定21を零から増加する必要がある。つまり、第4
図のシステムヘッド曲線11で示したように、その時点の
ヘッダ圧力P1の大きさに応じて給水開始回転数を変える
必要があるのである。信号発生器17が与える最低回転数
設定NRminは、高い値にすると昇速制御中に給水ポンプ
3の吐出圧力P2がヘッダ圧力P1より大きくなって給水流
量が突出することになるため、かなり低い値が選ばえ
る。負荷が高く、ヘッダ圧力P1が大きい場合には、最低
回転数設定NRmin相当の低い給水ポンプ吐出圧力から
ヘッダ圧力P1相当の高い回転数まで給水ポンプ回転数を
増加させるために手動設定21を徐々に増加させなければ
ならない。給水流量が突出しないように、給水ポンプ吐
出圧力P2がヘッダ圧力P1に等しくなる給水開始回転数ま
で、徐々に手動設定21を増加するわけである。給水開始
回転数に達すると、スイッチ22を手動設定21から比例積
分制御器23に切換える。切換えた後は給水流量設定QR
給水流量Qの偏差を減算器24で演算し、得た偏差を比例
積分制御器23に通して給水要求回転数設定が得られる。
給水要求回転数設定25と最低回転数設定NRminを加算器2
6で加算したものが給水制御回転数設定NRとなる。以上
のようにして、従来、給水ポンプの昇速開始から給水開
始へと移行させるようにしていた。 (発明が解決しようとする問題点) 定圧発電プラントではボイラ出口主蒸気圧力が部分負
荷時と定格負荷時で一定であるため、ボイラ入口給水圧
力は第4図の曲線27(点線部)のように変化が小さかっ
た。従って、第2図の従来の給水制御装置でも最低回転
数NRminを給水開始回転数設定として大きな値を選ぶこ
とができたし、一定値でも十分であった。しかしなが
ら、変圧発電プラントでは、システムヘッド曲線11(実
線部)に見られるように、負荷に応じてボイラ入口給水
圧力が大きく変るため、ボイラ入口給水圧力(=ヘッダ
圧力P1)に等しい給水ポンプ吐出圧力P2を得るための給
水開始回転数が負荷に応じて変るという特徴をもってい
る。定圧発電プラントに適用されてきた第2図の従来の
給水制御装置では、変圧発電プラントにおいては最低回
転数設定NRminから給水開始回転数までの回転数増加を
手動設定21を徐々に、給水流量が突出しないように、手
動にて行なわねばならない。また、徐々に手動設定21を
増加しなければならないので、昇速開始から給水開始ま
での移行に多くの時間を要するなどの問題点があった。 そこで本発明は、上記の問題点を解決するために、短
時間で給水開始回転数への到達を可能とすると共に、昇
速制御から給水制御への移行をスムーズに行うことを可
能とする給水制御装置を提供することを目的とする。 〔発明の構成〕 (問題点を解決するための手段) 本発明は、給水ポンプ吐出口に設けられた出口弁の1
次側給水圧力(=吐出圧力P2)と2次側給水圧力(=ヘ
ッダ圧力P1)の差圧を検出する手段を設け、その差圧の
大きさに応じた給水開始回転数バイアスを演算し、その
給水開始回転数バイアスを給水要求回転数設定に加算す
ることにより、出口弁2次側給水圧力に対応する給水開
始回転数を得るようにしたものである。 (作 用) 出口弁の1次側給水圧旅(=吐出圧力P2)と2次側給
水圧力(=ヘッダ圧力P1)の差圧に基づいて給水開始回
転数を得るようにしたので、変圧発電プラントにおいて
も、給水開始回転数に到達するまでの給水ポンプ回転数
増加を昇速制御により行い、自動的に、最短時間で給水
開始回転数に到達するようにし、給水運転への移動をス
ムーズに行える。 (実施例) 第1図に本発明の一実施例による給水制御装置の制御
系統図を示す。図において、第2図と同一符号は、同一
のものであることを示し、それらの説明は前述同等のた
め省略する。第1図の特徴点は、更に出口弁1次側の給
水圧力P2(=吐出圧力P2)と出口弁2次側の給水圧力P1
(=ヘッダ圧力P1)との差圧ΔPを演算器28により得、
差圧ΔPの大きさに応じた給水開始回転数バイアスNRB
を与えるための第5図の特性をもつ関数発生器29を設け
る一方、スイッチ22の出口に加算器30を挿入した点であ
る。 関数発生器29は第5図の特性をもつもので、給水ポン
プの昇速開始当初ヘッダ圧力P1に比べ吐出圧力P2の方が
はるかに低く、差圧ΔPは正の大きな値となっていて、
給水開始回転数バイアスNRBは上限値NRBmaxに等しい。
従って、昇速制御を開始してしばらくの間の給水制御回
転数設定NRの値は最低回転数設定NRminと給水開始回転
数バイアスNRBmaxの和に等しい。昇速制御回転数設定N
REFが第6図のように増加して行くと、給水ポンプ回転
数Nの増加に従い吐出圧力P2も増加する。吐出圧力P2
増加すると差圧ΔPは減少するので、給水開始回転数バ
イアスNRBは上限値NRBmaxから下がりはじめる。従っ
て、給水制御回転数設定NRも下がりはじめる。更に回転
数Nが増加すると、やがて低値優先回路15において、優
先信号は昇速制御蒸気加減弁開度指令14から給水制御蒸
気加減弁開度指令20に切換る。この切換りの点は第5で
はA点の位置に相当し、A点における差圧ΔPはΔPaで
あり、給水開始回転数バイアスNRBはNRBaである。従っ
て、昇速制御が完了した時点の給水制御回転設定NRはRR
minとNRBaの和に等しく、吐出圧力P2はヘッダ圧力P1
りわずかΔPaだけ低いところにある。ΔPaを小さくした
ければ、第5図の坂の部分の傾きを大きくすることによ
り実現できる。この時点における給水制御回転数設定NR
(=NRmin+NRBa)が給水開始回転数となる。 次に、スイッチ22を手動設定21から比例積分制御器23
に切換えて、給水流量設定QR増加すると、給水制御回転
数設定NRを増加するので蒸気加減弁が開度を増し、回転
数Nが増加する。回転数Nが増加すると吐出圧力P2が大
きくなり差圧ΔPは更に小さくなって、給水開始ととも
に差圧ΔPは負となるので給水開始回転数バイアスNRB
は零となり。それ以降は比例制御器23の出力信号のみに
より給水制御回転数設定NRが決められるようになる。 また、給水開始回転数に到達後、スイッチ22をすぐに
は切換えないで、手動設定21につないだままにしておい
て、給水待機運転を行なわせることも可能である。これ
は、直ちに給水を確保する必要はないが、給水が必要と
なった時には直ちに給水が確保できるように給水開始回
転数に維持させておく運転である。給水待機運転中にヘ
ッダ圧力P1が変化するようなことがあっても、手動設定
21が零のまま(手動設定21の操作をしなくとも)、必要
な差圧ΔPaが確保する方向に給水開始回転数バイアスN
RBが変化し、給水ポンプ回転数Nを変化させるので給水
開始回転数が維持される。 以上のように、本実施例によれば、差圧ΔPの大きさ
に応じた給水開始回転数バイアスを演算し、その給水開
始回転数バイアスを給水要求回転数設定に加算するよう
にしたので、変圧発電プラントに適用ても、出口弁2次
側給水圧力に対応する給水開始回転数が得られ、また高
い回転数変化率で給水ポンプ回転数の上昇が可能な昇速
制御により給水開始回転数に自動的に、最短時間で到達
するこができる。また出口弁2次側給水圧力の変化に対
しても給水開始回転数が維持できる。だから、給水運転
への移動に際しても、手動設定の操作によらずとも、ス
ムーズに移行させることができる。 〔発明の効果〕 以上のように本発明によれば、所定の変化率に基づき
昇速制御を行う一方、吐出圧力とヘッダ圧力との差圧の
大きさに応じた給水開始回転数バイアスを補償信号とし
て給水制御を行い、短時間で給水開始回転数に到達した
低値選択により昇速制御から給水制御への連続した切換
制御を行うことができる。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a water supply control device for a thermal power plant that performs a variable voltage operation. (Prior art) Thermal power plants include a constant pressure power plant where the boiler main steam pressure is constant at rated load and partial load, and a transformer power plant that reduces it at partial load. The latter has better thermal efficiency,
In recent years, the number of transformer power plants has been increasing. In this variable pressure operation, the boiler outlet main steam pressure during partial load is relatively low, so the discharge pressure and the rotation speed of the feed water pump that supplies the boiler inlet feed water flow rate required by the boiler are operated in a low place. Then, as the load increases, the boiler outlet main steam pressure, the feed water pump discharge pressure, and the number of revolutions increase. The water supply system diagram at this time is shown in FIG. In FIG. 3, the rotation speed of the feed water pump driving turbine 1 is the steam control valve 2
It is controlled by adjusting the opening degree. The water supply pump 3 is driven by the water supply pump drive turbine 1, and the rotation speeds of both are equal. The water supplied from the water supply pump 3 passes through the check valve 4, the outlet valve 5 and the stop valve 6, and joins with the water supplied from the other water supply pumps at the heading section, and the total water supply is heated by the high-pressure heater 7. It is sent to the boiler 8. Boiler 8
It becomes the main steam that is heated by and is sent to the main turbine (not shown). The system around the other water supply pumps is the same as the system around the one water supply pump 3 shown in the figure, so the illustration is omitted. The check valve 4 flows water from the water supply pump 3 toward the outlet valve 5, but does not flow in the opposite direction. The outlet valve 5 is a control valve, and the water supply operation may be performed with an intermediate opening. The stop valve 6 is always fully open during the water supply operation. Next, the relationship between the discharge pressure P of the feed water pump, the feed water flow rate Q, and the rotation speed N is shown in the PQ curve in FIG. In FIG. 4, the rotation speed N of the water supply pump is higher as it goes upward from N 1 , and as the rotation speed N is higher, the discharge pressure P is increased and the water supply flow rate Q is increased. The system head curve 11 shows the relationship between the feed water pressure P and the feed water flow rate Q when the load is increased from the partial load to the rated load. The water supply pressure P on the system head curve can be considered as the header pressure P 1 obtained from the water supply pressure sensor 9 at the water supply pump outlet pipe drawing portion shown in FIG. Boiler inlet feed pressure is equal to header pressure P 1 . Therefore, in the state of water supply operation in which water is being supplied from the water supply pump 3 to the boiler 8, the discharge pressure P 2 obtained from the discharge pressure sensor 10 at the discharge port of the water supply pump 3 shown in FIG. 3 is always greater than the header pressure P 1 . high. On the contrary, when the discharge pressure P 2 is lower than the header pressure P 1 , the feed water cannot be sent and the check valve 4 closes the pipe line. Next, an example of a conventional water supply control device is shown in FIG. Second
In the figure, the speed up of the water supply pump is set by the lifting control rotation speed.
It is started by increasing N REF from zero. The manner of increase is shown in FIG. It rises at a constant rate of change with the passage of time t, and reaches the upper limit value N REF max. As shown in FIG. 2, the speed-up control rotation speed setting N REF and the water supply pump rotation speed N
The deviation is calculated by the subtractor 12, and the obtained deviation is passed through the proportional controller 13 to obtain the speed-up control steam control valve opening degree command 14. The speed-up control steam control valve opening degree command 14 passes through the low value priority circuit 15, and this signal is converted into an oil pressure signal by the converter 16 and is transmitted to a hydraulic circuit (not shown) and a lever mechanism as shown in FIG. The opening degree of the steam control valve 2 shown is determined. That is, by increasing the speed-up control rotation speed setting N REF , the opening degree of the steam control valve 2 increases and the feedwater pump rotation speed N increases. On the other hand, as shown in FIG. 2, during the steam speed increasing control, a predetermined constant value N R min is given to the feed water control speed setting N R by the signal generator 17 (N R = N R min ). The difference between the water supply control rotation speed setting N R and the water supply pump rotation speed N is calculated by the subtractor 18,
The obtained deviation is passed through a proportional controller 19 to obtain a feedwater control steam control valve opening degree command 20. Water supply control The acceleration / deceleration valve opening command 20 is not selected because it is larger than the speed-increasing control steam acceleration / deceleration valve opening command 14 in the low value priority circuit 15 for a while after the start of acceleration. Acceleration control When the rotation speed setting N REF becomes relatively high and the feedwater pump rotation speed n approaches the water supply control rotation speed setting N R , eventually the water supply control steam control valve opening command 20 becomes the acceleration control. It becomes lower than the steam control valve opening command 14, and thereafter the water supply control steam control valve opening command 20 passes through the constant value selection circuit 15. In order to further increase the feedwater pump speed N, the manual setting 21 must be increased from zero. That is, the fourth
As shown by the system head curve 11 in the figure, it is necessary to change the water supply start rotation speed according to the magnitude of the header pressure P 1 at that time. If the minimum rotation speed setting N R min given by the signal generator 17 is set to a high value, the discharge pressure P 2 of the water supply pump 3 becomes larger than the header pressure P 1 during the speed-up control, and the water supply flow rate becomes prominent. , You can choose a fairly low value. When the load is high and the header pressure P 1 is large, it is necessary to manually increase the feed pump speed from a low feed pump discharge pressure 2 equivalent to the minimum rpm setting N R min to a high feed pressure equivalent to the header pressure P 1. Setting 21 must be gradually increased. The manual setting 21 is gradually increased until the water supply pump discharge pressure P 2 becomes equal to the header pressure P 1 so that the water supply flow rate does not project. When the number of rotations for starting water supply is reached, the switch 22 is switched from the manual setting 21 to the proportional-plus-integral controller 23. After switching the deviation of the feed water flow rate setting Q R and the water supply flow rate Q is calculated by the subtracter 24, the water supply required rotational speed set through the resulting deviation to the PI controller 23 is obtained.
Add the required water speed setting 25 and the minimum speed setting N R min to the adder 2
The value added in 6 becomes the water supply control speed setting N R. As described above, conventionally, the water supply pump has been shifted from the start of acceleration to the start of water supply. (Problems to be solved by the invention) In a constant pressure power plant, the boiler outlet main steam pressure is constant at partial load and at rated load, so the boiler inlet feed water pressure is as shown by curve 27 (dotted line) in FIG. The change was small. Therefore, even in the conventional water supply control device shown in FIG. 2, a large value could be selected as the minimum water supply speed N R min as the water supply start rotation speed setting, and a constant value was sufficient. However, in the transformer power plant, as seen in the system head curve 11 (solid line part), the boiler inlet feed water pressure changes greatly depending on the load, so the feed pump discharge equal to the boiler inlet feed water pressure (= header pressure P 1 ). The feature is that the water supply start speed for obtaining the pressure P 2 changes depending on the load. In the conventional water supply control device of FIG. 2 which has been applied to the constant pressure power generation plant, in the transformer power generation plant, the rotation speed increase from the minimum rotation speed setting N R min to the water supply start rotation speed is manually set 21 to gradually supply water. It must be done manually to prevent the flow rate from protruding. Further, since the manual setting 21 has to be gradually increased, there is a problem that a lot of time is required for the transition from the start of speed increase to the start of water supply. Therefore, in order to solve the above-mentioned problems, the present invention enables the water supply start rotation speed to be reached in a short time, and enables the smooth transition from the speed increase control to the water supply control. An object is to provide a control device. [Structure of the Invention] (Means for Solving Problems) The present invention relates to an outlet valve 1 provided at a discharge port of a water supply pump.
A means for detecting the differential pressure between the secondary side water supply pressure (= discharge pressure P 2 ) and the secondary side water supply pressure (= header pressure P 1 ) is provided, and the water supply start rotational speed bias is calculated according to the magnitude of the differential pressure. Then, the water supply start rotation speed bias is added to the water supply request rotation speed setting to obtain the water supply start rotation speed corresponding to the outlet valve secondary side water supply pressure. (Operation) Since the water supply start rotational speed is obtained based on the differential pressure between the outlet side primary water supply pressure trip (= discharge pressure P 2 ) and the secondary side water supply pressure (= header pressure P 1 ), Even in a transformer power plant, the water supply pump rotation speed is increased by the speed-up control until the water supply start rotation speed is reached, so that the water supply start rotation speed is automatically reached in the shortest time, and movement to water supply operation is performed. It can be done smoothly. (Embodiment) FIG. 1 shows a control system diagram of a water supply controller according to an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 2 indicate the same parts, and the explanations thereof are omitted because they are equivalent to the above. The characteristic point of FIG. 1 is that the water supply pressure P 2 (= discharge pressure P 2 ) on the outlet valve primary side and the water supply pressure P 1 on the outlet valve secondary side are further
(= Header pressure P 1 )
Water supply start rotation speed bias N RB according to the magnitude of differential pressure ΔP
The function generator 29 having the characteristics shown in FIG. The function generator 29 has the characteristics shown in FIG. 5, and the discharge pressure P 2 is much lower than the header pressure P 1 at the start of the water feed pump acceleration, and the differential pressure ΔP has a large positive value. hand,
The water supply start speed bias N RB is equal to the upper limit N RB max.
Therefore, the value of the water supply control rotation speed setting N R for a while after starting the speed-up control is equal to the sum of the minimum rotation speed setting N R min and the water supply start rotation speed bias N RB max. Acceleration control rotation speed setting N
As REF increases as shown in FIG. 6, the discharge pressure P 2 also increases as the feedwater pump rotation speed N increases. Since the differential pressure ΔP decreases as the discharge pressure P 2 increases, the water supply start rotation speed bias N RB starts to decrease from the upper limit N RB max. Therefore, the water supply control speed setting N R also begins to fall. When the number of revolutions N further increases, the priority signal in the low value priority circuit 15 is eventually switched from the speed-up control steam control valve opening command 14 to the water supply control steam control valve opening command 20. The point of this switching corresponds to the position of point A in the fifth point, the differential pressure ΔP at point A is ΔPa , and the water supply start rotational speed bias N RB is N RBa . Therefore, the water supply control rotation setting N R at the time when the speed-up control is completed is R R
It is equal to the sum of min and N RBa , and the discharge pressure P 2 is slightly lower than the header pressure P 1 by ΔPa . If it is desired to reduce ΔPa, it can be realized by increasing the slope of the slope portion in FIG. Water supply control speed setting N R at this point
(= N R min + N RBa ) is the water supply start speed. Next, switch 22 from manual setting 21 to proportional-integral controller 23
The switching, the feed water flow set Q R increases, since increasing the water supply control rotation speed setting N R steam control valve increases the opening degree, the rotational speed N increases. As the rotational speed N increases, the discharge pressure P 2 increases and the differential pressure ΔP decreases further, and the differential pressure ΔP becomes negative with the start of water supply. Therefore, the water supply start rotational speed bias N RB
Becomes zero. After that, the water supply control rotation speed setting N R can be determined only by the output signal of the proportional controller 23. Further, it is also possible to perform the water supply standby operation by keeping the manual setting 21 connected without switching the switch 22 immediately after reaching the water supply start rotation speed. This is an operation in which it is not necessary to secure the water supply immediately, but the water supply start rotation speed is maintained so that the water supply can be secured immediately when the water supply becomes necessary. Even if the header pressure P 1 may change during the water supply standby operation, the manual setting
21 remains zero (even if the manual setting 21 is not operated), in order to secure the required differential pressure ΔPa, the water supply start rotation speed bias N
Since RB changes and the water supply pump rotation speed N is changed, the water supply start rotation speed is maintained. As described above, according to the present embodiment, the water supply start rotation speed bias is calculated according to the magnitude of the differential pressure ΔP, and the water supply start rotation speed bias is added to the water supply request rotation speed setting. Even when applied to a transformer power plant, the water supply start speed corresponding to the outlet valve secondary side water supply pressure can be obtained, and the water supply start speed can be increased by the acceleration control that can increase the water supply pump speed at a high speed change rate. Can be reached automatically in the shortest time. Further, the water supply start rotation speed can be maintained even when the outlet valve secondary side water supply pressure changes. Therefore, even when moving to the water supply operation, the transition can be smoothly performed without the manual setting operation. [Advantages of the Invention] As described above, according to the present invention, while increasing speed control is performed based on a predetermined rate of change, the water supply start rotational speed bias is compensated according to the magnitude of the differential pressure between the discharge pressure and the header pressure. The water supply control is performed as a signal, and continuous switching control from the speed-up control to the water supply control can be performed by selecting a low value that has reached the water supply start rotation speed in a short time.

【図面の簡単な説明】 第1図は本発明の一実施例による給水制御装置の制御系
統図、第2図は従来の給水制御装置の制御系統図、第3
図は第1図によって制御される給水ポンプ廻りの給水系
統図、第4図はP−Q曲線を示す図、第5図は給水開始
回転数バイアスを与える関数発生器の特性を示す図、第
6図は昇速制御回転数設定が上昇する様子を示す図であ
る。 1……給水ポンプ駆動タービン 2……蒸気加減弁、3……給水ポンプ 9……ヘッダ圧力検出器、10……吐出圧力検出器、 13,19……比例制御器、15……低値優先回路 17……最低回転数信号発生器、21……手動設定 22……スイッチ、23……比例積分制御器 29……関数発生器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a control system diagram of a water supply controller according to an embodiment of the present invention, FIG. 2 is a control system diagram of a conventional water supply controller, and FIG.
FIG. 4 is a diagram of a water supply system around the water supply pump controlled by FIG. 1, FIG. 4 is a diagram showing a PQ curve, and FIG. 5 is a diagram showing characteristics of a function generator that gives a water supply start rotational speed bias. FIG. 6 is a diagram showing how the speed-up control rotation speed setting increases. 1 ... Water pump driving turbine 2 ... Steam control valve 3 ... Water pump 9 ... Header pressure detector, 10 ... Discharge pressure detector, 13,19 ... Proportional controller, 15 ... Low value priority Circuit 17 …… Minimum rotation speed signal generator, 21 …… Manual setting 22 …… Switch, 23 …… Proportional integral controller 29 …… Function generator

Claims (1)

(57)【特許請求の範囲】 1.給水ポンプ吐出口の出口弁1次側給水圧力と出口弁
2次側給水圧力の差圧大きさに応じた給水開始回転数バ
イアスを演算する給水開始回転数バイアス演算手段と、
前記給水開始回転数バイアスを補償信号として出口弁2
次側給水圧力に対応する給水制御回転数を出力する加算
手段と、前記加算手段で求まる給水制御回転数と実回転
数との偏差に基づき回転数制御指令出力する回転数制御
手段と、所定の変化率で給水開始回転数まで上昇する昇
速制御回転数が設定されている昇速回転数設定手段と、
前記昇速制御回転数と実回転数との偏差に基づき昇速制
御指令を出力する昇速制御手段と、前記回転数制御指令
と前記昇速制御指令のうち低値を蒸気加減弁の開度指令
として出力する低値選択手段とを備えたことを特徴とす
る給水制御装置。
(57) [Claims] Water supply start rotation speed bias calculation means for calculating a water supply start rotation speed bias in accordance with the pressure difference between the outlet valve primary side supply water pressure and the outlet valve secondary side supply water pressure of the water supply pump discharge port,
The outlet valve 2 using the water supply start rotational speed bias as a compensation signal
An addition means for outputting a water supply control rotation speed corresponding to the secondary side water supply pressure; a rotation speed control means for outputting a rotation speed control command based on a deviation between the water supply control rotation speed and the actual rotation speed obtained by the addition means; A speed-up control speed setting means for setting a speed-up control speed that increases to the water supply start speed at a rate of change,
A speed increasing control means for outputting a speed increasing control command based on a deviation between the speed increasing control speed and the actual speed, and a low value of the speed controlling command and the speed increasing control command is set to the opening degree of the steam control valve. A water supply control device comprising: a low value selecting means for outputting as a command.
JP62138149A 1987-06-03 1987-06-03 Water supply control device Expired - Lifetime JP2677561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138149A JP2677561B2 (en) 1987-06-03 1987-06-03 Water supply control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138149A JP2677561B2 (en) 1987-06-03 1987-06-03 Water supply control device

Publications (2)

Publication Number Publication Date
JPS63302201A JPS63302201A (en) 1988-12-09
JP2677561B2 true JP2677561B2 (en) 1997-11-17

Family

ID=15215157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138149A Expired - Lifetime JP2677561B2 (en) 1987-06-03 1987-06-03 Water supply control device

Country Status (1)

Country Link
JP (1) JP2677561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113685800B (en) * 2021-08-12 2023-11-14 杭州意能电力技术有限公司 Automatic parallel pump control system of steam-driven water supply pump based on rate self-adaption

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076604B2 (en) * 1985-02-20 1995-01-30 北海道電力株式会社 Turbine control device for water supply pump drive

Also Published As

Publication number Publication date
JPS63302201A (en) 1988-12-09

Similar Documents

Publication Publication Date Title
JP2714449B2 (en) Variable speed pump system
US5203160A (en) Combined generating plant and its start-up control device and start-up control method
JPS6158644B2 (en)
JPH0333495A (en) Control device for condensate pump
US6602044B1 (en) Pump turbine, method of controlling thereof, and method of stopping thereof
JP2677561B2 (en) Water supply control device
JP4939612B2 (en) Compressor control device and control method
US6532727B1 (en) Device for the supply of a liquid fuel to a burner member
JP2918743B2 (en) Steam cycle controller
JP2894978B2 (en) Tank level control device for hydroelectric power plant
JP3707089B2 (en) Plant control system in an exhaust-fired combined cycle plant
JP3781929B2 (en) Turbine controller
JPH03267512A (en) Steam turbine controller
JP2731147B2 (en) Control unit for hydroelectric power plant
JP4223645B2 (en) Pump turbine
JP2000097403A (en) Controller for turbine-drive water supply pump
JP2004279221A (en) Nuclear reactor output control system
JP4459730B2 (en) Turbine speed control device and pulse modulation control circuit
JPS6345516B2 (en)
JP2002195508A (en) Feed water control device and method of steam boiler
JPS6326802B2 (en)
JPH0749012Y2 (en) Turbine operation controller for hydroelectric power plant
JPH09242508A (en) Method and device for stopping combined cycle plant
JPS5941003B2 (en) Turbine control device for driving water pump
JPS63277870A (en) Pumping starting method for variable speed pump water turbine of pump

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term