JPS58132964A - Preparation of semiconductor device - Google Patents

Preparation of semiconductor device

Info

Publication number
JPS58132964A
JPS58132964A JP1467382A JP1467382A JPS58132964A JP S58132964 A JPS58132964 A JP S58132964A JP 1467382 A JP1467382 A JP 1467382A JP 1467382 A JP1467382 A JP 1467382A JP S58132964 A JPS58132964 A JP S58132964A
Authority
JP
Japan
Prior art keywords
layer
region
base
arsenic
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1467382A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shinada
品田 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP1467382A priority Critical patent/JPS58132964A/en
Publication of JPS58132964A publication Critical patent/JPS58132964A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer

Abstract

PURPOSE:To form shallow emitter base junction with good controllability at a low temperature by snow raking effect during heat processing. CONSTITUTION:An oxide film part 5 on a base region 7 is removed by etching, a platinum layer 11 is vacuum deposited after opening a contact hole 10 and thereafter heat processing is carried out. At this time, the Pt layer 11 connected to the base region 7 becomes PtSi layer and a base contact region 12 is formed, and arsenic doped polycrystalline silicon patterns 91, 92 are converted respectively to the PtSi layers 131, 132. The arsenic in the arsenic doped polycrystalline silicon patterns 91, 92 is swepted out in high concentration by the snow raking effect to a part of the surface of base region 7 and epitaxial layer 3 and thereby the n<+> type emitter region 14 and n<+> type collector leadout region 15 are formed. Thereby, the preformed p type base region 7 is prevented from spreading in the depth and lateral directions.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an improvement in a method for manufacturing a semiconductor device.

〔発明の技術的背景〕[Technical background of the invention]

従来、半導体装置例えばパイI−ラトランジスタは、第
1導電型例えばp−型の半導体基板上にn型エピタキシ
ャル層を、このエピタキシャル層の表面の一部にp型ベ
ース領域を、更にこのペース領域の表面の一部に!1+
型エミ、り領域を順次形成する工程等を経て製造されて
いた。
Conventionally, a semiconductor device, for example, a pie I-La transistor, has an n-type epitaxial layer on a semiconductor substrate of a first conductivity type, for example, a p-type, a p-type base region on a part of the surface of this epitaxial layer, and a space region. Part of the surface! 1+
They were manufactured through steps such as sequentially forming mold emitters and ridge areas.

〔背景技術の問題点〕[Problems with background technology]

しかし々がら、上記した製造方法にあっては、エミ、り
領域形成に際しての高温の熱処理において、すてに形成
したベース領域が深さ及び横方向に広がって浅い接合形
成が困難になると共に1ペース巾の制御が難しくなる欠
点を有する。
However, in the above-mentioned manufacturing method, in the high-temperature heat treatment when forming the emitter region, the base region that has already been formed expands in the depth and lateral direction, making it difficult to form a shallow bond, and This has the disadvantage that it is difficult to control the pace width.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、浅い接合を
実現し得る高集積、高速度の半導体装置の製造方法を提
供することを目的とする亀のである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing a highly integrated, high-speed semiconductor device that can realize shallow junctions.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板もしくは半導体層上の絶縁層の開
孔部に形成された第2導電型不純物を添加したシリコン
パターンを、低温でシリサイド化する際、該シリコソノ
4ターン中の不純物を、雪かき効果により従来の如く熱
的悪影響をもたらすことなく、前記基板もしくは半導体
層に導入し、第2導電型の半導体領域を形成することを
骨子とする。前記雪かき効果について詳述すれば、前記
シリコンツヤターンが表面的にしかシリサイド化されな
い場合でも、シリサイド化した金属層がシリコン)4タ
ーン中に存在する粒界に沿って異常に拡散するため、シ
リコン・中ターンと基板もしくは半導体層との界面近傍
がシリサイド化され、雪かき効果が生ずる。なお、この
雪かき効果について、表面に不純物を含んだバルクS1
基板の表面領域をシリサイド化することにより再拡散す
る方法は、すでにAppl。
In the present invention, when a silicon pattern doped with a second conductivity type impurity formed in an opening of an insulating layer on a semiconductor substrate or a semiconductor layer is silicided at a low temperature, impurities in the four turns of the silicon are removed by snow removal. The main idea is to introduce it into the substrate or semiconductor layer to form a semiconductor region of the second conductivity type without causing any adverse thermal effects as in the prior art. To explain the snow shoveling effect in detail, even if the silicon glossy turns are only superficially silicided, the silicided metal layer abnormally diffuses along the grain boundaries existing in the silicon 4 turns. - The vicinity of the interface between the middle turn and the substrate or semiconductor layer is silicided, creating a snow shoveling effect. Regarding this snow shoveling effect, bulk S1 containing impurities on the surface
A method of re-diffusion by siliciding the surface area of the substrate has already been proposed by Appl.

Phys、Lett、、Vol、38 、 A 12 
(1981) P、1015に報告されているが、シリ
コンツヤターンのシリサイド化と共に、該シリコンパタ
ーン中の不純物を基板もしくは半導体層へ掃き出す現象
は本発明者が始めて見出したものである。
Phys, Lett,, Vol, 38, A 12
(1981) P, 1015, the present inventor discovered for the first time the phenomenon of silicidation of a silicon pattern and the flushing of impurities in the silicon pattern to the substrate or semiconductor layer.

〔発明の実施例〕[Embodiments of the invention]

本発明を、バイポーラトランジスタに適用した例につい
て第1図(、)〜(f)を参照して説明する。
An example in which the present invention is applied to a bipolar transistor will be described with reference to FIGS. 1(a) to 1(f).

〔1〕マず、比抵抗18〜25Ω、αのp′″型シリコ
ン基板1上にAsドーグ酸化膜(図示せず)を形成した
後、−写真蝕刻法により酸化膜・母ターンを形成した。
[1] First, an As dope oxide film (not shown) was formed on a p'' type silicon substrate 1 with a resistivity of 18 to 25 Ω and α, and then an oxide film/mother turn was formed by photolithography. .

つづいて、熱処理を施してこの酸化膜・譬ターンから砒
素を前記基板表面に拡散して、比抵抗20〜30ΩAの
n+型埋込層2を選択的に形成し念。ひきつづき、前記
酸化膜・ぐターンを除去した後、通常の気相成長法にょ
シ基板1上に厚さ1.0μm、比抵抗0.2Ω、oll
のコレクタ領域となるn型エピタキシャル層3を設けた
。次いで、前記エピタキシャル層3内に基板1に達する
p+型分離領域4,4を選択的に形成した(wc1図(
、)図示)。
Subsequently, heat treatment is performed to diffuse arsenic from this oxide film onto the surface of the substrate to selectively form an n+ type buried layer 2 having a specific resistance of 20 to 30 ΩA. Subsequently, after removing the oxide film/gutter, a film with a thickness of 1.0 μm and a specific resistance of 0.2 Ω is deposited on the substrate 1 using a normal vapor phase growth method.
An n-type epitaxial layer 3 serving as a collector region was provided. Next, p+ type isolation regions 4, 4 reaching the substrate 1 were selectively formed in the epitaxial layer 3 (see Fig. wc1 (
,) as shown).

〔11〕次に1前記工ピタキシヤル層3上に厚さ0.2
−μmの熱酸化膜5を成長させ、レジスト膜(図示せず
)を塗布した後、写真蝕刻法にょシペース領域予定部に
開孔したレジスト膜t!ターンシを形成した(第1図(
b)図示)。次いで、該レジスト膜ノやター76fマス
クとして前記エピタキシャル層3の所定の位置に、ゾロ
ンを加速電圧85に@V、  ドーズ量1×10 個 
の条件でイオン注入した後、レジスト膜ノ臂ターン6を
除去した。この後、窒素雰囲気中で1000℃、1時間
熱処理して厚さ0.4μm1比抵抗600 Q10のp
型ベース領域yl形成した。この後、酸化膜5を選択的
に工、チングしてエン、夕、コレクタ取出し予定部に開
孔部8seljs’に夫々形成した。
[11] Next, apply a layer of 0.2 on the above-mentioned pitaxial layer 3.
After growing a thermal oxide film 5 with a thickness of -μm and applying a resist film (not shown), holes were formed in the resist film t in the planned space area by photolithography. A turn-shi was formed (Fig. 1 (
b) As shown). Next, zolon was applied to a predetermined position of the epitaxial layer 3 as a mask of the resist film 76f at an acceleration voltage of 85@V and a dose of 1×10 pieces.
After ion implantation under the following conditions, the arm turn 6 of the resist film was removed. Thereafter, heat treatment was performed at 1000°C for 1 hour in a nitrogen atmosphere to give a thickness of 0.4 μm and a resistivity of 600 Q10.
A mold base region yl was formed. Thereafter, the oxide film 5 was selectively etched to form openings 8seljs' in the portions where the collector was to be taken out.

ひきつづき、全面に厚さ5001の砒素ドーグ多結晶シ
リコン層(図示せず)を堆積した後、前記多結晶シリコ
ン層をパターニングして、開孔部81,8.を覆い一部
が酸化膜5よシ延在すル砒素ドーグ多結晶シリコンノ4
ターン9菫 。
Subsequently, after depositing an arsenic doped polycrystalline silicon layer (not shown) to a thickness of 500 mm over the entire surface, the polycrystalline silicon layer is patterned to form openings 81, 8 . The arsenic polycrystalline silicon layer 4 covers the oxide film 5 and partially extends beyond the oxide film 5.
Turn 9 Sumire.

9st形成した(第1図(、)図示)。9st was formed (as shown in Fig. 1(,)).

011〕次に、ベース領域7上の一部の酸化膜5部分を
エツチング除去してコンタクトホール10を開孔した後
、ビーム蒸着装置によシ全面に厚さ5oolの白金(p
t)層11を蒸着した(第1図(d)図示)。つづいて
、窒素雰囲気中で600℃15分間の条件で熱処理した
。このとき前記コンタクトホ・−ル10を介してベース
領域7と接続されるpt層11がPtSi層となり、ベ
ースコンタクト領域12が形成された。同時に前記砒素
y−−?多結晶シリコンノリーン’1+92がptss
層131.13.に夫々変換された。また、この熱処理
(シリサイド化)時に砒素ドーグ多結晶シリコンノ母タ
ーフ91e9m中の砒素が、前述した雪かき効果によシ
前記ペース領域7、エピタキシャル層3表面の一部に高
濃度に掃き出され、厚さ0.2μm1比抵抗20Q/E
)のn+型エミ、り領域14、n+型のコレクタ取出し
領域15が形成された。次いで、王水処理を施して残存
したpt層11を除去した(第1図(@)図示)。
[011] Next, after removing a part of the oxide film 5 on the base region 7 by etching and forming a contact hole 10, a beam evaporator is used to deposit platinum (p2) to a thickness of 5 oool over the entire surface.
t) Layer 11 was deposited (as shown in FIG. 1(d)). Subsequently, heat treatment was performed at 600° C. for 15 minutes in a nitrogen atmosphere. At this time, the PT layer 11 connected to the base region 7 through the contact hole 10 became a PtSi layer, and a base contact region 12 was formed. At the same time, the arsenic y--? Polycrystalline silicon Noreen'1+92 is ptss
Layer 131.13. were converted into . In addition, during this heat treatment (silicidation), arsenic in the arsenic dog polycrystalline silicon mother turf 91e9m is swept out at a high concentration onto a part of the surface of the pace region 7 and the epitaxial layer 3 due to the above-mentioned snow shoveling effect, Thickness 0.2μm 1 Specific resistance 20Q/E
), an n+ type emitter region 14 and an n+ type collector extraction region 15 were formed. Next, the remaining PT layer 11 was removed by aqua regia treatment (as shown in FIG. 1 (@)).

こうじて形成されたベース領域7、エン、り領域14t
−夫々形成しているゾロン、砒素の不純物グロファイル
は、第2図に示す特性図となる。
The thus formed base region 7, edge region 14t
- The impurity profiles of zolon and arsenic formed respectively are shown in the characteristic diagram shown in FIG.

ここで、図中(4)はゾロン、(B)は砒素の不純物グ
ロファイルを示す。なお、(c)はエピタキシャル層3
を形成するリンの不純物グロファイルを示す。
Here, (4) in the figure shows the impurity profile of zolon, and (B) shows the impurity profile of arsenic. Note that (c) is the epitaxial layer 3
The impurity profile of phosphorus forming is shown.

Ov)次に、全面に厚さ1.0μmのAA−Fli層を
蒸着′シ、パターニングしてAt−8i層ノ量ターン1
61からなるベース電極77、At−8i層ノ量ターン
163からなるエミッタ電極I II % At−8l
 層ツクターン161からなるコレクタ取出し電極19
を夫々形成して所望のバイポーラトランジスタtm造し
た(第1図(f)図示)。
Ov) Next, an AA-Fli layer with a thickness of 1.0 μm was deposited on the entire surface and patterned to form a turn 1 of the At-8i layer.
Base electrode 77 consisting of At-8i layer turn 163, Emitter electrode consisting of At-8i layer turn 163
Collector extraction electrode 19 consisting of layered turn 161
A desired bipolar transistor tm was constructed by forming each of the following (as shown in FIG. 1(f)).

しかして、前述した製造方法によれば、低温(fi 0
0℃)下で砒素ドーグ多結晶シリコン層をシリサイド化
してPt81層131elSzを形成する際、n型エミ
、り領域14も同時に形成できるため、予め形成したp
型ベース領域7が深さ、横方向に拡がるのを抑制でき、
プロセス設計の簡略化が計れると共に1浅い接合形成が
可能なため、デバイスの高集積、高速化が達成できる。
However, according to the above-described manufacturing method, low temperature (fi 0
When forming the Pt81 layer 131elSz by siliciding the arsenic doped polycrystalline silicon layer under 0°C), the n-type emitter region 14 can also be formed at the same time.
It is possible to suppress the mold base region 7 from expanding in the depth and lateral direction,
Since the process design can be simplified and one shallow junction can be formed, high integration and high speed devices can be achieved.

また、前述の如く低温下で砒素ドーグ多結晶シリコン−
4ターンのシリサイド化をするため、エミ、り領域14
形成時の汚染の導入、欠陥の発生を抑制でき、トランジ
スタ特性を著しく改善できる。
In addition, as mentioned above, arsenic doped polycrystalline silicon can be produced at low temperatures.
In order to perform 4 turns of silicide, the emitter area 14
The introduction of contamination and the occurrence of defects during formation can be suppressed, and transistor characteristics can be significantly improved.

更に、工室、タ領域14上にpts を層131が存在
するため、At−S i層ノ量ターン163がエミッタ
ベース接合に触れることがなく、デバイスの信頼性が向
上すると共に、At−81層パターン11j、とエミッ
タ領域14間の抵抗を低く押えることができる。
Furthermore, since the PTS layer 131 is present on the semiconductor region 14 in the process, the At-Si layer thickness turn 163 does not touch the emitter base junction, improving the reliability of the device. The resistance between the layer pattern 11j and the emitter region 14 can be kept low.

なお、上記実施例では、砒素ドーグ多結晶シリコン/豐
ターンをシリサイド化すると同時に、エミ、り領域、コ
レクタ取出し領域を形成したがこれに限らず、砒素ドー
グ多結晶シリコンパターンと、この上部のアンド−!多
結晶シリコンパターンとからなる2層構造ノ臂ターフを
シリサイド化しても前述した実施例と同様の効果が得ら
れる。また、アンドーグ多結晶シリコンノ臂ターンに砒
素をイオン注入した後、該ツクターンをシリサイド化し
ても同様である。
Incidentally, in the above embodiment, the emitter region, the collector extraction region were formed at the same time as the arsenic dope polycrystalline silicon/rubber turn was silicided, but the present invention is not limited to this. -! Even if the arm turf, which has a two-layer structure consisting of a polycrystalline silicon pattern, is silicided, the same effect as in the above embodiment can be obtained. The same effect can be obtained even if arsenic is ion-implanted into an undoped polycrystalline silicon arm turn, and then the arm turn is silicided.

本発明は上記実施例の如くバイポーラトランジスタの場
合に限らず、l2L−?MO8)ランジスタにも同様に
適用できる。但し、前述した雪かき効果によシ形成され
る第2導電型の半導体領域は、ILの場合コレクタ領域
であシ、MOS )ランジスタの場合ソース・ドレイン
領域である。
The present invention is not limited to the case of bipolar transistors as in the above embodiment; MO8) Can be similarly applied to transistors. However, the semiconductor region of the second conductivity type formed by the above-mentioned snow shoveling effect is the collector region in the case of an IL, and is the source/drain region in the case of a MOS transistor.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、低温で浅いエミ、り
・ベース接合を制御性よく形成でき、高集積、高速度化
したトランジスタ等の半導体装置の製造方法を提供でき
るものである。
As described in detail above, according to the present invention, it is possible to form shallow emitter-base junctions at low temperatures with good controllability, and it is possible to provide a method for manufacturing highly integrated and high-speed semiconductor devices such as transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(、)〜(f)は、本発明の一実施例であるバイ
ポーラトランジスタの製造方法を製造工程順に示す断面
図、第2図は第1図(f)図示のバイポーラトランジス
タのベース領域、エミ、り領域及びエピタキシャル層管
形成している夫々の不純物のグロファイルを示す特性図
である。 1・・・p−型シリコン基板、2・・・n+型型埋領領
域3・・・n型エピタキシャル層、4・・・p++分離
領域、5・・・酸化膜、7・・・p型ベース領域、81
,8゜・・・開孔部、91e9m・・・砒素ドーグ多結
晶シリコンツヤターン、10・・・コンタクトホール、
11・・・白金層、12・・・ベースコンタク1ijL
  1sz13嘗 ・・・ptst層、14・・・n+
+エミッタ領域、15・・・−型コレクタ取出し領域、
161 ’? I6s・・・5i−At層ノ々ターン、
17・・・ペース’It極、1 ’・・・工<ツタ電極
、19・・・コレクタ取出し電極。 出願人代理人  弁理士 鈴 江 武 彦第1図 (a) (b) (C) 第1図 (e) 1′11
1(a) to 1(f) are cross-sectional views showing the manufacturing method of a bipolar transistor according to an embodiment of the present invention in the order of manufacturing steps, and FIG. 2 is a base region of the bipolar transistor shown in FIG. 1(f). FIG. 3 is a characteristic diagram showing the profiles of impurities forming the , emitter, and epitaxial regions and the epitaxial layer tube. DESCRIPTION OF SYMBOLS 1...p- type silicon substrate, 2...n+ type buried region 3...n type epitaxial layer, 4...p++ isolation region, 5...oxide film, 7...p type base area, 81
,8゜...opening part, 91e9m...arsenic dog polycrystalline silicon glossy turn, 10...contact hole,
11...Platinum layer, 12...Base contact 1ijL
1sz13 years...ptst layer, 14...n+
+ emitter area, 15...- type collector extraction area,
161'? I6s...5i-At layer number turns,
17...Pace 'It pole, 1'...Work <Ivy electrode, 19...Collector extraction electrode. Applicant's representative Patent attorney Takehiko Suzue Figure 1 (a) (b) (C) Figure 1 (e) 1'11

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板もしくは半導体層上の絶縁層に
開孔部を設ける工程と、との開孔部に一部が周辺の前記
絶縁層に延在するように第2導電型不純物を添加したシ
リコンツタターンを形成する工程と、前記シリコンツタ
ターンをシリサイド化すると共に1前記基板もしくは半
導体層に選択的に第2導電型の不純物を導入して第2導
電屋の半導体領域を形成する工程と1−具備することを
特徴とする半導体装置の製造方法。
a step of providing an opening in an insulating layer on a semiconductor substrate or semiconductor layer of a first conductivity type; and adding an impurity of a second conductivity type to the opening so that a portion thereof extends to the surrounding insulating layer; forming a silicon ivy turn, and forming a second conductive semiconductor region by siliciding the silicon ivy turn and selectively introducing impurities of a second conductivity type into the substrate or the semiconductor layer. 1- A method for manufacturing a semiconductor device, comprising:
JP1467382A 1982-02-01 1982-02-01 Preparation of semiconductor device Pending JPS58132964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1467382A JPS58132964A (en) 1982-02-01 1982-02-01 Preparation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1467382A JPS58132964A (en) 1982-02-01 1982-02-01 Preparation of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58132964A true JPS58132964A (en) 1983-08-08

Family

ID=11867733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1467382A Pending JPS58132964A (en) 1982-02-01 1982-02-01 Preparation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58132964A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0165547A2 (en) * 1984-06-21 1985-12-27 International Business Machines Corporation A method of forming a shallow doped region in a semiconductor substrate
JPS61203676A (en) * 1985-03-07 1986-09-09 Toshiba Corp Bipolar semiconductor device
JPS61229362A (en) * 1985-03-23 1986-10-13 ノーザン テレコム リミテッド Bipolar transistor and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0165547A2 (en) * 1984-06-21 1985-12-27 International Business Machines Corporation A method of forming a shallow doped region in a semiconductor substrate
JPS61203676A (en) * 1985-03-07 1986-09-09 Toshiba Corp Bipolar semiconductor device
JPS61229362A (en) * 1985-03-23 1986-10-13 ノーザン テレコム リミテッド Bipolar transistor and manufacture thereof

Similar Documents

Publication Publication Date Title
JP3489832B2 (en) Self-aligned CMOS process
JPS6252963A (en) Manufacture of bipolar transistor
JPH08293465A (en) Manufacture of semiconductor device
JP2705344B2 (en) Semiconductor device and manufacturing method thereof
JPS58132964A (en) Preparation of semiconductor device
JPH0473296B2 (en)
JPS59148365A (en) Integrated semiconductor circuit and method of producing same
JPH06204167A (en) Manufacture of semiconductor device
JP2715494B2 (en) Method for manufacturing semiconductor device
JP2697631B2 (en) Method for manufacturing semiconductor device
JPS594073A (en) Manufacture of semiconductor device
JP2546650B2 (en) Method of manufacturing bipolar transistor
JPS63217663A (en) Manufacture of semiconductor device
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JP3196716B2 (en) Method for manufacturing semiconductor device
JPH0136709B2 (en)
JPH04361533A (en) Manufacture of semiconductor integrated circuit device
JPH04271126A (en) Semiconductor device and its manufacture
JPS59217363A (en) Manufacture of bi-polar type semiconductor device
JPH04291929A (en) Manufacture of semiconductor device
JPH0684926A (en) Bipolar transistor and its production
JPH01214166A (en) Semiconductor integrated circuit device with bipolar transistor
JPS6080275A (en) Manufacture of semiconductor device
JPH025426A (en) Manufacture of semiconductor device
JPS60227417A (en) Manufacture of semiconductor device