JPS58130578A - Selenium optical battery - Google Patents

Selenium optical battery

Info

Publication number
JPS58130578A
JPS58130578A JP57011747A JP1174782A JPS58130578A JP S58130578 A JPS58130578 A JP S58130578A JP 57011747 A JP57011747 A JP 57011747A JP 1174782 A JP1174782 A JP 1174782A JP S58130578 A JPS58130578 A JP S58130578A
Authority
JP
Japan
Prior art keywords
selenium
layer
deposited
work function
high work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57011747A
Other languages
Japanese (ja)
Other versions
JPS629239B2 (en
Inventor
Akio Kunioka
国岡 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57011747A priority Critical patent/JPS58130578A/en
Publication of JPS58130578A publication Critical patent/JPS58130578A/en
Publication of JPS629239B2 publication Critical patent/JPS629239B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the highly efficient selenium optical battery, by laminating and forming a transparent conductive layer, a thin film comprising metal or a semiconductor, a selenium crystal film, and high work function metal layer on a substrate of a transparent material to which light is inputted, and attaching a pair of external lead wires to the transparent conductive layer and the high work function metal layer, respectively. CONSTITUTION:A material layer 2 having high conductivity and high light transmittance is deposited on the surface opposite to the light incident surface of the glass substrate 3, which is the transparent material layer. On the layer 2, the super thin film 4 with a thickness of about 100Angstrom , which comprises the metal or the semiconductor for improving the conductive property of the selenium layer 1, is deposited. Thereafter, an amorphous selenium layer with a thickness of 2- 5mum is deposited on the film 4. Heat treatment is performed at 160-200 deg.C and the amorphous selenium is transformed into a crystal. Then an ohmic electrode 6 is deposited thereon by using the high work function metal, and the external lead wires 5a and 5b are attached to the electrode 6 and the exposed surface of the layer 2, respectively. Thus the battery having the same response time as a silicon optical battery 1 is obtained by using inexpensive selenium.

Description

【発明の詳細な説明】 本発明は第■族元素であるセレンを母材料として使用し
fc光電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an FC photovoltaic cell using selenium, a Group I element, as a matrix material.

従来、セレン光電池は光電変換素子としてセンサ素子の
一翼を担って来たが、そのエネルギー変換効率が低いこ
とから、安価で信頼性が高いにもかかわらず応用分野が
自から限られていた。変換効率が低ぐなる原因は、光電
池の母材である枯Ji’1化セレン膜および使用電極材
料の低い導電率に起因する光電池内部の直列抵抗の増大
によること仁j。
Conventionally, selenium photovoltaic cells have played a role in sensor elements as photoelectric conversion elements, but their low energy conversion efficiency has limited their field of application despite their low cost and high reliability. The cause of the low conversion efficiency is an increase in the series resistance inside the photovoltaic cell due to the low conductivity of the dry selenium monoxide film that is the base material of the photovoltaic cell and the electrode material used.

明らかであった。直列抵抗を減少させる最も簡単で、し
かも確実な手段性光電池の基板上に形成する結晶化セレ
ン膜の膜厚を薄くすることである。
It was obvious. The simplest and most reliable way to reduce series resistance is to reduce the thickness of the crystallized selenium film formed on the substrate of the photovoltaic cell.

基板上に真空蒸着法等によって成膜された時ノリでのセ
レン膜は非晶質であり、薄膜化するととtよ可能である
が、セレンの導電率を5〜6桁上昇さぐる目的で熱処理
によシ結晶化させる際に、基板からセレンが剥離もしく
は不連続になり、技術的に安定に光電池が作製できる結
晶化したセレン薄膜9を形成することができなかった。
When a selenium film is formed on a substrate by vacuum evaporation, etc., it is amorphous, and it is possible to make it thinner, but heat treatment is required to increase the conductivity of selenium by 5 to 6 orders of magnitude. During crystallization, selenium peeled off or became discontinuous from the substrate, making it impossible to form a crystallized selenium thin film 9 that would allow a technically stable photovoltaic cell to be produced.

本発明は高導電率、高透過率をもつ基板を一方の電極材
料として用い、その上に結晶化セレン薄膜を技術的に安
定に形成し、これを利用して2RL、い構造をもつ高効
率のセレン光電池を提供することを目的とするものであ
る。本発明により、高効率セレン光電池が従来利用でき
ない分野にも、センサならびにエネルギー変換素子とし
て提供することができ、更に、豊富に存在するセレン物
質の有効利用を拡大することができる。
The present invention uses a substrate with high conductivity and high transmittance as one electrode material, forms a technically stable crystallized selenium thin film on the substrate, and utilizes this to create a highly efficient 2RL structure. The purpose of the present invention is to provide a selenium photovoltaic cell. According to the present invention, high-efficiency selenium photovoltaic cells can be provided as sensors and energy conversion elements in fields where conventional selenium photovoltaic cells cannot be used, and furthermore, the effective use of abundant selenium substances can be expanded.

Jノを本発明の実施例について詳述し、併せてその光電
特性を説明する。
Examples of the present invention will be described in detail, and the photoelectric characteristics thereof will also be explained.

本発明による高効率のセレン光電池の構造例を第1図に
z+: している。この実施例に用いられたセレン層1
は、高導電率及び高光透過率を有する材料層2を被着し
た透明材料としてのガラス基板3の光入射面と反対側に
位置するその材料層2側の表面に真空蒸着された。セレ
ン層1は160℃乃至200℃の温度で熱処理され、ア
モルファスから結晶に変換された。通常のセレン電池で
は、電力出力に寄与するセレン層の厚みは数十μm程度
である。
An example of the structure of a highly efficient selenium photovoltaic cell according to the present invention is shown in FIG. Selenium layer 1 used in this example
was vacuum-deposited on the surface of the glass substrate 3, which is a transparent material on which the material layer 2 having high electrical conductivity and high light transmittance is coated, and which is located on the side opposite to the light incident surface of the material layer 2. The selenium layer 1 was heat treated at a temperature of 160° C. to 200° C. to convert it from amorphous to crystalline. In a typical selenium battery, the thickness of the selenium layer that contributes to power output is approximately several tens of micrometers.

第1図に示されたセレン電池では、セレン層1のJIJ
みは2乃至5μmであり、代表例としては4μmである
。このような薄層は、光電池の直列抵抗を低くするため
に必要である。さらに、ある金属又は半導体の超薄膜(
厚さは100A程度)4がセレン層lの導電性を改善す
るために光透過性基板(2゜3)■二に真空蒸着又はス
パッタリングで被着されている。セレン層1の背面への
オーミック電画(;の設置は、高仕事関数金属を用いて
行なわれ−Cいる。電極6と高光透過率を有する材料層
2と(′ζは外部導線5a、5bがそれぞれ接続されて
いる。
In the selenium battery shown in FIG. 1, the JIJ of selenium layer 1 is
The thickness is 2 to 5 μm, typically 4 μm. Such thin layers are necessary to reduce the series resistance of the photovoltaic cell. Furthermore, ultra-thin films of certain metals or semiconductors (
A layer (having a thickness of about 100 A) 4 is deposited on a light-transmissive substrate (2° 3) by vacuum deposition or sputtering to improve the conductivity of the selenium layer 1. The installation of an ohmic electrode (; on the back side of the selenium layer 1 is carried out using a high work function metal -C). are connected to each other.

第2図は、太陽光シミュレータによるAMIの入射光に
おける本発明のセレン光電池の電流(I) −(V)特
性を示している。開放端電圧、閉路短、隋)v;電流密
度、及び曲線因子(F、F)は、それぞ77.0.4〜
0.5 V 、 9−10 mA/cm”、 0.4〜
0.5  であった。
FIG. 2 shows the current (I)-(V) characteristics of the selenium photovoltaic cell of the present invention under the incident light of the AMI using a sunlight simulator. Open end voltage, closed circuit short, SUI)v; current density, and fill factor (F, F) are respectively 77.0.4 ~
0.5 V, 9-10 mA/cm", 0.4~
It was 0.5.

平均変換効率は反射防止膜なしで2.5%であ・′ンた
The average conversion efficiency was 2.5% without an antireflection coating.

AMI効率は従来の光電池に比べて十倍程度改1!υN
れた。本発明により、セレンが所望の効率をイfする太
陽電池に用いられて成功を収めたことになるが、その効
率改善の主要な理由は、セレン層のII厚み及び光透過
膜に起因する直列抵抗の減少及び対向電極6におけるミ
ラー効果に基づく光電流の増加である。
AMI efficiency is about 10 times higher than conventional photovoltaic cells! υN
It was. According to the present invention, selenium has been successfully used in solar cells to achieve the desired efficiency, but the main reason for the efficiency improvement is due to the II thickness of the selenium layer and the series This is a decrease in resistance and an increase in photocurrent due to the mirror effect at the counter electrode 6.

第3図は、この光電池の暗時におけるI−V特性の1例
を示す。白丸は順方向特性を示し、黒丸は逆方向特性で
ある。順方向において、理想ダイオードからのずれを示
すn値は0.3V〜0,5v間で約1.7である。この
n値は、セレン層内の粒界におけるキャリヤの再結合に
よるものと思われる。
FIG. 3 shows an example of the IV characteristics of this photovoltaic cell in the dark. White circles indicate forward characteristics, and black circles indicate reverse characteristics. In the forward direction, the n value indicating the deviation from the ideal diode is approximately 1.7 between 0.3V and 0.5V. This n value is believed to be due to carrier recombination at grain boundaries within the selenium layer.

セレン材料を用いる利点は、大面積光電池を容易に製造
できることである。また、セレン膜の作成及び膜質の改
善によって効果V14%近くまで到達するものと思われ
る。
An advantage of using selenium material is that large area photovoltaic cells can be easily manufactured. Furthermore, it is thought that the effect V will reach nearly 14% by creating a selenium film and improving the film quality.

々お、従来のセレン光電池は照度1000ル、クス。The conventional selenium photovoltaic cell has an illuminance of 1000 l.

負荷抵抗1にΩ、繰り返し周波数100Hzにおける応
答時間τ針、τdが第4図に示すように遅い欠点があっ
たが、本発明のセレン光電池では同じ測定条件で第5図
に示すように応答時間τ2.τdが約1/2となって、
ンリコン光電池と同等になった。光センサー又は光と電
気信号との変換に利用される可能性を示している。
Although the response time τ and τd at a load resistance 1 of Ω and a repetition frequency of 100 Hz were slow as shown in Figure 4, the selenium photocell of the present invention had a slow response time as shown in Figure 5 under the same measurement conditions. τ2. τd becomes about 1/2,
It has become equivalent to the non-condensed photocell. It shows the possibility of being used as an optical sensor or for converting light and electrical signals.

さらに、前記のように、セレンを蒸着する代シに、セレ
ンをいれるつは並ひにセレンの表面を所要の温度以下に
保てばスパッタリングによってセレン層を作ることがで
きる。この場合には、形成されるセレン層が順次に結晶
化されるので、160℃〜200℃の熱処理による結晶
化を省くことが出来て製造工程が簡易になる利点がある
Furthermore, as described above, instead of depositing selenium, a selenium layer can be formed by sputtering if selenium is added and the surface of the selenium is kept at a predetermined temperature or lower. In this case, since the selenium layer formed is sequentially crystallized, crystallization by heat treatment at 160° C. to 200° C. can be omitted, which has the advantage of simplifying the manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す縦断面図、第2図及び第
3図、第4図及び第5図は従来及び本発明によるセレン
光電池の特性例を示す特性図及び波形図である。 1・・・セレン結晶膜、  2・・・透明導電層(電V
i)、3・・・ガラス基板、  4・・・金属又は牛導
体薄、シ1.5a、5b・・・外部導線、   6・・
・高仕事関数金+r5 ran(電極)。 特許出願人  国 岡 昭 夫 代理人 大塚 学 外1名 第 II¥1 第3 関 V(Vl や4 図 第 5 閃 0.4m9          0.45m!ii手続
補正書(自発) 昭)157年3月1 日 特許庁長官 島 1)春 樹 殿 l 事件の表示 特願昭57−011747号 2 発明の名称 セレン光電池 3 補正をする者 事件との関係 出願人 国  岡  昭  夫 4代理人 東京都新宿区西新宿1−23−1 5、補IEの対象 明細書の「発明の詳細な説明」の欄 6、補正の内容 明細書の記載を次のように訂正する。 (1)第3頁、第12行と第14行〔セレン電池〕企〔
セレン光電池〕に訂正する。 (2)第4頁、第6行〔電流(I)−]の次に[1iL
b〕を挿入する。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, and FIGS. 2, 3, 4, and 5 are characteristic diagrams and waveform charts showing characteristic examples of selenium photovoltaic cells according to the conventional and the present invention. . 1...Selenium crystal film, 2...Transparent conductive layer (electronic V
i), 3...Glass substrate, 4...Metal or cow conductor thin, 1.5a, 5b...External conductor, 6...
- High work function gold + r5 ran (electrode). Patent applicant Country Akio Oka Agent Otsuka 1 off-campus person No. II ¥1 3rd Seki V (Vl Ya 4 Figure 5 Flash 0.4m9 0.45m!ii Procedural amendment (voluntary) Showa) March 1, 157 Japan Patent Office Commissioner Shima 1) Haruki Tono Indication of the case Patent Application No. 1987-011747 2 Name of the invention Selenium photocell 3 Person making the amendment Relationship to the case Applicant Akio Oka 4 Agent Nishi, Shinjuku-ku, Tokyo Shinjuku 1-23-1 5, column 6 of "Detailed Description of the Invention" of the subject specification of the Supplementary IE, the statement in the description of the contents of the amendment is corrected as follows. (1) Page 3, lines 12 and 14 [Selenium battery]
selenium photocell]. (2) Page 4, line 6 [Current (I)-] is followed by [1iL
b].

Claims (1)

【特許請求の範囲】[Claims] 光入射をする透明材料の基板と、該基板上に形成された
透明導電層と、該透明導電層上に形成された金属または
半導体薄膜と、該金属又は半導体薄膜上に形成されたセ
レン結晶膜と、該セレン結晶模上に形成された高仕事関
数金属層と、前記透明導電層と前記高仕事関数金属層と
にそれぞれ設けら引た外部導線対とを備えたセレン光電
池。
A substrate made of a transparent material through which light enters, a transparent conductive layer formed on the substrate, a metal or semiconductor thin film formed on the transparent conductive layer, and a selenium crystal film formed on the metal or semiconductor thin film. A selenium photovoltaic cell comprising: a high work function metal layer formed on the selenium crystal pattern; and a pair of external conductive wires respectively provided on the transparent conductive layer and the high work function metal layer.
JP57011747A 1982-01-29 1982-01-29 Selenium optical battery Granted JPS58130578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011747A JPS58130578A (en) 1982-01-29 1982-01-29 Selenium optical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011747A JPS58130578A (en) 1982-01-29 1982-01-29 Selenium optical battery

Publications (2)

Publication Number Publication Date
JPS58130578A true JPS58130578A (en) 1983-08-04
JPS629239B2 JPS629239B2 (en) 1987-02-27

Family

ID=11786607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011747A Granted JPS58130578A (en) 1982-01-29 1982-01-29 Selenium optical battery

Country Status (1)

Country Link
JP (1) JPS58130578A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226975A (en) * 1985-03-30 1986-10-08 Moririka:Kk Pull color sensor
JPS61226974A (en) * 1985-03-30 1986-10-08 Moririka:Kk Selenium photodiode
EP0276683A2 (en) * 1987-01-14 1988-08-03 Hitachi, Ltd. Photoelectric conversion device
US5101255A (en) * 1987-01-14 1992-03-31 Sachio Ishioka Amorphous photoelectric conversion device with avalanche
JP2014216502A (en) * 2013-04-25 2014-11-17 日本放送協会 Photoelectric conversion element and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226975A (en) * 1985-03-30 1986-10-08 Moririka:Kk Pull color sensor
JPS61226974A (en) * 1985-03-30 1986-10-08 Moririka:Kk Selenium photodiode
EP0276683A2 (en) * 1987-01-14 1988-08-03 Hitachi, Ltd. Photoelectric conversion device
US5101255A (en) * 1987-01-14 1992-03-31 Sachio Ishioka Amorphous photoelectric conversion device with avalanche
JP2014216502A (en) * 2013-04-25 2014-11-17 日本放送協会 Photoelectric conversion element and manufacturing method therefor

Also Published As

Publication number Publication date
JPS629239B2 (en) 1987-02-27

Similar Documents

Publication Publication Date Title
Yang et al. 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell
US5391235A (en) Solar cell module and method of manufacturing the same
CN108140735A (en) More maqting type photoelectric conversion devices and photoelectric conversion module
JPS62142372A (en) Manufacture of photoelectric converter
TW201007959A (en) Solar cells provided with color modulation and method for fabricating the same
CN102244111A (en) Thin film solar cell
US4064522A (en) High efficiency selenium heterojunction solar cells
US3982260A (en) Light sensitive electronic devices
JPS58130578A (en) Selenium optical battery
US4360702A (en) Copper oxide/N-silicon heterojunction photovoltaic device
JPH0434832B2 (en)
JP2758741B2 (en) Photoelectric conversion element and method for manufacturing the same
JPS59152675A (en) Amorphous silicon photovoltaic element
TWI358136B (en) Highly effective power generation device with the
JPS57157578A (en) Active crystalline silicon thin film photovoltaic element
JPS61226974A (en) Selenium photodiode
JPS6216032B2 (en)
Lin et al. Effects of interface modification on electrical and optoelectronic properties of p-type CuAlO 2/n-type Si heterojunction devices
JPS5929476A (en) Semiconductor device and method of producing same
JP2869178B2 (en) Photovoltaic device
JPS61218176A (en) Photovoltaic device
JPH05121771A (en) Organic photovoltaic element
Mohamed Thin film CdS/CdTe and CdS/PbS photovoltaic solar cells
JPS62169375A (en) Optical storage element
JPS6210037B2 (en)