JPH05121771A - Organic photovoltaic element - Google Patents

Organic photovoltaic element

Info

Publication number
JPH05121771A
JPH05121771A JP3312004A JP31200491A JPH05121771A JP H05121771 A JPH05121771 A JP H05121771A JP 3312004 A JP3312004 A JP 3312004A JP 31200491 A JP31200491 A JP 31200491A JP H05121771 A JPH05121771 A JP H05121771A
Authority
JP
Japan
Prior art keywords
organic compound
compound layer
type organic
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3312004A
Other languages
Japanese (ja)
Inventor
Kazukiyo Nagai
一清 永井
Hiroshi Ikuno
弘 生野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3312004A priority Critical patent/JPH05121771A/en
Publication of JPH05121771A publication Critical patent/JPH05121771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To provide an organic photovoltaic element which is easily manufactured, formed flexible, low in cost, large in area, and high in conversion efficiency. CONSTITUTION:A transparent electrode layer 2, an N-type organic compound layer 3, a first P-type organic compound layer 4, a second P-type organic compound layer 5, and a back electrode 6 are successively laminated on a substrate 1. The first organic compound layer 4 is formed of phthalocyanine compound, quinacridone compound, or porphyrine compound. The second P-type organic compound layer 5 is formed of diphthalocyanine compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機化合物を用いた光
電池、太陽電池、光センサー、フォトダイオードなどの
光起電力素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic element such as a photovoltaic cell, a solar cell, an optical sensor, a photodiode, etc., which uses an organic compound.

【0002】[0002]

【従来の技術】単結晶Si、GaAs、アモルファスS
i、CdS/CdTe等の無機半導体を使用した太陽電
池の開発がさかんに行われている。これらは高変換効率
と高耐久性及び低価格を目標としているが、現状では全
てを満足しているとは言い難い。近年、有機半導体を使
用した太陽電池の作製が試みられている。一般に有機化
合物は高純度の無機半導体に比べて安価である事を考慮
すると、大面積化が可能であり、且つプラスチックフィ
ルム上に素子を形成させることも容易で、その上、高フ
レキシブル性、軽量性の利点を有している。
2. Description of the Related Art Single crystal Si, GaAs, amorphous S
Solar cells using inorganic semiconductors such as i and CdS / CdTe are being actively developed. These are aimed at high conversion efficiency, high durability and low price, but at present it is hard to say that all of them are satisfied. In recent years, attempts have been made to produce solar cells using organic semiconductors. Considering that organic compounds are generally cheaper than high-purity inorganic semiconductors, it is possible to increase the area, and it is easy to form elements on a plastic film, and in addition, it is highly flexible and lightweight. Has the advantage of sex.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、現在ま
でに提案されている有機光起電力素子は変換効率が低
く、実用化には至っていない。例えば、特開昭51−1
22389号公報、特開昭53−131782号公報で
はメロシアニン染料を使用した有機光起電力素子が開示
され、最高で0.7%程度の変換効率が得られている
が、実用化のためにはさらに大きな変換効率が望まし
く、またこの素子は耐候性に弱いという欠点を有してい
る。
However, the organic photovoltaic elements proposed so far have low conversion efficiency and have not been put to practical use. For example, JP-A-51-1
No. 22389 and Japanese Patent Laid-Open No. 53-131782 disclose an organic photovoltaic element using a merocyanine dye, and a conversion efficiency of about 0.7% at the maximum is obtained. Greater conversion efficiencies are desirable and this device has the disadvantage of poor weatherability.

【0004】さらに、特開昭54−27787号公報で
は平坦な多環核を含む有機電子供与体化合物と有機電子
受容体化合物とからなる有機光起電力素子が開示されて
いるが、同公報中において好ましいとされる材料系にお
いて素子を作製評価してみたところ0.1〜0.3%程
度の変換効率しか得られないことから実用化のためには
依然として変換効率が小さく、素子の作製上の性能安定
性も極めて不安定な状況にある。
Further, Japanese Patent Application Laid-Open No. 54-27787 discloses an organic photovoltaic element comprising an organic electron donor compound containing a flat polycyclic nucleus and an organic electron acceptor compound. When a device was manufactured and evaluated in a material system which is considered to be preferable, a conversion efficiency of 0.1 to 0.3% is only obtained, and therefore the conversion efficiency is still small for practical use. The performance stability of is also in an extremely unstable situation.

【0005】本発明は以上のような問題点を解決するた
めになされたものであって、安価で大面積のものが容易
に作製でき、高い変換効率を有し、その上、可撓性の付
与も可能で安定した性能を発揮できる有機光起電力素子
を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to easily manufacture an inexpensive and large-area one, have a high conversion efficiency, and, in addition, have flexibility. It is an object of the present invention to provide an organic photovoltaic element that can be applied and can exhibit stable performance.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく種々検討の結果、導体間に少なくともP型
半導体特性を有する有機化合物層とN型半導体特性を有
する有機化合物層からなる光起電力層を狭持してなる有
機光起電力素子において、P型有機化合物がN型有機化
合物層と接する第一のP型有機化合物層とそれに続く第
二のP型有機化合物からなり、第二のP型有機化合物層
がジフタロシアニン化合物からなることを特徴とする有
機光起電力素子によって、良好な変換効率が達成される
事を見出し、本発明を完成するに到った。また、上記構
成においてN型有機化合物層と電極となる導体との間に
酸化亜鉛層を設ける事によって、さらに特性の向上した
有機光起電力素子が得られる事を見出した。以下詳述す
る。
Means for Solving the Problems As a result of various investigations for achieving the above object, the present inventors have found that an organic compound layer having at least P-type semiconductor characteristics and an organic compound layer having N-type semiconductor characteristics are formed between conductors. In the organic photovoltaic element having the photovoltaic layer sandwiched between, the P-type organic compound comprises a first P-type organic compound layer in contact with the N-type organic compound layer and a second P-type organic compound following the first P-type organic compound layer. The inventors have found that good conversion efficiency can be achieved by an organic photovoltaic device characterized in that the second P-type organic compound layer is composed of a diphthalocyanine compound, and have completed the present invention. Further, it was found that by providing a zinc oxide layer between the N-type organic compound layer and the conductor to be the electrode in the above structure, an organic photovoltaic element having further improved characteristics can be obtained. This will be described in detail below.

【0007】ここでいう電極とは、酸化スズインジウ
ム、酸化スズ、酸化インジウムなどの透明電極、またA
u、Pt、Ni、Pd、Cu、Cr、Ag、Alなどの
金属電極である。また上部電極としては、透光性のもの
がよく、下部電極としては、光反射性の良いものが望ま
しい。
The term "electrode" as used herein means a transparent electrode made of indium tin oxide, tin oxide, indium oxide, etc.
Metal electrodes of u, Pt, Ni, Pd, Cu, Cr, Ag, Al, etc. Further, it is preferable that the upper electrode has a light-transmitting property, and the lower electrode has a good light-reflecting property.

【0008】本明細書中でいう第一のP型有機化合物層
に使用されるP型有機化合物は、フタロシアニン化合物
類、キナクリドン化合物類、ポルフィリン化合物類、ア
ゾ顔料、ジアミノカルバゾール、フェニレンジアミン、
トリフェニルアミン、ピラゾニン、ベンジジン、スクア
リリウム材料、インジゴ顔料、メロシアニン顔料、ピロ
ール誘導体などである。上記のうちフタロシタニン化合
物類としては、中心金属が、H2、Cu、Zn、Mg、
Ag、FeCl、Ni、Pb、TiO等で、アルキル基
などで置換されていても良いものが使用される。キナク
リドン化合物類としては、3,10−ジメチルキナクリ
ドン、4,11−ジメチルキナクリドン、2,9−ジメ
チルキナクリドン、2,9−ジメチルオキシキナクリド
ン等が使用される。ポルフィリン化合物類としては、中
心金属がH2、Cu、Zn、Mg、Ag、FeCl、N
i、Pb、SnCl等で、置換基としてフェニル基やポ
リジル基、エチル基を持っていても良いものが使用され
る。
The P-type organic compound used in the first P-type organic compound layer in the present specification includes phthalocyanine compounds, quinacridone compounds, porphyrin compounds, azo pigments, diaminocarbazole, phenylenediamine,
Examples include triphenylamine, pyrazonin, benzidine, squarylium materials, indigo pigments, merocyanine pigments, and pyrrole derivatives. Among the above, as the phthalocytanine compounds, the central metal is H 2 , Cu, Zn, Mg,
A material such as Ag, FeCl, Ni, Pb, or TiO which may be substituted with an alkyl group is used. As the quinacridone compounds, 3,10-dimethylquinacridone, 4,11-dimethylquinacridone, 2,9-dimethylquinacridone, 2,9-dimethyloxyquinacridone and the like are used. As the porphyrin compounds, the central metal is H 2 , Cu, Zn, Mg, Ag, FeCl, N.
i, Pb, SnCl or the like, which may have a phenyl group, a polyzyl group or an ethyl group as a substituent, is used.

【0009】第二のP型有機化合物層に使用されるジフ
タロシアニン化合物としては、3b族の金属を中心とし
たジフタロシアニンが使用される。具体的には、LuP
2、YbPc2、DyPc2、GdPc2、NdPc2
TbPc2等(Pcはフタロシアニン環を示す。)であ
り、またこれらの水素化物例えばGdHPc2、DyH
Pc2、LuHPc2、ScHPc2等であっても良い。
As the diphthalocyanine compound used in the second P-type organic compound layer, diphthalocyanine mainly containing a metal of Group 3b is used. Specifically, LuP
c 2 , YbPc 2 , DyPc 2 , GdPc 2 , NdPc 2 ,
TbPc 2 and the like (Pc represents a phthalocyanine ring), and their hydrides such as GdHPc 2 and DyH.
It may be Pc 2 , LuHPc 2 , ScHPc 2 or the like.

【0010】N型有機化合物としては、ペリレン誘導
体、キノン類、ピリリウム塩、ローダミン色素、フェノ
チアジン色素、フェナジン色素等が用いられる。
As the N-type organic compound, perylene derivatives, quinones, pyrylium salts, rhodamine dyes, phenothiazine dyes, phenazine dyes and the like are used.

【0011】N型有機化合物であるペリレン誘導体とし
ては、下記化1のような構造をとるものを用いることが
できる。
As the perylene derivative which is an N-type organic compound, one having a structure represented by the following chemical formula 1 can be used.

【0012】[0012]

【化1】 [Chemical 1]

【0013】本発明で用いられる有機化合物は上記した
ものに限定されず、真空蒸着又はLB法により成膜で
き、光導電性を示すものであれば使用可能である。
The organic compound used in the present invention is not limited to the above-mentioned ones, and any organic compound can be used as long as it can be formed into a film by vacuum vapor deposition or LB method and exhibits photoconductivity.

【0014】次に、本発明の素子構成を図によりさらに
説明する。図1において1は透明電極の基板となるガラ
ス又は高分子フィルムを表わし、2は酸化スズインジウ
ム等の透明電極層を表わし、3はN型有機化合物層、4
は第一のP型有機化合物層、5は第二のP型有機化合物
層をそれぞれ表わし、6は背面電極を表わす。この場
合、背面電極6としては仕事関数の大きな金属、例えば
Auが使用される。
Next, the element structure of the present invention will be further described with reference to the drawings. In FIG. 1, reference numeral 1 represents a glass or polymer film which will be a substrate of a transparent electrode, 2 represents a transparent electrode layer of indium tin oxide or the like, 3 represents an N-type organic compound layer, 4
Represents a first P-type organic compound layer, 5 represents a second P-type organic compound layer, and 6 represents a back electrode. In this case, a metal having a large work function, such as Au, is used as the back electrode 6.

【0015】図2では3、4、5の積層順が図1と逆に
なった構成例を示す。この場合、背面電極6としては仕
事関数の小さい金属が、例えばAl、In、Cr等が使
用される。
FIG. 2 shows a configuration example in which the stacking order of 3, 4, and 5 is the reverse of that in FIG. In this case, a metal having a small work function such as Al, In, or Cr is used for the back electrode 6.

【0016】図3は請求項2で述べたさらに特性の向上
した素子構成を示す。7はN型無機化合物である酸化亜
鉛からなる層を示す。
FIG. 3 shows an element structure having further improved characteristics described in claim 2. Reference numeral 7 indicates a layer made of zinc oxide which is an N-type inorganic compound.

【0017】なお、図1〜3は本発明の最も基本的な構
成を表すもので、もちろん本発明はこれらのみに限定さ
れるものではなく、例えば、これらの構成単位が電極部
を除いて又は含めて積層された素子に対しても本発明は
適用される。又、保護層等が設けられていても良い。
1 to 3 show the most basic structure of the present invention, and of course, the present invention is not limited to these. For example, these structural units may be used except for the electrode part or The present invention is also applied to a device including and laminated. Further, a protective layer or the like may be provided.

【0018】第一のP型有機化合物層は数nm〜50n
mの範囲の膜厚が適当である。厚過ぎると第二のP型有
機化合物層を加えた効果がなくなり、短絡電流が低下す
る。薄過ぎるとN型有機化合物層と第二のP型有機化合
物層間での短絡が増大し、開放電圧が低下する。
The first P-type organic compound layer has a thickness of several nm to 50 n.
A film thickness in the range of m is suitable. If it is too thick, the effect of adding the second P-type organic compound layer is lost and the short-circuit current decreases. If it is too thin, short circuits between the N-type organic compound layer and the second P-type organic compound layer increase, and the open circuit voltage decreases.

【0019】第二のP型有機化合物層は10nm〜10
0nmの範囲の膜厚が適当である。厚過ぎると短絡電流
が低下し、薄過ぎるとやはり短絡電流が低下する。
The second P-type organic compound layer has a thickness of 10 nm to 10 nm.
A film thickness in the range of 0 nm is suitable. If it is too thick, the short-circuit current will decrease, and if it is too thin, the short-circuit current will also decrease.

【0020】N型有機化合物層は5nm〜100nmの
範囲の膜厚が適当である。厚過ぎると短絡電流が低下
し、薄過ぎると開放電圧が低下する。
The N-type organic compound layer preferably has a film thickness in the range of 5 nm to 100 nm. If it is too thick, the short-circuit current will decrease, and if it is too thin, the open circuit voltage will decrease.

【0021】酸化亜鉛層は一般に知られているスパッタ
法により作製できる。例えば、酸化亜鉛をターゲットと
し、基板温度を200℃〜300℃とし、1〜10mT
orrの真空下、アルゴンガスを導入したプラズマ中で
スパッタリングする事により固有抵抗0.1Ω・cm〜
105Ω・cm程度の透明な膜として得られる。
The zinc oxide layer can be formed by a generally known sputtering method. For example, using zinc oxide as a target, the substrate temperature is 200 ° C. to 300 ° C., and 1 to 10 mT
Specific resistance of 0.1 Ω · cm by sputtering under plasma of argon gas under orr vacuum
It is obtained as a transparent film of about 10 5 Ω · cm.

【0022】[0022]

【実施例】以下に実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0023】実施例1 表面抵抗20Ω/□の酸化スズインジウム(ITO)蒸
着ガラス上にN型有機化合物層としてペリレンテトラカ
ルボン酸ビスメチルイミドを5×10-6Torr以下の
真空度で30nmの膜厚に蒸着した。次いで第一のP型
有機化合物層としてクロロインジウムフタロシアニンを
15nmの膜厚で蒸着した。さらに第二のP型有機化合
物層として水素化ルテチウムジフタロシアニンを30n
mの膜厚で蒸着した。最後に背面電極としてAuを約5
0nmの膜厚で蒸着し、酸化スズインジウム部とAu部
にリード線を取り付け、本発明による有機光起電力素子
を作製した。
Example 1 Perylene tetracarboxylic acid bismethylimide was used as an N-type organic compound layer on indium tin oxide (ITO) vapor-deposited glass having a surface resistance of 20 Ω / □, and a film of 30 nm was formed at a vacuum degree of 5 × 10 -6 Torr or less. It was vapor-deposited thickly. Then, chloroindium phthalocyanine was vapor-deposited with a film thickness of 15 nm as a first P-type organic compound layer. Further, 30 n of lutetium diphthalocyanine hydride was used as a second P-type organic compound layer.
It was vapor-deposited in a film thickness of m. Finally, about 5 Au is used as the back electrode.
An organic photovoltaic element according to the present invention was produced by vapor deposition with a film thickness of 0 nm and attaching lead wires to the indium tin oxide portion and the Au portion.

【0024】実施例2 表面抵抗20Ω/□のITO蒸着ガラス上に対向ターゲ
ットスパッタ装置を使用し、DC法により基板温度:3
00℃、導入ガス:アルゴン、真空度:4mTorr、
成膜速度:0.3nm/secの条件下、酸化亜鉛層を
約150nmの厚さに作製した。この上に実施例1と同
様にして、各有機化合物層と背面電極を蒸着し、リード
線を取り付けて本発明による素子を作製した。
Example 2 On an ITO vapor-deposited glass having a surface resistance of 20 Ω / □, a facing target sputtering apparatus was used, and the substrate temperature was 3 by a DC method.
00 ° C., introduced gas: argon, vacuum degree: 4 mTorr,
A zinc oxide layer was formed to a thickness of about 150 nm under the condition of film forming rate: 0.3 nm / sec. In the same manner as in Example 1, each organic compound layer and the back electrode were vapor-deposited thereon, lead wires were attached, and a device according to the present invention was produced.

【0025】実施例3 第二のP型有機化合物層として水素化ガドリニウムジフ
タロシアニンを使用した以外は実施例2と同様にして本
発明による素子を作製した。
Example 3 A device according to the present invention was produced in the same manner as in Example 2 except that hydrogenated gadolinium diphthalocyanine was used as the second P-type organic compound layer.

【0026】比較例1 第二のP型有機化合物層を設けないでクロロインジウム
フタロシアニンの膜厚を45nmに変えた以外は実施例
1と同様にして比較例の素子を作製した。
Comparative Example 1 An element of Comparative Example was prepared in the same manner as in Example 1 except that the thickness of chloroindium phthalocyanine was changed to 45 nm without providing the second P-type organic compound layer.

【0027】比較例2 第二のP型有機化合物層を設けないでクロロインジウム
フタロシアニンの膜厚を45nmに変えた以外は実施例
2と同様にして比較例の素子を作製した。
Comparative Example 2 An element of Comparative Example was prepared in the same manner as in Example 2 except that the film thickness of chloroindium phthalocyanine was changed to 45 nm without providing the second P-type organic compound layer.

【0028】比較例3 第二のP型有機化合物層を設けないで第一のP型有機化
合物層に水素化ルテチウムジフタロシアニン膜(膜厚4
5nm)を用いた以外は実施例2と同様にして比較例の
素子を作製した。
Comparative Example 3 A lutetium diphthalocyanine hydride film (film thickness: 4) was formed on the first P-type organic compound layer without providing the second P-type organic compound layer.
A device of a comparative example was produced in the same manner as in Example 2 except that 5 nm) was used.

【0029】以上のようにして作成した各素子につい
て、ITO蒸着ガラス側から疑似太陽光を照射して変換
効率等を測定した。その結果を表1に示す。
With respect to each of the devices produced as described above, the conversion efficiency and the like were measured by irradiating pseudo sunlight from the ITO vapor deposition glass side. The results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】実施例1と比較例1との比較からわかる
様に請求項1の構成をとる事により、開放電圧、短絡電
流が大きくなり、変換効率の高い素子が提供される。実
施例2及び3と比較例2及び3との比較から明らかな様
に請求項2の構成をとる事により、開放電圧と短絡電
流、特に短絡電流が大きくなり、さらに変換効率の高い
素子が提供される。
As can be seen from the comparison between Example 1 and Comparative Example 1, by adopting the structure of claim 1, an open circuit voltage and a short circuit current are increased and a device having high conversion efficiency is provided. As is clear from the comparison between Examples 2 and 3 and Comparative Examples 2 and 3, by adopting the configuration of claim 2, an open circuit voltage and a short circuit current, especially a short circuit current are increased, and an element having higher conversion efficiency is provided. To be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光起電力素子の基本的構成を示す
断面図である。
FIG. 1 is a sectional view showing a basic configuration of a photovoltaic element according to the present invention.

【図2】本発明による光起電力素子の別の基本的構成を
示す断面図である。
FIG. 2 is a sectional view showing another basic structure of the photovoltaic element according to the present invention.

【図3】本発明による光起電力素子のさらに別の基本的
構成を示す断面図である。
FIG. 3 is a sectional view showing still another basic structure of the photovoltaic element according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 透明電極層 3 N型有機化合物層 4 第一のP型有機化合物層 5 第二のP型有機化合物層 6 背面電極 7 酸化亜鉛層 1 substrate 2 transparent electrode layer 3 N type organic compound layer 4 first P type organic compound layer 5 second P type organic compound layer 6 back electrode 7 zinc oxide layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導体間に少なくともP型半導体特性を有
する有機化合物層とN型半導体特性を有する有機化合物
層からなる光起電力層を狭持してなる有機光起電力素子
において、P型有機化合物層がN型有機化合物層と接す
る第一のP型有機化合物層とそれに続く第二のP型有機
化合物層からなり、第二のP型有機化合物層がジフタロ
シアニン化合物からなることを特徴とする有機光起電力
素子。
1. An organic photovoltaic element comprising a photovoltaic layer comprising at least an organic compound layer having a P-type semiconductor characteristic and an organic compound layer having an N-type semiconductor characteristic sandwiched between conductors. The compound layer comprises a first P-type organic compound layer in contact with the N-type organic compound layer and a second P-type organic compound layer following the first P-type organic compound layer, and the second P-type organic compound layer comprises a diphthalocyanine compound. Organic photovoltaic device.
【請求項2】 N型有機化合物層と電極となる導体との
間にN型無機化合物である酸化亜鉛からなる層を設ける
ことを特徴とする請求項1に記載の有機光起電力素子。
2. The organic photovoltaic device according to claim 1, wherein a layer made of zinc oxide, which is an N-type inorganic compound, is provided between the N-type organic compound layer and the conductor that serves as an electrode.
JP3312004A 1991-10-29 1991-10-29 Organic photovoltaic element Pending JPH05121771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3312004A JPH05121771A (en) 1991-10-29 1991-10-29 Organic photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3312004A JPH05121771A (en) 1991-10-29 1991-10-29 Organic photovoltaic element

Publications (1)

Publication Number Publication Date
JPH05121771A true JPH05121771A (en) 1993-05-18

Family

ID=18024049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3312004A Pending JPH05121771A (en) 1991-10-29 1991-10-29 Organic photovoltaic element

Country Status (1)

Country Link
JP (1) JPH05121771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766436A (en) * 1993-08-24 1995-03-10 Ricoh Co Ltd Organic photovoltaic element
JP2012124264A (en) * 2010-12-07 2012-06-28 Dainippon Printing Co Ltd Organic thin film solar cell and production method for the same
US10381413B2 (en) 2017-09-05 2019-08-13 Samsung Electronics Co., Ltd. Organic photoelectric device and image sensor and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766436A (en) * 1993-08-24 1995-03-10 Ricoh Co Ltd Organic photovoltaic element
JP2012124264A (en) * 2010-12-07 2012-06-28 Dainippon Printing Co Ltd Organic thin film solar cell and production method for the same
US10381413B2 (en) 2017-09-05 2019-08-13 Samsung Electronics Co., Ltd. Organic photoelectric device and image sensor and electronic device

Similar Documents

Publication Publication Date Title
US8592804B2 (en) Method for fabricating organic optoelectronic devices
US20080105299A1 (en) Front electrode with thin metal film layer and high work-function buffer layer for use in photovoltaic device and method of making same
EP2348556A1 (en) Organic thin-film solar cell
JPH11265738A (en) Photo semiconductor electrode and photocell using it
JPH05335614A (en) Photoelectric conversion element
US11744089B2 (en) Multijunction organic photovoltaics incorporating solution and vacuum deposited active layers
JPH05121771A (en) Organic photovoltaic element
JPH05121770A (en) Organic photovoltaic element
JPH06177410A (en) Manufacture of photovoltaic element and its manufacture
CN102386332A (en) Solar cell and preparation method thereof
JP3283973B2 (en) Organic photovoltaic device
JPH05129643A (en) Organic photovoltaic device
JPH038375A (en) Electric element
JP3249619B2 (en) Solar cell
JP3269247B2 (en) Organic solar cell and method of manufacturing the same
JP3444700B2 (en) Solar cell
WO2011052781A1 (en) Photoelectric conversion element and photoelectric conversion device
JPH06232435A (en) Organic photovoltaic element
JPH02177374A (en) Photoelectric conversion device
JPH0521824A (en) Photoelectric conversion element
JP2935998B2 (en) Photovoltaic element
JPH0427170A (en) Photovoltaic element
JP2756711B2 (en) Photoelectric conversion power generation element
JP2009032661A (en) Lamination type photoelectric transfer device
JP2763619B2 (en) Electrical element