JPH0427170A - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JPH0427170A
JPH0427170A JP2131318A JP13131890A JPH0427170A JP H0427170 A JPH0427170 A JP H0427170A JP 2131318 A JP2131318 A JP 2131318A JP 13131890 A JP13131890 A JP 13131890A JP H0427170 A JPH0427170 A JP H0427170A
Authority
JP
Japan
Prior art keywords
layer
electron
light
organic layer
conversion efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2131318A
Other languages
Japanese (ja)
Inventor
Masao Yoshikawa
吉川 雅夫
Tetsuo Suzuki
哲郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2131318A priority Critical patent/JPH0427170A/en
Publication of JPH0427170A publication Critical patent/JPH0427170A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve light absorption rate in an optically active layer by using light multiple reflection from a rear electrode by laminating an electron acceptive organic layer and an electron donative organic layer to be rectified and bonded thereto between a light transmission front electrode and the rear electrode having light reflecting capacity, and further providing an organic layer having different main light absorption wavelength band from the acceptive or donative organic layer on the rear electrode side from the continuous two layers. CONSTITUTION:A laminate of an electron acceptive organic layer and an electron donative organic layer 1 for forming an optically active layer is included between a transparent electrode and a rear electrode having a light reflecting capacity, and an electron donative organic layer 2 having different essential light absorption band from that of the layer 1 is provided on a back surface electrode side. With this structure, JSC is particularly improved as compared with a configuration of the mere laminate of the acceptive layer 1. Further, the layer 1 has an optimum range of the JSC in a thick region for sufficiently transmitting a light with respect to the rise of the JSC, and the higher the light reflectivity of the rear electrode is, the higher of JSC is.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光センサー等にも有用な光起電力素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photovoltaic element useful also as a light sensor and the like.

[従来の技術] 有機物を能動材料として用いた光起電力素子が多く研究
されている。その目的は、単結晶、多結晶、アモルファ
スのSiでは達成が困難とされている、安価で毒性のな
い光起電力素子を開発するためである。
[Prior Art] Many studies have been conducted on photovoltaic elements using organic substances as active materials. The purpose is to develop an inexpensive, non-toxic photovoltaic device, which is difficult to achieve with single-crystal, polycrystalline, or amorphous Si.

光起電力素子は、光エネルギーを電気エネルギー(電圧
X電流)に変換する素子であるため、変換効率がその主
要な評価対象となる。光電流の生成には内部電界の存在
が必要であるが、内部電界を生成する方法としていくつ
かの素子構成が知られている。能動材料として有機物を
用いた場合の、各々の既知の構成での変換効率のベスト
データは以下の通りである。
Since a photovoltaic element is an element that converts light energy into electrical energy (voltage x current), its conversion efficiency is the main evaluation target. The generation of photocurrent requires the presence of an internal electric field, and several device configurations are known as methods for generating an internal electric field. The best data on conversion efficiency for each known configuration when an organic substance is used as the active material is as follows.

l)ショットキー接合又はMIS型接合接合金属/半導
体接合じる内部電界を利用したもの。有機半導体材料と
してメロシアニン染料、フタロシアニン顔料等が報告さ
れている。
l) Schottky junction or MIS type junction A type that utilizes the internal electric field of a metal/semiconductor junction. Merocyanine dyes, phthalocyanine pigments, etc. have been reported as organic semiconductor materials.

Al/メロシアニン/Ag素子に対する78磨V/ e
 m 2の白色光照射で変換効率0.7%(Voc−1
、2V % J Se−1,8mA/e12 、fT−
0,25)が報告されている。  [A、に、Ghos
hらJ、Appl 、Phys、49゜5982(19
78)] このタイプの素子に用いられている有機半導体で変換効
率が高いものはp型に限定されている。従って、電極材
料もAI、In、Mg等の仕事関数が低いものが使用さ
れる。これらは容易に酸化される。
78 polishing V/e for Al/merocyanine/Ag elements
Conversion efficiency of 0.7% (Voc-1
, 2V% J Se-1,8mA/e12, fT-
0,25) have been reported. [A, ni, Ghos
h et al. J, Appl, Phys, 49°5982 (19
78)] Among the organic semiconductors used in this type of device, those with high conversion efficiency are limited to p-type. Therefore, electrode materials with low work functions such as AI, In, and Mg are used. These are easily oxidized.

2) n型無機半導体/p型有機半導体接合を利用した
ヘテロpn接合 n型無機半導体/p型有機半導体を接合したときに生じ
る内部電界を利用したもの。n型材料としてCdS、Z
nO等が用いられる。p型有機半導体材料としてメロシ
アニン染料、フタロシアニン等が報告されている。
2) Hetero pn junction using an n-type inorganic semiconductor/p-type organic semiconductor junction A type that utilizes the internal electric field generated when an n-type inorganic semiconductor/p-type organic semiconductor is joined. CdS, Z as n-type material
nO etc. are used. Merocyanine dyes, phthalocyanines, etc. have been reported as p-type organic semiconductor materials.

ITO/電着CdS/塩素化アルミニウムクロルフタロ
シアニン/ A u素子に対する75aシ1cfl12
のAM−2光照射で変換効率0.22%(V oc −
0,69V 、 J sc −0,89mA/cm 2
IT −0,29)がベストである[A、HorらAI
)I)1.Phys。
ITO/electrodeposited CdS/chlorinated aluminum chlorophthalocyanine/75a1cfl12 for Au element
Conversion efficiency was 0.22% (V oc −
0,69V, Jsc -0,89mA/cm2
IT -0,29) is the best [A, Hor et al. AI
)I)1. Phys.

Lett、、42.15(1983)]。Lett, 42.15 (1983)].

3)有機/有機へテロ接合を利用したちの電子受容性の
有機物と電子供与性の有機物を接合したときに生じる電
界を利用したもの。
3) Using the electric field generated when an electron-accepting organic substance and an electron-donating organic substance are joined using an organic/organic heterojunction.

前者の有機物としてマラカイトグリーン、メチルバイオ
レット、ピリリウム等の染料、フラバンスロン、ペリレ
ン顔料等の綜合多環芳香族化合物が報告されており、後
者の例として、フタロシアニン顔料、メロシアニン染料
等が報告されている。
Dyes such as malachite green, methyl violet, and pyrylium, and synthetic polycyclic aromatic compounds such as flavanthrone and perylene pigments have been reported as organic substances of the former, and examples of the latter include phthalocyanine pigments and merocyanine dyes. .

ITO/銅フタロシアニン/ペリレン顔料/Ag素子に
対する75mW/c112ノA M −2光照射で変換
効率0,95%(V oc −0,45V % J s
c −24mA7cm2、fr−0,85)が報告され
ている[C,TangAppl、Phys、Lett、
、48,183(198B)] 、この値は有機物を用
いた光起電力素子では最高のものである。又、同じ発明
者による特公昭62−4871には、本素子構成で別種
のペリレン顔料に対して変換効率1%(V oc −0
,44V 、 J se −3,0mA/cm2fT−
0,6)が報告されている。
ITO/copper phthalocyanine/perylene pigment/Ag element was irradiated with 75 mW/c112 am M-2 light with a conversion efficiency of 0.95% (V oc -0.45V % J s
c-24mA7cm2, fr-0,85) has been reported [C, TangAppl, Phys, Lett,
, 48, 183 (198B)], this value is the highest among photovoltaic elements using organic materials. In addition, in Japanese Patent Publication No. 62-4871 by the same inventor, the conversion efficiency of 1% (V oc -0
,44V, J se -3,0mA/cm2fT-
0,6) have been reported.

有機物を用いた光起電力素子の変換効率は、無機半導体
を用いたものより低い。この要因として最大のものは短
絡光電流(J Sc)の低さである。変換効率5%の素
子では75mV/c■2の白色光照射に対し、少くとも
10mA/cm2のJ scが必要である。前述のJs
cはそれよりもはるかに低い。この原因は、量子効率の
低さと、分光感度波長域の狭さにある。分光感度波長は
、400nmからなるべく長波長まで広がっていること
が望ましいが、従来の例は特定波長域に限定されている
例が多い。
The conversion efficiency of photovoltaic devices using organic materials is lower than those using inorganic semiconductors. The biggest factor contributing to this is the low short-circuit photocurrent (JSc). A device with a conversion efficiency of 5% requires a J sc of at least 10 mA/cm 2 for white light irradiation of 75 mV/c 2 . The aforementioned Js
c is much lower than that. This is due to low quantum efficiency and narrow spectral sensitivity wavelength range. It is desirable that the spectral sensitivity wavelength extends from 400 nm to as long as possible, but in many conventional examples it is limited to a specific wavelength range.

又、rrが小さい例が多い。rrの低さの原因の1つは
有機半導体の示す量子効率が、低電界で急激に低下する
ことにあると言われている。従って、この様な低下を来
さないような強い内部電界が生成する構成がrrの向上
に好ましい。更に、生成電荷がエネルギー的な障壁無し
にスムーズに電極に到達できる素子構成がrrを大きく
する。これらの達成によりVOCの向上も図られるが、
従来はこれらの点で十分な考慮が成されていない例が多
かった。
Furthermore, there are many cases where rr is small. It is said that one of the reasons for the low rr is that the quantum efficiency of organic semiconductors rapidly decreases in low electric fields. Therefore, a configuration that generates a strong internal electric field that does not cause such a decrease is preferable for improving rr. Furthermore, an element configuration that allows generated charges to smoothly reach the electrode without an energy barrier increases rr. Achieving these goals will also improve VOC, but
In the past, there were many cases in which sufficient consideration was not given to these points.

更に加えると、報告されている有機光起電力素子では、
電極材料の化学的安定性の点でも問題があるものが多い
Additionally, in the reported organic photovoltaic devices,
Many electrode materials also have problems in terms of chemical stability.

以上のような観点から前述の従来技術を眺める。The above-mentioned prior art is viewed from the above perspective.

1)ショットキー接合又はMIS型接合Vocは大きく
とれるが、電極として金属材料が用いられているため、
電極の光透過率が低くなる。実際の光透過率は、よくて
も30%、通常は10%前後である。又、これらの材料
は耐酸化性に乏しい。従って、この素子形態では高い変
換効率と、安定した特性を作り出すことは望めない。
1) Schottky junction or MIS type junction Voc can be made large, but since metal material is used as the electrode,
The light transmittance of the electrode becomes low. The actual light transmittance is at best 30%, usually around 10%. Also, these materials have poor oxidation resistance. Therefore, with this element form, it cannot be expected to produce high conversion efficiency and stable characteristics.

2)無機半導体/有機半導体へテロpn接合電荷生成は
主として有機層でなされるため、分光感度の制限を受け
る。通常、有機層は単一の材料から形成されるが、40
0から例えば800■まで強い光吸収を持つ有機半導体
は現在存在しないからである。従って、この素子構成で
は光入射電極の光透過性や、電極の安定性の問題はクリ
アできるが、分光感度領域が狭いため、高い変換効率は
望めない。
2) Inorganic semiconductor/organic semiconductor heteropn junction Since charge generation is mainly performed in the organic layer, the spectral sensitivity is limited. Typically, the organic layer is formed from a single material, but 40
This is because there is currently no organic semiconductor that has strong optical absorption from 0 to, for example, 800 square meters. Therefore, with this device configuration, the problems of light transmittance of the light incident electrode and stability of the electrode can be overcome, but high conversion efficiency cannot be expected because the spectral sensitivity region is narrow.

3)有機/有機へテロpn接合 上記2種の構成と較べ、現在のところ最も望ましいもの
である。透明電極からの光照射が行え、又、2種の材料
で光電荷生成が可能であるため、分光感度も広げること
ができる。実際、前述のTaugによる報告では450
〜550nmではペリレン系顔料、550〜700rv
では銅フタロシアニンで電荷が生成していることがうか
がえる。
3) Organic/organic heteropn junction Compared to the above two types of configurations, this is currently the most desirable one. Since light can be irradiated from a transparent electrode and photocharges can be generated using two types of materials, spectral sensitivity can also be expanded. In fact, according to the report by Taug mentioned above, 450
Perylene pigment at ~550nm, 550-700rv
This shows that an electric charge is generated in the copper phthalocyanine.

又、rrが他の素子構成と較べ大きいことは、生成して
いる内部電界が大きいと推定される。しかし、Taug
氏の技術をもってしても 1%を越える変換効率を確実
に達成することは困難であった。検討の結果、これは実
際に光電流生成に寄与する有機層(以下、光活性層)の
厚さが100〜300五と非常に薄いため素子の光吸収
が十分でないためと判明した。光電流生成に必要な有機
層の厚さは、光活性層程度であり、これより厚いと光が
無駄に吸収されるだけである。しかし、光活性層は薄い
ため、有機層の厚さをこの程度にするとピンホールによ
る電気的な短絡が無視できず、良好な素子作製ができず
にいた。
Furthermore, the fact that rr is larger than other element configurations is presumed to indicate that the generated internal electric field is large. However, Taug
Even with his technology, it was difficult to reliably achieve a conversion efficiency of over 1%. As a result of investigation, it was found that this is because the organic layer (hereinafter referred to as photoactive layer) that actually contributes to photocurrent generation is very thin, at 100 to 300 mm, and therefore the light absorption of the device is insufficient. The thickness of the organic layer necessary for photocurrent generation is approximately the same as that of the photoactive layer; if it is thicker than this, light will simply be absorbed in vain. However, since the photoactive layer is thin, if the thickness of the organic layer is set to this level, electrical short circuits due to pinholes cannot be ignored, making it difficult to fabricate a good device.

[発明が解決しようとする課題] 本発明の目的は、有機/有機pnタイプの光起電力素子
に対し、ピンホールによる素子性能の低下を防ぎ、pn
接合を形成する有機層の厚さを光活性層厚さ程度に抑え
ることで、背面電極からの光多重反射を利用して、光活
性層での光吸収効率を向上させ、有機光起電力素子とし
ては高い変換効率を与える素子を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to prevent deterioration of device performance due to pinholes in an organic/organic pn type photovoltaic device, and to
By suppressing the thickness of the organic layer that forms the bond to about the thickness of the photoactive layer, multiple reflections of light from the back electrode can be used to improve the light absorption efficiency in the photoactive layer, resulting in an organic photovoltaic device. The objective is to provide an element that provides high conversion efficiency.

[課題を解決するための手段] 上記目的を達成するため、有機/有機へテロpn接合タ
イプの光起電力素子に対し、透光性の高い電極を入射側
に、光反射性の高い材料を背面電極に使用し、pn接合
を形成する有機層と光吸収波長域が異なる有機層を背面
電極側に設けることで、ピンホールによる素子性能の低
下を防ぎ、pn接合を形成する有機層の厚さを光活性層
厚さ程度に抑えることで、背面電極からの光多重反射を
利用して、光活性層での光吸収効率を向上させ、有機光
起電力素子としては高い1%を越える変換効率が達成で
きることを見出した。
[Means for solving the problem] In order to achieve the above object, a highly transparent electrode is placed on the incident side of an organic/organic hetero pn junction type photovoltaic element, and a highly reflective material is used. By providing an organic layer on the back electrode side that has a different light absorption wavelength range from the organic layer that forms the pn junction, it prevents deterioration of device performance due to pinholes and reduces the thickness of the organic layer that forms the pn junction. By suppressing the thickness to about the thickness of the photoactive layer, multiple reflections of light from the back electrode are used to improve the light absorption efficiency in the photoactive layer, resulting in a conversion of over 1%, which is high for an organic photovoltaic device. We have found that efficiency can be achieved.

以下本発明における素子構成、使用材料、作製法等につ
いて説明する。
The device configuration, materials used, manufacturing method, etc. in the present invention will be explained below.

本発明の光起電力素子の1つの態様は第1図に示す通り
である。
One embodiment of the photovoltaic device of the present invention is as shown in FIG.

本素子構造の特徴は透明電極と光反射能を有する背面電
極の間に、光活性層を形成する電子受容性有機物層と電
子供与性有機物層(L)の積層を含み、更に電子供与性
有機物層(1)と主要な光吸収領域が異なる電子供与性
有機物層(2)が背面電極側に設けられたところにある
。この構成により、単に電子受容性有機物層と電子供与
性有機物層(1)を積層した構成よりも、J scが特
に向上することが見出された。
The feature of this device structure is that it includes a stack of an electron-accepting organic material layer and an electron-donating organic material layer (L), which form a photoactive layer, between a transparent electrode and a back electrode having light-reflecting ability. An electron-donating organic layer (2), which has a different main light absorption region from layer (1), is provided on the back electrode side. It has been found that with this configuration, J sc is particularly improved compared to a configuration in which an electron-accepting organic layer and an electron-donating organic layer (1) are simply laminated.

この効果は電子供与性有機物層(1)の分光感度波長領
域の量子収率が向上したためと分かった。更にJscの
上昇に対しては電子供与性有機物層(1)は光が十分透
過する厚さの領域で最適な範囲があり、又、背面電極の
光反射率が高い方がJscが高いことが分かった。これ
らの結果から電子供与性有機物層(1)での光活性層の
厚さは電子供与性有機物層(2)がない場合には短絡が
顕著に現れる程度に薄いことが示唆された。
This effect was found to be due to an improvement in the quantum yield in the spectral sensitivity wavelength region of the electron-donating organic layer (1). Furthermore, for an increase in Jsc, the electron donating organic layer (1) has an optimal thickness in a region where light can pass through sufficiently, and the higher the light reflectance of the back electrode, the higher the Jsc. Do you get it. These results suggested that the thickness of the photoactive layer in the electron-donating organic layer (1) is so thin that short circuits would be noticeable in the absence of the electron-donating organic layer (2).

したがって、光吸収領域が異なる電子供与性有機物層(
2)と光反射能の高い背面電極の併用により、背面電極
の反射を利用して電子供与性有機物層(1)の光吸収効
率を高めることでJscの向上がもたらされたと考えら
れる。
Therefore, the electron-donating organic layer (
It is considered that the combination of 2) and a back electrode with high light reflectivity improved the Jsc by increasing the light absorption efficiency of the electron-donating organic layer (1) by utilizing the reflection of the back electrode.

電子供与性有機物層(2)がない場合、短絡による素子
性能の低下を来さないためには上記光活性層の厚さ以上
に電子供与性有機物層(1)を設けなければならない。
If the electron-donating organic layer (2) is not provided, the electron-donating organic layer (1) must be provided to have a thickness greater than that of the photoactive layer in order to prevent deterioration of device performance due to short circuits.

この場合、光活性層を透過した残りの光は光電流生成に
は使われず、無駄に吸収されるだけである。したがって
、上記電子供与性有機物層を複層化した方が光利用効率
が向上することが理解される。
In this case, the remaining light transmitted through the photoactive layer is not used for photocurrent generation and is simply wasted and absorbed. Therefore, it is understood that the light utilization efficiency is improved when the electron-donating organic material layer is multilayered.

本素子における別の更に好ましい態様は第2図に示す構
成である。この構成の特徴は透光性n型無機半導体層が
挿入されたことにある。n型無機半導体層の存在により
、VocSJ SC,rrの改善による変換効率の向上
と短絡の低減が達成される。
Another more preferable embodiment of this element is the configuration shown in FIG. The feature of this structure is that a light-transmitting n-type inorganic semiconductor layer is inserted. The presence of the n-type inorganic semiconductor layer achieves improved conversion efficiency and reduced short circuits by improving VocSJ SC,rr.

更に別な態様としては、第3図のごとく電子受容性有機
物層が複層化されたものも使用できる。
As another embodiment, a structure in which electron-accepting organic material layers are multilayered as shown in FIG. 3 can also be used.

ここで、光電流は電子供与性有機物層と電子受容性有機
物層(1)の界面で生成する。光電流が該2層系の構成
と較べ向上するのは、第1図において説明したのと同様
な理由による。
Here, a photocurrent is generated at the interface between the electron-donating organic layer and the electron-accepting organic layer (1). The reason why the photocurrent is improved compared to the two-layer structure is due to the same reason as explained in FIG. 1.

次に本発明の光起電力素子に使用される各種の材料、製
法等について説明する。
Next, various materials, manufacturing methods, etc. used in the photovoltaic device of the present invention will be explained.

本発明において使用する透明絶縁支持体としては、ガラ
ス、プラスチックフィルム等が用いられる。
As the transparent insulating support used in the present invention, glass, plastic film, etc. are used.

本発明において使用する透明電極としては、酸化スズイ
ンジウム(ITO)、酸化スズ、酸化インジウム等が用
いられる。この好ましい厚さは100〜1oooo人で
ある。
As the transparent electrode used in the present invention, indium tin oxide (ITO), tin oxide, indium oxide, etc. are used. This preferred thickness is between 100 and 100 mm thick.

本発明において使用するn型半導体層とじては、酸化亜
鉛、3価の金属がドープされた酸化亜鉛、CdS、酸化
チタン、リンをドープしたアモルファスシリコン等で酸
化亜鉛、CdS等が好ましい。厚さは10〜10000
 人が好ましい。
The n-type semiconductor layer used in the present invention includes zinc oxide, zinc oxide doped with a trivalent metal, CdS, titanium oxide, amorphous silicon doped with phosphorus, and preferably zinc oxide, CdS, and the like. Thickness is 10~10000
People are preferred.

本発明において用いる電子受容性有機物層(1) 、(
2)としては、 ペリレン系顔料 Pig+gent Red  (以下
PR) 179゜PR190,PR149,PR189
,PR123゜Plgsent Brown 2B等 ペリノン系顔料 Plgment Orange 43
.PR194等アントラキノン系顔料 PR188,P
R177、VatYellow 4等 フラバンスロン等の含キノン黄色顔料 クリスタルバイオレット、メチルバイオレット、マラカ
イトグリーン等の染料、フルオレノン、2.4.7− 
トリニトロフルオレノン、テトラシアノキノジメタン、
テトラシアノエチレン等のアクセプタ化合物等を挙げる
ことができる。これらは蒸着、スピンコード、ディッピ
ングにて成膜される。薄膜化、均一化には蒸着が好まし
い。
Electron-accepting organic layer (1) used in the present invention (
As for 2), perylene pigment Pig+gent Red (hereinafter referred to as PR) 179°PR190, PR149, PR189
, PR123゜Plgment Brown 2B etc. Plgment Orange 43
.. Anthraquinone pigments such as PR194 PR188, P
R177, VatYellow 4, quinone-containing yellow pigments such as flavanthrone, dyes such as crystal violet, methyl violet, malachite green, fluorenone, 2.4.7-
trinitrofluorenone, tetracyanoquinodimethane,
Examples include acceptor compounds such as tetracyanoethylene. These films are formed by vapor deposition, spin code, or dipping. Vapor deposition is preferred for thinning and uniformity.

膜厚は100〜3000 Xが好ましい。The film thickness is preferably 100 to 3000×.

本発明において好ましい電子受容性有機物(1)、(2
)の組合せとしては、ペリレン系顔料(可視光領域にお
ける主吸収帯は450〜700nrA)/ペリノン系顔
料(同400〜550r+m)、ペリレン顔料/フラバ
ンスロン(同400〜550nm)、ペリレン系顔料/
アクセプタ化合物(同400〜500nm) 、ペリノ
ン系顔料/アクセプタ化合物、クリスタルバイオレット
(同500〜B50na+)/ペリレン系顔料、アント
ラキノン系顔料(同450〜fi00nm)/アクセプ
タ化合物等が挙げられる。
Electron-accepting organic substances (1) and (2) preferred in the present invention
) combinations include perylene pigments (main absorption band in the visible light region is 450-700nrA)/perinone pigments (400-550nr+m), perylene pigments/flavanthrone (400-550nrA), perylene pigments/
Examples include acceptor compound (400 to 500 nm), perinone pigment/acceptor compound, crystal violet (500 to B50na+)/perylene pigment, and anthraquinone pigment (450 to fi00 nm)/acceptor compound.

膜厚は電子受容性有機物層(1)では30〜300人が
適当である。厚くなるとJscの増加がみられず、又、
薄くなるとその層目体の光吸収効率が落ち、J scが
低下する。電子受容性有機層(2)では適当な膜厚は5
0〜3000 Xである。
The appropriate film thickness for the electron-accepting organic layer (1) is 30 to 300 layers. As the thickness increases, no increase in Jsc is observed, and
When the layer becomes thinner, the light absorption efficiency of the layer decreases, and J sc decreases. The appropriate film thickness for the electron-accepting organic layer (2) is 5
It is 0-3000X.

本発明において使用する電子供与性有機物層(1)、(
2)としては、フタロシアニン系顔料(中心金属がCu
5ZnSCO% Nis Pb、Pt。
Electron-donating organic layer (1) used in the present invention (
2) is a phthalocyanine pigment (the central metal is Cu).
5ZnSCO% Nis Pb, Pt.

Fe5Mg等の2価のもの、無金属フタロシアニン、ア
ルミニウムクロルフタロシアニン、インジウムクロルフ
タロシアニン、ガリウムクロルフタロシアニン等のハロ
ゲン原子が配位した3価金属のフタロシアニン、その他
バナジルフタロシアニン、チタニルフタロシアニン等の
酸素が配位したフタロシアニン) インジゴ、チオインジゴ系顔料(PigmentBlu
e6B、Pigment Violet 3B等)、キ
ナクリドン系顔料(Pigment Vlolet 1
9.Pigment Red 122等)、メロシアニ
ン化合物、シアニン化合物、スクアリウム化合物等の染
料、有機電子写真感光体で用いられる電荷移動剤(ヒド
ラゾン化合物、ピラゾリン化合物、トリフェニルメタン
化合物、トリフェニルアミン化合物等)、電気伝導性有
機電荷移動錯体で用いられる電子供与性化合物(テトラ
チオフルバレン、テトラフェニルテトラチオフラバレン
等)、導電性高分子(ポリピロール、ポリチオフェン、
ポリアニリン等)等を挙げることができる。
Divalent metals such as Fe5Mg, trivalent metal phthalocyanines coordinated with halogen atoms such as metal-free phthalocyanine, aluminum chlorophthalocyanine, indium chlorophthalocyanine, and gallium chlorophthalocyanine, and other oxygen-coordinated phthalocyanines such as vanadyl phthalocyanine and titanyl phthalocyanine. Phthalocyanine) Indigo, thioindigo pigments (PigmentBlu
e6B, Pigment Violet 3B, etc.), quinacridone pigments (Pigment Violet 1
9. Pigment Red 122, etc.), dyes such as merocyanine compounds, cyanine compounds, squalium compounds, charge transfer agents used in organic electrophotographic photoreceptors (hydrazone compounds, pyrazoline compounds, triphenylmethane compounds, triphenylamine compounds, etc.), electrical conductivity electron-donating compounds used in organic charge transfer complexes (tetrathiofulvalene, tetraphenyltetrathioflavalene, etc.), conductive polymers (polypyrrole, polythiophene,
polyaniline, etc.).

本発明において使用する電子供与性有機物層(1)/(
2)の組合せとしてはフタロシアニン系顔料(550〜
850nm)/キナクリドン系顔料(450〜800n
s)、シアニン化合物(600〜800ns)/キナク
リドン系顔料、スクアリウム化合物(550〜800n
s) /キナクリドン系顔料、フタロシアニン系顔料/
電荷移動剤(400〜500rv)、フタロシアニン系
顔料/電子供与性化合物(400〜500rv)、フタ
ロシアニン系顔料/導電性高分子(400〜5501層
)、キナクリドン系顔料/電荷移動剤、キナクリドン系
顔料/インジゴ(500〜700n*)等が挙げられる
Electron-donating organic layer (1) used in the present invention/(
The combination of 2) is a phthalocyanine pigment (550~
850nm)/quinacridone pigment (450-800nm)
s), cyanine compound (600-800ns)/quinacridone pigment, squalium compound (550-800ns)
s) /quinacridone pigment, phthalocyanine pigment/
Charge transfer agent (400-500rv), phthalocyanine pigment/electron donating compound (400-500rv), phthalocyanine pigment/conductive polymer (400-5501 layer), quinacridone pigment/charge transfer agent, quinacridone pigment/ Examples include indigo (500 to 700n*).

これらの層は蒸着、スピンコード、ディッピング、電解
重合等での方法で成膜される。この中で薄膜化、均一化
には蒸着が好ましい。
These layers are formed by methods such as vapor deposition, spin code, dipping, and electrolytic polymerization. Among these, vapor deposition is preferable for making the film thin and uniform.

膜厚は電子供与性有機物層(1)では30〜300人が
適当である。厚くなるとJscの増大がみられず、又、
薄くなるとその層目体の光吸収率が落ち、J scが低
下する。電子供与性有機物層(2)では適当な膜厚は5
0〜3000 Xである。
The appropriate film thickness for the electron-donating organic layer (1) is 30 to 300 layers. As the thickness increases, no increase in Jsc is observed, and
When the layer becomes thinner, the light absorption rate of the layer decreases, and J sc decreases. The appropriate film thickness for the electron-donating organic layer (2) is 5
It is 0-3000X.

電子供与性有機物層が複層でない場合、膜厚は 100
〜3000人が好ましい。
If the electron-donating organic layer is not a multilayer, the film thickness is 100
~3000 people is preferred.

又、本発明において用いる背面電極としてはAu、Pt
s Ni、Pd5Cu、Cr、Ag。
In addition, the back electrode used in the present invention is Au, Pt.
s Ni, Pd5Cu, Cr, Ag.

A I、Tis Mo、Nb、Ta等の金属、又、ステ
ンレス、ハステロイ、ニクロム等の合金が用いられる。
Metals such as AI, Tis Mo, Nb, and Ta, and alloys such as stainless steel, Hastelloy, and nichrome are used.

これらは可視光全般、あるいは可視光領域のかなりの部
分にわたり高い光反射率を示す。これらはそれ自体基板
とするか、蒸着やスパッタで設けられる。後者の場合、
膜厚は50〜3000人が好ましい。
These exhibit high light reflectance over all visible light or over a significant portion of the visible light range. These may themselves be substrates or may be provided by vapor deposition or sputtering. In the latter case,
The film thickness is preferably 50 to 3000 people.

[実施例] 以下に実施例を示し、本発明を更に詳細に説明する。[Example] EXAMPLES The present invention will be explained in more detail by way of Examples below.

実施例1 よく洗浄したITOガラス(松崎真空製、3゜Ω/口)
上に基板温度的250”Cで、導入ガスとしてアルゴン
を用い、RFマグネトコロスパッタ法で、酸化亜鉛を約
1500.tの厚さで設けた。
Example 1 Well-washed ITO glass (manufactured by Matsuzaki Vacuum, 3°Ω/mouth)
Zinc oxide was deposited on the substrate to a thickness of about 1500.t by RF magnetocolo sputtering at a substrate temperature of 250''C using argon as an introduced gas.

その上に真空蒸着法で電子受容製物質であるペリレンテ
トラカルボン酸メチルイミド(PL−ME)を約400
人の厚さで、次いでアルミニウムクロルフタロシアニン
(AICIPc)の厚さを変え、更に2.9−ジメチル
キナクリドン(QA−ME)を約300人の厚さで設け
、その上に金を真空蒸着した。ITOと金がなす面積は
0.25c+a’とした。2つの電極に銀ペーストにて
リード線を取り付けた。
Approximately 400% of perylenetetracarboxylic acid methylimide (PL-ME), an electron-accepting substance, is applied on top of it by vacuum evaporation.
The thickness of aluminum chlorophthalocyanine (AICIPc) was varied, and then 2,9-dimethylquinacridone (QA-ME) was applied to a thickness of about 300 mm, and gold was vacuum deposited thereon. The area between ITO and gold was 0.25c+a'. Lead wires were attached to the two electrodes using silver paste.

この素子の2つの電極を短絡し、460〜800n腸の
領域の単色光を照射して、光電流スペクトルを測定した
。第4図に示されるように、AlClPc層の厚さが薄
くなると600〜800nsのAlClPc層に基づく
光電流が大きくなった。
The two electrodes of this device were short-circuited, monochromatic light was irradiated in the intestine region from 460 to 800 nm, and the photocurrent spectrum was measured. As shown in FIG. 4, the photocurrent based on the AlClPc layer for 600 to 800 ns increased as the thickness of the AlClPc layer became thinner.

これはAlClPc層を薄層化し、これと光吸収波長領
域が異なるQA−ME層と組合せたことでAlClPc
層の光利用効率が増大したためである。又、第5図に示
される720n■の内部量子収率のプロットからAlC
lPc層の光活性層の厚さは150人前後と薄いことが
分かった。
This is achieved by thinning the AlClPc layer and combining it with a QA-ME layer with a different light absorption wavelength range.
This is because the light utilization efficiency of the layer has increased. Also, from the plot of the internal quantum yield of 720n■ shown in Figure 5, AlC
The thickness of the photoactive layer of the lPc layer was found to be as thin as approximately 150 nm.

実施例2 実施例1の素子のITO側に、751Ue霞2の白色光
を照射しながら、BmV/sで掃引される電圧を印加し
て変換効率を測定したところ第6図の結果が得られた。
Example 2 The conversion efficiency was measured by applying a voltage swept at BmV/s while irradiating the ITO side of the element of Example 1 with 751Ue Kasumi 2 white light, and the results shown in Figure 6 were obtained. Ta.

実施例1の600〜8G0niiの内部量子収率の増大
に対応し、白色光照射のJ scも増大し、これにより
変換効率が向上することが分かった。100 A付近の
膜厚では1%を越える変換効率が得られた。更にPL−
MEを300人、AlClPcを 120人、QA−M
Eを300人とした素子では、V oc−0,48V、
J 5c−8,5sA/cs2、fT= 0.49とな
り変換効率1 、1 % h<得られた。この値は有機
光起電力素子としては大きなものである。
It was found that corresponding to the increase in internal quantum yield of 600 to 8G0nii in Example 1, the J sc of white light irradiation also increased, thereby improving the conversion efficiency. At a film thickness around 100 A, a conversion efficiency of over 1% was obtained. Furthermore, PL-
300 ME, 120 AlClPc, QA-M
In a device with E as 300 people, V oc-0.48V,
J5c-8,5sA/cs2, fT=0.49, and a conversion efficiency of 1.1% h< was obtained. This value is large for an organic photovoltaic device.

比較例1.2 実施例1(7)AlClPc層を150人と400人と
し、QA−ME層を設けないこと以外は実施例1と同様
に素子を作製し、実施例2と同様に変換効率を測定した
。その結果、150人の素子では短絡が生じ、又、40
02の素子ではVOC−0,43V%  J 5c−2
,44mA/es2、fl’−0,46となり変換効率
0.65%であった。
Comparative Example 1.2 Example 1 (7) A device was manufactured in the same manner as in Example 1 except that the number of AlClPc layers was 150 and 400, and the QA-ME layer was not provided, and the conversion efficiency was determined in the same manner as in Example 2. was measured. As a result, 150 elements were short-circuited, and 40
02 element: VOC-0,43V% J 5c-2
, 44 mA/es2, fl'-0.46, and the conversion efficiency was 0.65%.

実施例3 実施例1のQA−MEを下記の構造のピラゾリン化合物
に変え、その膜厚を200人にした以外は実施例1と同
様に素子を作製した。この素子の2つの電極を短絡し、
ITO側から30μw/e112の強さの740na+
の単色光を照射してその光電流を観測したところ、4.
4μA/Cm2の短絡光電流が得られた。
Example 3 A device was produced in the same manner as in Example 1, except that QA-ME in Example 1 was replaced with a pyrazoline compound having the following structure, and the film thickness was changed to 200. Short-circuit the two electrodes of this element,
740na+ with a strength of 30μw/e112 from the ITO side
When we irradiated it with monochromatic light and observed the photocurrent, we found that 4.
A short circuit photocurrent of 4 μA/Cm2 was obtained.

比較例3 比較例2の素子に対し、実施例3と同様の測定を行った
ところ2.8μA/c■2の短絡光電流値であった。
Comparative Example 3 The device of Comparative Example 2 was subjected to the same measurements as in Example 3, and the short-circuit photocurrent value was 2.8 μA/c2.

実施例4 実施例1のAlClPcを無金属フタロシアニン(H2
PC)に変え、その膜厚を変え、QA−MEをキナクリ
ドン(QA)とした以外は実施例1と同様に素子を作製
し、実施例2と同様に変換効率を測定した。その結果H
2PC層の光活性層の厚さは200人程度であり、この
厚さでの変換特性はV □(−0,37V s J s
c”” 2.0mA/cm2、rr−0,51となり変
換効率0.5%が得られた。
Example 4 AlClPc of Example 1 was converted into metal-free phthalocyanine (H2
A device was produced in the same manner as in Example 1, except that QA-ME was replaced with PC), the film thickness was changed, and quinacridone (QA) was used instead of QA-ME, and the conversion efficiency was measured in the same manner as in Example 2. As a result H
The thickness of the photoactive layer of the 2PC layer is about 200, and the conversion characteristic at this thickness is V □ (-0,37V s J s
c"" 2.0 mA/cm2, rr-0.51, and a conversion efficiency of 0.5% was obtained.

比較例4 実施例4のH2Pc層を300人とし、QA層を設けな
いこと以外は実施例1と同様に素子を作製し、変換効率
を測定した。その結果、VOC−0,37V SJ s
c−1,6aA/am2fT −0,51となり変換効
率0.4%であった。
Comparative Example 4 A device was produced in the same manner as in Example 1 except that the number of H2Pc layers in Example 4 was 300 and the QA layer was not provided, and the conversion efficiency was measured. As a result, VOC-0,37V SJ s
c-1,6aA/am2fT -0,51, and the conversion efficiency was 0.4%.

実施例5 実施例1のPL−ME層の膜厚を500人とし、AlC
lPcをチタニルフタロシアニン(TiOPc)に変え
、その膜厚を120人にした以外は実施例1と同様に素
子を作製し、実施例2と同様に変換効率を/IPI定し
た。その結果V oc−0,5V s  J sc−2
,8+nA/cm’   ff −0,48となり変換
効率0.8%が得られた。
Example 5 The thickness of the PL-ME layer of Example 1 was 500, and AlC
A device was fabricated in the same manner as in Example 1, except that lPc was changed to titanyl phthalocyanine (TiOPc) and the film thickness was changed to 120, and the conversion efficiency was determined by /IPI in the same manner as in Example 2. As a result, V oc-0,5V s J sc-2
, 8+nA/cm' ff -0.48, and a conversion efficiency of 0.8% was obtained.

比較例5 実施例5のTioPc層を300人とし、QA層を設け
ないこと以外は実施例5と同様に素子を作製し、変換効
率を測定した。その結果、Voc=  0.5V、J 
sc−1,7mA/cm2、ff−0,46となり変換
効率0.52%であった。
Comparative Example 5 A device was produced in the same manner as in Example 5 except that the number of TioPc layers was 300 and the QA layer was not provided, and the conversion efficiency was measured. As a result, Voc=0.5V, J
sc-1.7 mA/cm2, ff-0.46, and the conversion efficiency was 0.52%.

実施例6 実施例4の酸化亜鉛層を設けない以外は実施例5と同様
に素子を作製し、変換効率を測定した。その結果、V 
oc−0,42V s J sc= 2.1mA/cm
’ 、f’r−0−4Bとナリ変換効率0.5496カ
得られた。
Example 6 A device was produced in the same manner as in Example 5 except that the zinc oxide layer of Example 4 was not provided, and the conversion efficiency was measured. As a result, V
oc-0,42V s J sc = 2.1mA/cm
', f'r-0-4B and Nari conversion efficiency of 0.5496 were obtained.

比較例6 実施例6のTioPc層を300人とし、QA層を設け
ないこと以外は実施例6と同様に素子を作製し、変換効
率を測定した。その結果、V oc−0,46V SJ
 S C−1、6mA/cm 2、ff 膳0.41と
なり変換効率0.4%であった。
Comparative Example 6 A device was produced in the same manner as in Example 6 except that the number of TioPc layers in Example 6 was 300 and the QA layer was not provided, and the conversion efficiency was measured. As a result, Voc-0,46V SJ
SC-1, 6 mA/cm 2 , ff 0.41, and the conversion efficiency was 0.4%.

実施例7 実施例3のPL−MEを下記の化合物に、AlClPc
をQAとしその厚さを200人とした以外は実施例3と
同様に素子を作製した。この素子に対し、実施例2と同
様に変換効率を測定した。その結果、V oc−0,5
0V 、 J sc−1,46mA/cm’ 、ff’
= 0.53となり変換効率0.52%が得られた。
Example 7 PL-ME of Example 3 was added to the following compound, AlClPc
A device was produced in the same manner as in Example 3 except that QA was used and the thickness was 200. The conversion efficiency of this element was measured in the same manner as in Example 2. As a result, Voc-0,5
0V, Jsc-1, 46mA/cm', ff'
= 0.53, and a conversion efficiency of 0.52% was obtained.

+混合物 比較例7 実施例7のQA層を300人とし、QA層を設けないこ
と以外は実施例7と同様に素子を作製し、変換効率を測
定した。その結果、voc−0,53V、J sc−0
,93mA/cs’ 、fT−0,57となり変換効率
0.37%であった。
+Mixture Comparative Example 7 A device was produced in the same manner as in Example 7, except that the number of QA layers in Example 7 was 300, and the QA layer was not provided, and the conversion efficiency was measured. As a result, voc-0,53V, J sc-0
, 93 mA/cs', fT-0.57, and the conversion efficiency was 0.37%.

実施例8 実施例2のAlClPc層が120Xの素子に対し、背
面電極をAuを蒸着した後に更にAgを蒸着して変換効
率を測定した。その結果、V □(−0,50V s 
 J sc−3,911IA/cm’ 、ff’−0,
46となり変換効率1.2%であった。
Example 8 For the device of Example 2 in which the AlClPc layer was 120X, after Au was deposited on the back electrode, Ag was further deposited, and the conversion efficiency was measured. As a result, V □(-0,50V s
J sc-3,911IA/cm', ff'-0,
46, which was a conversion efficiency of 1.2%.

[発明の効果] 本発明の光起電力素子の効果を要約すると以下の通りで
ある。
[Effects of the Invention] The effects of the photovoltaic device of the present invention are summarized as follows.

1、有機物層を複層化し、背面電極の光反射の利用を可
能とした素子構成により、有機光起電力素子としては高
い変換効率が達成される。
1. High conversion efficiency can be achieved as an organic photovoltaic device due to the device configuration in which the organic material layers are multilayered and light reflection from the back electrode can be utilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は、本発明の光起電力素子の構成例を説明す
る図、第4図は実施例1の光起電力素子において2つの
電極を短絡し、460〜800nsの領域の単色光を照
射したとき測定された光電流スペクトル図、第5図は同
光起電力素子における内部量子収率とAlClPc層の
厚さの関係を説明する図、第6図は、実施例2における
変換効率の測定結果を示す図。
1 to 3 are diagrams illustrating configuration examples of the photovoltaic device of the present invention, and FIG. 4 is a photovoltaic device of Example 1 in which two electrodes are short-circuited, and monochromatic light in the region of 460 to 800 ns is emitted. Fig. 5 is a diagram explaining the relationship between the internal quantum yield and the thickness of the AlClPc layer in the same photovoltaic element, and Fig. 6 shows the conversion efficiency in Example 2. The figure which shows the measurement result of.

Claims (1)

【特許請求の範囲】[Claims]  透光性のフロント電極、光反射能を有する背面電極の
間に、電子受容性有機物層及び該層と整流接合しうる電
子供与性有機物層が積層され、更に該連続した2つの層
より背面電極側に、該電子受容性有機物層又は該電子供
与性有機物層と主たる光吸収波長領域が異なる電子受容
性有機物層又は電子供与性有機物層が設けられているこ
とを特徴とする光起電力素子。
An electron-accepting organic material layer and an electron-donating organic material layer capable of rectification bonding to the layer are laminated between a light-transmitting front electrode and a back electrode having light-reflecting ability. 1. A photovoltaic element, further comprising an electron-accepting organic material layer or an electron-donating organic material layer having a main light absorption wavelength region different from that of the electron-accepting organic material layer or the electron-donating organic material layer.
JP2131318A 1990-05-23 1990-05-23 Photovoltaic element Pending JPH0427170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131318A JPH0427170A (en) 1990-05-23 1990-05-23 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131318A JPH0427170A (en) 1990-05-23 1990-05-23 Photovoltaic element

Publications (1)

Publication Number Publication Date
JPH0427170A true JPH0427170A (en) 1992-01-30

Family

ID=15055148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131318A Pending JPH0427170A (en) 1990-05-23 1990-05-23 Photovoltaic element

Country Status (1)

Country Link
JP (1) JPH0427170A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080530A (en) * 1992-08-17 2006-03-23 Univ California Heterojunction of conjugate polymer and acceptor; diode, photodiode, and photovoltaic cell
JP2006093691A (en) * 2004-08-27 2006-04-06 Fuji Photo Film Co Ltd Photoelectric conversion element, and imaging element, and method of applying electric field to their elements
US10443557B2 (en) 2015-11-04 2019-10-15 Denso Corporation Igniter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080530A (en) * 1992-08-17 2006-03-23 Univ California Heterojunction of conjugate polymer and acceptor; diode, photodiode, and photovoltaic cell
JP4594832B2 (en) * 1992-08-17 2010-12-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Photocell and manufacturing method thereof
JP2006093691A (en) * 2004-08-27 2006-04-06 Fuji Photo Film Co Ltd Photoelectric conversion element, and imaging element, and method of applying electric field to their elements
US10443557B2 (en) 2015-11-04 2019-10-15 Denso Corporation Igniter

Similar Documents

Publication Publication Date Title
US5264048A (en) Photoelectric conversion device
US5350459A (en) Organic photovoltaic element
JPH06318725A (en) Photovoltaic element and its manufacture
Takahashi et al. Three-layer organic solar cell with high-power conversion efficiency of 3.5%
US5126802A (en) Electric device
CN104871331B (en) Organic photosensitive devices with reflector
JPH06177410A (en) Manufacture of photovoltaic element and its manufacture
JPH0427170A (en) Photovoltaic element
JP3283973B2 (en) Organic photovoltaic device
JP2849157B2 (en) Photovoltaic element
JPH05121770A (en) Organic photovoltaic element
JPH03263380A (en) Photovoltaic element
JP3269247B2 (en) Organic solar cell and method of manufacturing the same
JP2837485B2 (en) Photovoltaic element
JP2935998B2 (en) Photovoltaic element
JPH03166773A (en) Photovoltaic element
JPH05275728A (en) Organic photovoltaic element
JPH05102506A (en) Photovoltaic element
JPH05152594A (en) Photovoltaic element
JPH05326994A (en) Photovoltaic element
JPH05299682A (en) Organic photoelectromotive element
JPH05308145A (en) Organic photovoltaic element
JPH05129643A (en) Organic photovoltaic device
JP2947593B2 (en) Stacked organic solar cells
JPH0669526A (en) Organic photovoltaic element