JP2935998B2 - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JP2935998B2
JP2935998B2 JP1248041A JP24804189A JP2935998B2 JP 2935998 B2 JP2935998 B2 JP 2935998B2 JP 1248041 A JP1248041 A JP 1248041A JP 24804189 A JP24804189 A JP 24804189A JP 2935998 B2 JP2935998 B2 JP 2935998B2
Authority
JP
Japan
Prior art keywords
electron
organic
conversion efficiency
layer
accepting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1248041A
Other languages
Japanese (ja)
Other versions
JPH03110871A (en
Inventor
哲郎 鈴木
雅夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1248041A priority Critical patent/JP2935998B2/en
Publication of JPH03110871A publication Critical patent/JPH03110871A/en
Application granted granted Critical
Publication of JP2935998B2 publication Critical patent/JP2935998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光センサー等に有用な光起電力素子に関す
る。
Description: TECHNICAL FIELD The present invention relates to a photovoltaic element useful for an optical sensor or the like.

[従来の技術] 有機物を能動材料として用いた光起電力素子が多く研
究されている。その目的は、単結晶、多結晶、アモルフ
ァスのSiでは達成が困難とされている、安価で毒性のな
い光起電力素子を開発するためである。
[Prior Art] Many photovoltaic devices using an organic material as an active material have been studied. The purpose is to develop an inexpensive and non-toxic photovoltaic device that is difficult to achieve with single crystal, polycrystalline, or amorphous Si.

光起電力素子は、光エネルギーを電気エネルギー(電
圧×電流)に変換する素子であるため、変換効率がその
主要な評価対象となる。光電流の生成には内部電界の存
在が必要であるが、内部電界を生成する方法としていく
つかの素子構成が知られている。能動材料として有機物
を用いた場合の、各々の既知の構成での変換効率のベス
トデータは以下の通りである。
Since the photovoltaic element is an element that converts light energy into electric energy (voltage × current), the conversion efficiency is a main evaluation target. The generation of a photocurrent requires the presence of an internal electric field, and several element configurations are known as methods for generating the internal electric field. The best data of conversion efficiency in each of the known configurations when an organic material is used as the active material is as follows.

1)ショットキー接合orMIS型接合 金属/半導体接合で生じる内部電界を利用したもの。
有機半導体材料としてメロシアニン染料、フタロシアニ
ン顔料等が報告されている。
1) Schottky junction or MIS junction An internal electric field generated by metal / semiconductor junction.
Merocyanine dyes, phthalocyanine pigments and the like have been reported as organic semiconductor materials.

Al/メロシアニン/Ag素子に対する78mW/cm2の白色光照
射で変換効率0.7%(Voc=1.2V、Jsc=1.8mA/cm2、ff=
0.25)が報告されている。[A.K.GhoshらJ.Appl.Phys.4
9,5982(1978)] このタイプの素子に用いられている有機半導体で変換
効率が高いものはp型に限定されている。従って、電極
材料もAl、In、Mg等の仕事関数が低いものが使用され
る。これらは容易に酸化される。
Irradiation of white light of 78 mW / cm 2 on the Al / merocyanine / Ag device yields a conversion efficiency of 0.7% (Voc = 1.2 V, Jsc = 1.8 mA / cm 2 , ff =
0.25) has been reported. [AKGhosh et al. J. Appl. Phys. 4
9, 5982 (1978)] that convert organic semiconductor used in the device of this type efficiency is high is limited to p-type. Therefore, an electrode material having a low work function, such as Al, In, or Mg, is used. These are easily oxidized.

2)n型無機半導体/p型有機半導体接合を利用したヘテ
ロpn接合 n型無機半導体/p型有機半導体を接合したときに生じ
る内部電界を利用したもの。n型材料としてCdS、ZnO等
が用いられる。p型有機半導体材料としてメロシアニン
染料、フタロシアニン等が報告されている。
2) Hetero pn junction using n-type inorganic semiconductor / p-type organic semiconductor junction An internal electric field generated when an n-type inorganic semiconductor / p-type organic semiconductor is bonded. CdS, ZnO, or the like is used as the n-type material. Merocyanine dyes, phthalocyanines and the like have been reported as p-type organic semiconductor materials.

ITO/電着CdS/塩素化アルミニウムクロルフタロシアニ
ン/Au素子に対する75mW/cm2のAM−2光照射で変換効率
0.22%(Voc=0.69V、Jsc=0.89mA/cm2、ff=0.29)が
ベストである[A.HorらAppl.Phys.Lett.,42,15(198
3)]。
ITO / electrodeposition CdS / chlorinated aluminum chloro phthalocyanine / Au element conversion AM-2 light irradiation of 75 mW / cm 2 on the efficiency
The best is 0.22% (Voc = 0.69V, Jsc = 0.89mA / cm 2 , ff = 0.29) [A. Hor et al. Appl. Phys. Lett., 42 , 15 (198
3)].

3)有機/有機ヘテロ接合を利用したもの 電子受容性の有機物と電子供与性の有機物を接合した
ときに生じる電界を利用したもの。
3) A device utilizing an organic / organic hetero junction A device utilizing an electric field generated when an electron-accepting organic substance and an electron-donating organic substance are joined.

前者の有機物としてマラカイトグリーン、メチルバイ
オレット、ピリリウム等の染料、フラバンスロン、ペリ
レン顔料等の縮合多環芳香族化合物が報告されており、
後者の例として、フタロシアニン顔料、メロシアニン染
料等が報告されている。
As the former organic substances, dyes such as malachite green, methyl violet and pyrylium, flavanthrone and condensed polycyclic aromatic compounds such as perylene pigments have been reported.
As the latter examples, phthalocyanine pigments, merocyanine dyes and the like have been reported.

ITO/銅フタロシアニン/ペリレン顔料/Ag素子に対す
る75mW/cm2のAM−2光照射で変換効率0.95%(Voc=0.4
5V、Jsc=2.3mA/cm2、ff=0.65)が報告されている[C.
Tang Appl.Phys.Lett.,48,183(1986)]。この値は有
機物を用いた光起電力素子では最高のものである。又、
同じ発明者による特公昭62−4871には、本素子構成で別
種のペリレン顔料に対して変換効率1%(Voc=0.44V、
Jsc=3.0mA/cm2、ff=0.6)が報告されている。
Conversion efficiency of 0.95% (Voc = 0.4) with 75 mW / cm 2 AM-2 light irradiation for ITO / copper phthalocyanine / perylene pigment / Ag device
5 V, Jsc = 2.3 mA / cm 2 , ff = 0.65) have been reported [C.
Tang Appl. Phys. Lett., 48 , 183 (1986)]. This value is the highest in a photovoltaic device using an organic substance. or,
Japanese Patent Publication No. 62-4871 by the same inventor discloses that the conversion efficiency of 1% (Voc = 0.44V,
Jsc = 3.0 mA / cm 2 , ff = 0.6).

有機物を用いた光起電力素子の変換効率は、無機半導
体を用いたものより低い。この要因として最大のものは
短絡光電流(Jsc)の低さである。変換効率5%の素子
では75mW/cm2の白色光照射に対し、少くとも10mA/cm2
Jscが必要である。前述のJscはそれよりもはるかに低
い。この原因は、量子効率の低さと、分光感度波長域の
狭さにある。分光感度波長は、400nmからなるべく長波
長まで広がっていることが望ましいが、従来の例は特定
波長域に限定されている例が多い。
The conversion efficiency of a photovoltaic element using an organic substance is lower than that using an inorganic semiconductor. The biggest factor for this is the low short-circuit photocurrent (Jsc). For a device with a conversion efficiency of 5%, at least 10 mA / cm 2 for 75 mW / cm 2 of white light irradiation
Jsc is required. The aforementioned Jsc is much lower. This is due to low quantum efficiency and narrow spectral sensitivity wavelength range. It is desirable that the spectral sensitivity wavelength be as wide as possible from 400 nm to as long as possible, but many of the conventional examples are limited to a specific wavelength range.

又、ffが小さい例が多い。ffの低さの要因の1つは有
機半導体の示す量子効率が、低電界で急激に低下するこ
とにあると言われている。従って、この様な低下を来さ
ないような強い内部電界が生成する構成がffの向上に好
ましい。更に、生成電荷がエネルギー的な障壁無しにス
ムーズに電極に到達できる素子構成がffを大きくする。
これらの達成によりVocの向上も図られるが、従来はこ
れらの点で十分な考慮が無されていない例が多かった。
In many cases, ff is small. It is said that one of the causes of the low ff is that the quantum efficiency exhibited by the organic semiconductor rapidly decreases at a low electric field. Therefore, a configuration in which a strong internal electric field that does not cause such a decrease is generated is preferable for improving ff. Further, an element configuration in which generated charges can smoothly reach the electrodes without an energy barrier increases ff.
These achievements can also improve Voc, but there have been many cases where sufficient consideration has not been given to these points in the past.

更に加えると、報告されている有機光起電力素子で
は、電極材料の化学的安定性の点でも問題があるものが
多い。
In addition, many of the organic photovoltaic devices reported have problems in terms of the chemical stability of the electrode material.

以上のような観点から前述の従来技術を眺める。 The above-mentioned prior art is viewed from the above viewpoint.

1)ショットキー接合or MIS型接合 Vocは大きくとれるが、電極として金属材料が用いら
れているため、電極の光透過率が低くなる。実際の光透
過率は、よくても30%、通常は10%前後である。又、こ
れらの材料は耐酸化性に乏しい。従って、この素子形態
では高い変換効率と、安定した特性を作り出すことは望
めない。
1) The Schottky junction or the MIS type junction Voc can be large, but since the metal material is used for the electrode, the light transmittance of the electrode is low. The actual light transmittance is at best 30%, usually around 10%. Also, these materials have poor oxidation resistance. Therefore, it is impossible to produce high conversion efficiency and stable characteristics in this element form.

2)無機半導体/有機半導体ヘテロpn接合 電荷生成は主として有機層でなされるため、分光感度
の制限を受ける。通常、有機層は単一の材料から形成さ
れるが、400から例えば800nmまで強い光吸収を持つ有機
半導体は現在存在しないからである。従って、この素子
構成では光入射電極の光透過性や、電極の安定性の問題
はクリアできるが、分光感度領域が狭いため、高い変換
効率は望めない。
2) Inorganic semiconductor / organic semiconductor hetero pn junction Since charge generation is mainly performed in an organic layer, spectral sensitivity is limited. Usually, the organic layer is formed from a single material, but there is currently no organic semiconductor having strong light absorption from 400 to 800 nm. Therefore, this device configuration can solve the problems of the light transmittance of the light incident electrode and the stability of the electrode, but cannot achieve high conversion efficiency because the spectral sensitivity region is narrow.

3)有機/有機ヘテロpn接合 上記2種の構成と較べ、現在のところ最も望ましいも
のである。透明電極からの光照射が行え、又、2種の材
料で光電荷生成が可能であるため、分光感度も広げるこ
とができる。実際、前述のTangによる報告では450〜550
nmではペリレン系顔料、550〜700nmでは銅フタロシアニ
ンで電荷が生成していることがうかがえる。又、ffが他
の素子構成と較べ大きいことは、生成している内部電界
が大きいと推定される。しかし、Tang氏の技術は次の欠
点を有している。
3) Organic / organic hetero pn junction Compared to the above two configurations, it is currently the most desirable. Since light irradiation from the transparent electrode can be performed and photocharge can be generated by using two kinds of materials, spectral sensitivity can be broadened. In fact, the report by Tang mentioned earlier was 450-550
It can be seen that charges are generated by the perylene pigment at nm and copper phthalocyanine at 550-700 nm. Also, the fact that ff is larger than other element configurations is presumed that the generated internal electric field is large. However, Tang's technology has the following disadvantages:

1つめは有機層の厚さが薄いため(300〜500Åが望ま
しいことが特許に記載されている)、ピンホールの確立
が高いことである。我々の実験では、ピンホールによる
と思われる2つの電極間の短絡が比較的高い確率で認め
られる。Tang氏の論文の電極面積は0.1cm2となってお
り、実使用での面積(1cm2以上が必要)となれば歩留ま
りの向上が大問題となる。
First, since the thickness of the organic layer is small (the patent describes that 300 to 500 ° is desirable), the probability of pinholes is high. In our experiments, there is a relatively high probability of a short circuit between the two electrodes, possibly due to a pinhole. The electrode area in Tang's paper is 0.1 cm 2, and improving the yield will be a major issue if the area is actually used (1 cm 2 or more is required).

2つめは電極材料の問題である。彼の発明では、電極
は各々の有機物質とオーミック接触する必要がある。前
述の論文には、有機層は逆転した素子構成ではVocが低
下すると書かれている。これはオーミック接触が損なわ
れたためと推定される。ところが、オーミック接触を達
成した構成では、金属材料の安定性が問題となる。それ
は、電子受容性の有機物とこの様な接触しうる金属は仕
事関数が低い必要があるからである。実際、特許中には
In、Ag、Sn、Alが例示されている。これらはすべて酸化
され易いものである。
The second is the problem of the electrode material. In his invention, the electrodes need to be in ohmic contact with each organic material. The aforementioned paper states that the organic layer lowers Voc in the inverted device configuration. This is presumed to be due to impaired ohmic contact. However, in a configuration that achieves ohmic contact, the stability of the metal material becomes a problem. This is because a metal that can make such contact with an electron-accepting organic substance needs to have a low work function. In fact, during the patent
In, Ag, Sn, and Al are exemplified. These are all easily oxidized.

[発明が解決しようとする課題] 本発明の目的は、透光性の高い電極を入射側に使用
し、安定性の高い電極材料を使用することができ、有機
光起電力素子としては高い変換効率を与える素子を提供
することにある。
[Problems to be Solved by the Invention] An object of the present invention is to use an electrode having high translucency on the incident side, use an electrode material having high stability, and achieve high conversion as an organic photovoltaic device. An object is to provide a device that provides efficiency.

[課題を解決するための手段] 上記目的を達成するため、鋭意検討した結果、少くと
も一方が透光性である2つの電極の間に、n型無機半導
体層、電子受容性有機物層、電子供与性有機物層がこの
順で積層された部分を含む光起電力素子において、電子
受容性有機物層を形成する物質をペリノン系顔料及び/
又はペリレン系顔料にすることにより目的が達成できる
ことを見出した。以下本発明における素子構成、使用材
料、作成法等について説明する。
[Means for Solving the Problems] In order to achieve the above object, as a result of intensive studies, it has been found that an n-type inorganic semiconductor layer, an electron-accepting organic material layer, an electron In a photovoltaic device including a portion in which a donor organic material layer is stacked in this order, a substance forming an electron-accepting organic material layer may be a perinone pigment and / or
Alternatively, it has been found that the object can be achieved by using a perylene pigment. Hereinafter, the device configuration, materials used, production method, and the like in the present invention will be described.

本発明の光起電力素子の1つの態様は第1図に示す通
りである。
One embodiment of the photovoltaic element of the present invention is as shown in FIG.

ここで、支持体は背面電極側であっても良い。又、電
子受容性層と電子供与性層の順が逆であっても良く、そ
の場合は、n型無機半導体層は背面電極側に位置するよ
うになり、透孔性でなくても良い。しかし、好ましいの
は上図の態様である。そこで、上図の態様の構成につい
て以下に説明する。
Here, the support may be on the back electrode side. In addition, the order of the electron accepting layer and the electron donating layer may be reversed. In this case, the n-type inorganic semiconductor layer is located on the back electrode side and does not have to be porous. However, the preferred embodiment is preferred. Therefore, the configuration of the embodiment shown in the upper diagram will be described below.

本素子構造の特徴はn型無機半導体層の存在である。
n型無機半導体層があると、Voc、Jsc、ffの改善による
変換効率の向上(1)と短絡の低減(2)が達成され
る。この様な効果が生じる理由については正確には不明
であるが以下のことが考えられる。
The feature of this element structure is the presence of an n-type inorganic semiconductor layer.
With the n-type inorganic semiconductor layer, improvement of conversion efficiency (1) and reduction of short circuit (2) are achieved by improvement of Voc, Jsc, and ff. It is not clear exactly why such an effect occurs, but the following may be considered.

1)変換効率の向上 a)透明電極としては、通常ITOの様なフェルミレベル
が低い材料が用いられる。このため、n型無機半導体層
がない場合、電子受容性有機物質と透明電極との間でシ
ョットキー接合が形成される。この接合は、電子受容性
有機物層から透明電極へ電子が移動する際にエネルギー
障壁として作用する。n型無機半導体層が存在すると、
透明電極/n型無機半導体層、n型無機半導体層/電子受
容性有機物層の接触は、各々、オーミック接触を達成
し、電子の移動がスムーズになる。
1) Improvement of conversion efficiency a) As the transparent electrode, a material having a low Fermi level, such as ITO, is usually used. Therefore, when there is no n-type inorganic semiconductor layer, a Schottky junction is formed between the electron-accepting organic substance and the transparent electrode. This junction acts as an energy barrier when electrons move from the electron-accepting organic layer to the transparent electrode. When the n-type inorganic semiconductor layer is present,
The contact between the transparent electrode / n-type inorganic semiconductor layer and the n-type inorganic semiconductor layer / electron-accepting organic material layer achieves ohmic contact, respectively, and the movement of electrons becomes smooth.

b)短絡の確率を低くすることができるため、有機層の
薄膜化が達成され量子効率の向上につながる。
b) Since the probability of a short circuit can be reduced, the organic layer can be made thinner, leading to an improvement in quantum efficiency.

c)n型無機半導体層から電子受容性有機物層へ暗時に
電子が供給され、電子受容性有機物層と電子供与性有機
物層の界面に生成する内部電界強度が強化される。
c) Electrons are supplied from the n-type inorganic semiconductor layer to the electron-accepting organic layer in the dark, and the internal electric field generated at the interface between the electron-accepting organic layer and the electron-donating organic layer is strengthened.

2)短絡の低減 a)透明電極層のエッジ部の段差(ITOを用いると1000
Å程度以上が普通)がn型無機半導体層の存在でゆるや
かとなり、この部分での両電極間の短絡の確率が低減す
る。
2) Reduction of short circuit a) Step at the edge of the transparent electrode layer (1000 when ITO is used)
(Normally about Å or more) becomes gentle due to the presence of the n-type inorganic semiconductor layer, and the probability of short-circuiting between both electrodes at this portion is reduced.

b)例えば電子受容性有機物層にピンホールが存在して
も、それと接した電子供与性有機物層がn型無機半導体
層とpn接合を形成し、電子受容性有機物層のピンホール
の影響を消失させる形となる。電子供与性有機物層にピ
ンホールが存在する場合も同様の効果が、背面電極と電
子受容性有機物層の間で生じる。このため、短絡が観測
されづらくなる。
b) For example, even if a pinhole exists in the electron-accepting organic material layer, the electron-donating organic material layer in contact therewith forms a pn junction with the n-type inorganic semiconductor layer, thereby eliminating the effect of the pinhole in the electron-accepting organic material layer. It becomes a form to make it. The same effect is produced between the back electrode and the electron-accepting organic layer when a pinhole exists in the electron-donating organic layer. For this reason, a short circuit is hardly observed.

更に、本構成の別の効果として、安定性の高い背面電
極の使用が挙げられる。これは、電子供与性有機物層と
背面電極の間はオーミック接触が要請されることによ
る。この条件を満たす電極材料は仕事関数が大きなもの
であり、安定性の高い材料である。
Another advantage of the present configuration is the use of a highly stable back electrode. This is because ohmic contact is required between the electron donating organic material layer and the back electrode. An electrode material satisfying this condition has a large work function and is a material having high stability.

電子受容性材料としてペリノン系顔料及び/又はペリ
レン系顔料を用いると、上記素子構成の効果が十分に引
き出せ、有機光起電力素子としては高い変換効率が得ら
れることが見出された。これは、ペリノン系顔料及び/
又はペリレン系顔料が、有機物の中ではイオン化ポテン
シャルが低いため電子供与性有機物層との間で光電荷の
発生に十分な強い内部電界を生成すること、光導電性に
優れ、又電子の移動能力が高いこと、又光吸収波長領域
が600nm以上の長波長側にあるため、フタロシアニン等
の電子供与性有機物層の光吸収との分離性がよく素子全
体の分光感度を広くすることができる、等の理由によ
る。
It has been found that when a perinone-based pigment and / or a perylene-based pigment are used as the electron-accepting material, the effects of the above-described device configuration can be sufficiently obtained, and high conversion efficiency can be obtained as an organic photovoltaic device. This is a perinone pigment and / or
Or, a perylene pigment has a low ionization potential among organic substances, and generates an internal electric field strong enough to generate a photocharge with an electron donating organic substance layer, has excellent photoconductivity, and has an electron transfer ability. Is high, and the light absorption wavelength region is on the long wavelength side of 600 nm or more, so that the light absorption of the electron-donating organic material layer such as phthalocyanine can be well separated and the spectral sensitivity of the entire device can be widened. For reasons.

本発明において電子受容性有機物質として用いられる
ペリノン系顔料は、下記に示す一般式(1)〜(3)で
表せられる。
The perinone pigment used as the electron-accepting organic substance in the present invention is represented by the following general formulas (1) to (3).

(式中Xは0又はN−Rを示し、この置換基Rは水素原
子、置換又は無置換のアルキル基、置換又は無置換のア
リール基を示す。) (式中Xは置換又は無置換のアリール環を示す。) (式中Xは置換又は無置換のアリール環を示す。) 上記一般式(1)、(2)、(3)、で示されるペリ
ノン顔料としては下記の例示化合物などが挙げられる。
(In the formula, X represents 0 or NR, and the substituent R represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.) (In the formula, X represents a substituted or unsubstituted aryl ring.) (In the formula, X represents a substituted or unsubstituted aryl ring.) Examples of the perinone pigment represented by the general formulas (1), (2) and (3) include the following exemplified compounds.

又、本発明に用いられるペリレン系顔料は、下記に示
す一般式(1)〜(3)で表せられる。
Further, the perylene pigment used in the present invention is represented by the following general formulas (1) to (3).

(式中Xは0又はN−Rを示し、この置換基、Rは水素
原子、置換又は無置換のアルキル基、置換又は無置換の
アリール基を示す。) (式中Xは置換又は無置換のアリール環を示す。) (式中Xは置換又は無置換のアリール環を示す。) 上記一般式(1)〜(3)で示されるペリレン系化合
物としては下記の例示化合物を挙げられる。
(In the formula, X represents 0 or NR, and this substituent, R represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.) (In the formula, X represents a substituted or unsubstituted aryl ring.) (In the formula, X represents a substituted or unsubstituted aryl ring.) Examples of the perylene compounds represented by the general formulas (1) to (3) include the following exemplary compounds.

これらペリノン及び/又はペリレン系顔料層は蒸着、
スピンコート、ディッピング等での方法で製膜される。
この中で、薄膜化、均一化には蒸着が好ましい。膜厚は
100〜3000Åである。
These perinone and / or perylene pigment layers are deposited,
The film is formed by a method such as spin coating and dipping.
Among them, vapor deposition is preferable for thinning and uniforming. The film thickness is
100-3000Å.

又、本発明に使用する透明絶縁支持体としては、ガラ
ス、プラスチックフィルム等が用いられる。
Further, as the transparent insulating support used in the present invention, glass, plastic film or the like is used.

本発明において使用する透明電極としては、酸化スズ
インジウム(ITO)、酸化スズ、酸化インジウム等が用
いられる。好ましい厚さは100〜1000Åである。
As the transparent electrode used in the present invention, indium tin oxide (ITO), tin oxide, indium oxide and the like are used. The preferred thickness is between 100 and 1000 mm.

本発明において使用するn型半導体層としては、酸化
亜鉛、3価の金属がドープされた酸化亜鉛、CdS、酸化
チタン、リンをドープしたアモルファスシリコン等で酸
化亜鉛、CdS等が好ましい。厚さは10〜10000Åが好まし
い。
As the n-type semiconductor layer used in the present invention, zinc oxide, CdS, titanium oxide, amorphous silicon doped with phosphorus, and the like, such as zinc oxide and CdS, are preferable. The thickness is preferably from 10 to 10,000 mm.

本発明において使用する電子供与性有機材料として
は、フタロシアニン系顔料(中心金属がCu,Zn,Co,Ni,P
b,Pt,Fe,Mg等の2価のもの、無金属フタロシアニン、ア
ルミニウムクロルフタロシアニン、インジウムクロルフ
タロシアニン、ガリウムクロルフタロシアニン等のハロ
ゲン原子が配位した3価金属のフタロシアニン、その他
バナジルフタロシアニン、チタニルフタロシアニン等の
酸素が配位したフタロシアニン); インジゴ、チオインジゴ系顔料(Pigment Blue 66.Pi
gment Violet 36等);キナクリドン系顔料(Pigment V
iolet 19,Pigment Red 122等); メロシアニン化合物、シアニン化合物、スクアリウム
化合物等の染料; これらは蒸着、スピンコート、ディッピング等での方
法で成膜される。この中で、薄膜化、均一化には蒸着が
好ましい。膜厚は100〜3000Åである。
As the electron donating organic material used in the present invention, a phthalocyanine pigment (the center metal of which is Cu, Zn, Co, Ni, P
b, Pt, Fe, Mg, etc., divalent ones, metal-free phthalocyanine, aluminum chlorophthalocyanine, indium chlorophthalocyanine, trivalent metal phthalocyanine to which a halogen atom is coordinated, such as gallium chlorophthalocyanine, other vanadyl phthalocyanine, titanyl phthalocyanine, etc. Phthalocyanine to which oxygen is coordinated); Indigo and thioindigo pigments (Pigment Blue 66.Pi
gment Violet 36); quinacridone pigments (Pigment V
iolet 19, Pigment Red 122, etc.); dyes such as merocyanine compounds, cyanine compounds, and squarium compounds; these are formed into films by methods such as vapor deposition, spin coating, and dipping. Among them, vapor deposition is preferable for thinning and uniforming. The film thickness is 100-3000Å.

又、本発明において用いる背面電極としては、Au、P
t、Ni、Pd、Cu、Cr、Ag等の仕事の関数の高い金属が用
いられ、特にAuは安定で好ましい。膜厚は50〜3000Åが
好ましい。
Further, as the back electrode used in the present invention, Au, P
A metal having a high work function such as t, Ni, Pd, Cu, Cr, and Ag is used, and Au is particularly stable and preferable. The film thickness is preferably 50 to 3000 °.

[実施例] 以下に実施例を挙げ本発明を更に詳細に説明する。EXAMPLES The present invention will be described in more detail with reference to the following examples.

実施例1 よく洗浄したITOガラス(松崎真空製、30Ω/□)上
に基板温度約300℃で導入ガスとしてアルゴンを用い、D
Cマグネトロンスパッタ法で、酸化亜鉛を約1300Åの厚
さで設けた。その上に、真空蒸着法で電子受容性物質で
ある例示化合物No.7のペリノン顔料を約500Åの厚さ
で、次いでアルミニウムクロルフタロシアン(AlClPc)
約400Åの厚さで設け、その上に金を真空蒸着した。ITO
と金がなす面積は0.25cm2とした。2つの電極に銀ペー
ストにてリード線を取り付けた。
Example 1 A well-washed ITO glass (Matsuzaki Vacuum, 30Ω / □) was used at a substrate temperature of about 300 ° C. and argon was used as an introduction gas.
Zinc oxide was provided in a thickness of about 1300 mm by C magnetron sputtering. On top of this, a perinone pigment of Exemplified Compound No. 7, which is an electron-accepting substance, is deposited in a thickness of about 500 mm by a vacuum evaporation method, and then aluminum chlorophthalocyanine (AlClPc)
It was provided with a thickness of about 400 mm, and gold was vacuum-deposited thereon. ITO
And the area made of gold was 0.25 cm 2 . Lead wires were attached to the two electrodes with silver paste.

この素子のITO側に、75mW/cm2の白色光を照射しなが
ら、6mV/sで掃引される電圧を印加して変換効率を測定
したところVoc=0.53V、Jsc=0.45mA/cm2、ff=0.28と
なり変換効率0.088%が得られた。この価は有機光起電
力素子としては大きなものである。
While irradiating 75 mW / cm 2 of white light to the ITO side of this device and applying a voltage swept at 6 mV / s and measuring the conversion efficiency, Voc = 0.53 V, Jsc = 0.45 mA / cm 2 , ff = 0.28, and a conversion efficiency of 0.088% was obtained. This value is great for an organic photovoltaic device.

実施例2 実施例1の電子受容性物質を例示化合物No.8のペリノ
ン顔料に変え、AlClPc層の膜厚を600Å、ペリノン顔料
層の膜厚を300Åにした以外は実施例1と同様に素子を
作製し、変換効率を測定した。その結果、Voc=0.50V、
Jsc=0.46mA/cm2、ff=0.28となり変換効率0.086%が得
られた。
Example 2 A device was manufactured in the same manner as in Example 1, except that the electron accepting substance of Example 1 was changed to the perinone pigment of Exemplified Compound No. 8, and the thickness of the AlClPc layer was set to 600 ° and the thickness of the perinone pigment layer was set to 300 °. Was prepared, and the conversion efficiency was measured. As a result, Voc = 0.50V,
Jsc = 0.46 mA / cm 2 , ff = 0.28, and a conversion efficiency of 0.086% was obtained.

実施例3 よく洗浄したITOガラス(松崎真空製、30Ω/□)上
に基板温度約300℃で、導入ガスとしてアルゴンを用
い、DCマグネトロンスパッタ法で、酸化亜鉛を約1300Å
の厚さで設けた。その上に、真空蒸着法で電子受容性物
質であるペリレンテトラカルボン酸メチルイミド(例示
化合物No.2)を約500Åの厚さで、次いでアルミニウム
クロルフタロシアン(AlClPc)を約400Åの厚さで設
け、その上に金を真空蒸着した。ITOと金がなす面積は
0.25cm2とした。2つの電極に銀ペーストにてリード線
を取り付けた。
Example 3 On a well-cleaned ITO glass (Matsuzaki Vacuum, 30Ω / □), at a substrate temperature of about 300 ° C., using argon as an introduced gas, and using a DC magnetron sputtering method, zinc oxide was coated with about 1300 mm of zinc oxide.
The thickness was provided. On top of that, perylenetetracarboxylic acid methylimide (exemplified compound No. 2), which is an electron-accepting substance, is provided in a thickness of about 500 mm by vacuum evaporation, and then aluminum chlorophthalocyanine (AlClPc) is provided in a thickness of about 400 mm. , And gold was vacuum-deposited thereon. The area that ITO and gold make
0.25 cm 2 . Lead wires were attached to the two electrodes with silver paste.

この素子のITO側に、75mW/cm2の白色光を照射しなが
ら、6mV/sで掃引される電圧を印加して変換効率を測定
したところVoc=0.43V、Jsc=2.44mA/cm2、ff=0.46と
なり変換効率0.65%が得られた。この価は有機光起電力
素子としては大きなものである。
While irradiating 75 mW / cm 2 white light to the ITO side of this element and applying a voltage swept at 6 mV / s and measuring the conversion efficiency, Voc = 0.43 V, Jsc = 2.44 mA / cm 2 , ff was 0.46, and a conversion efficiency of 0.65% was obtained. This value is great for an organic photovoltaic device.

実施例4 実施例3の電子受容性物質を例示化合物No.6のペリレ
ン顔料に変え、AlClPc層の膜厚を600Å、ペリレン顔料
層の膜厚を100Åにした以外は実施例1と同様に素子を
作製し、変換効率を測定した。その結果、Voc=0.50V、
Jsc=0.60mA/cm2、ff=0.45となり変換効率0.18%が得
られた。
Example 4 A device was manufactured in the same manner as in Example 1 except that the electron accepting substance of Example 3 was changed to the perylene pigment of Exemplified Compound No. 6, and the thickness of the AlClPc layer was changed to 600 ° and the thickness of the perylene pigment layer was changed to 100 °. Was prepared, and the conversion efficiency was measured. As a result, Voc = 0.50V,
Jsc = 0.60 mA / cm 2 , ff = 0.45, and a conversion efficiency of 0.18% was obtained.

実施例5 実施例3の電子受容性物質を例示化合物No.1のペリレ
ン顔料に変え、その膜厚を250Åにした以外は実施例1
と同様に素子を作製し、変換効率を測定した。その結
果、Voc=0.52V、Jsc=1.90mA/cm2、ff=0.38となり変
換効率0.50%が得られた。
Example 5 Example 1 was repeated except that the electron accepting substance of Example 3 was changed to the perylene pigment of Exemplified Compound No. 1 and the film thickness was changed to 250 °.
A device was prepared in the same manner as described above, and the conversion efficiency was measured. As a result, Voc = 0.52 V, Jsc = 1.90 mA / cm 2 , ff = 0.38, and a conversion efficiency of 0.50% was obtained.

実施例6 実施例3の電子受容性物質を例示化合物No.10のペリ
レン顔料に変え、その膜厚を500Åにした以外は実施例
1と同様に素子を作製し、変換効率を測定した。その結
果、Voc=0.46V、Jsc=1.49mA/cm2、ff=0.39となり変
換効率0.35%が得られた。
Example 6 A device was prepared in the same manner as in Example 1 except that the electron accepting substance of Example 3 was changed to the perylene pigment of Exemplified Compound No. 10 and the film thickness was set to 500 °, and the conversion efficiency was measured. As a result, Voc = 0.46 V, Jsc = 1.49 mA / cm 2 , ff = 0.39, and a conversion efficiency of 0.35% was obtained.

実施例7 実施例3の電子受容性物質を例示化合物No.8のペリレ
ン顔料に変え、その膜厚を300Åにした以外は実施例1
と同様に素子を作製し、変換効率を測定した。その結
果、Voc=0.55V、Jsc=0.46mA/cm2、ff=0.26となり変
換効率0.09%が得られた。
Example 7 Example 1 was repeated except that the electron accepting substance of Example 3 was changed to the perylene pigment of Exemplified Compound No. 8 and the film thickness was set to 300 °.
A device was prepared in the same manner as described above, and the conversion efficiency was measured. As a result, Voc = 0.55 V, Jsc = 0.46 mA / cm 2 , ff = 0.26, and a conversion efficiency of 0.09% was obtained.

実施例8 実施例3の電子受容性物質を例示化合物No.9のペリレ
ン顔料に変え、その膜厚を150Åにした以外は実施例1
と同様に素子を作製し、変換効率を測定した。その結
果、Voc=0.40V、Jsc=1.86mA/cm2、ff=0.39となり変
換効率0.39%が得られた。
Example 8 Example 1 was repeated except that the electron accepting substance of Example 3 was changed to the perylene pigment of Exemplified Compound No. 9 and the film thickness was changed to 150 °.
A device was prepared in the same manner as described above, and the conversion efficiency was measured. As a result, Voc = 0.40 V, Jsc = 1.86 mA / cm 2 , ff = 0.39, and a conversion efficiency of 0.39% was obtained.

[発明の効果] 本発明の光起電力素子の効果を要約すると以下のとお
りである。
[Effects of the Invention] The effects of the photovoltaic device of the present invention are summarized as follows.

1.n型無機半導体層を用いた素子構成とペリレン系顔料
及び/又はペリレン系顔料の組合せによりVoc、Jsc、ff
として高い値が得られ、有機光起電力素子としては高い
変換効率が達成される。
1. Voc, Jsc, ff by a combination of a device configuration using an n-type inorganic semiconductor layer and a perylene pigment and / or a perylene pigment.
And a high conversion efficiency is achieved as an organic photovoltaic device.

2.安定な電極材料の使用が可能となる。2. Stable electrode materials can be used.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の光起電力素子の一例を示す図。 FIG. 1 is a diagram showing an example of a photovoltaic device of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 31/04 - 31/078 H01L 31/10 - 31/119 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 31/04-31/078 H01L 31/10-31/119

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少くとも一方が透光性である2つの電極の
間に、n型無機半導体層、電子受容性有機物層、電子供
与性有機物層の連続した3つの層からなる部分を有する
構成からなる光起電力素子において、該電子受容性有機
物層を形成する物質がペリノン系顔料及び/又はペリレ
ン系顔料であることを特徴とする光起電力素子。
1. A structure having a portion composed of three consecutive layers of an n-type inorganic semiconductor layer, an electron-accepting organic material layer, and an electron-donating organic material layer between two electrodes, at least one of which is translucent. Wherein the substance forming the electron-accepting organic layer is a perinone-based pigment and / or a perylene-based pigment.
JP1248041A 1989-09-26 1989-09-26 Photovoltaic element Expired - Fee Related JP2935998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1248041A JP2935998B2 (en) 1989-09-26 1989-09-26 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248041A JP2935998B2 (en) 1989-09-26 1989-09-26 Photovoltaic element

Publications (2)

Publication Number Publication Date
JPH03110871A JPH03110871A (en) 1991-05-10
JP2935998B2 true JP2935998B2 (en) 1999-08-16

Family

ID=17172319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1248041A Expired - Fee Related JP2935998B2 (en) 1989-09-26 1989-09-26 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP2935998B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241778A (en) * 1990-02-19 1991-10-28 Sekisui Chem Co Ltd Organic solar cell
JP2015113328A (en) * 2013-12-13 2015-06-22 日本化薬株式会社 Organic thin films, and photoelectric conversion element using these

Also Published As

Publication number Publication date
JPH03110871A (en) 1991-05-10

Similar Documents

Publication Publication Date Title
US5264048A (en) Photoelectric conversion device
JPH06318725A (en) Photovoltaic element and its manufacture
US5350459A (en) Organic photovoltaic element
US5006915A (en) Electric device and photoelectric conversion device comprising the same
US5201961A (en) Photovoltaic device containing organic material layers and having high conversion efficiency
JPH06177410A (en) Manufacture of photovoltaic element and its manufacture
JP4498706B2 (en) Photovoltaic element and optical sensor provided with the same
JP2849157B2 (en) Photovoltaic element
JP2935998B2 (en) Photovoltaic element
JP2837485B2 (en) Photovoltaic element
JP3283973B2 (en) Organic photovoltaic device
JPH05275728A (en) Organic photovoltaic element
JPH03114274A (en) Photovoltaic element
JPH03166773A (en) Photovoltaic element
JPH03263380A (en) Photovoltaic element
JPH05299682A (en) Organic photoelectromotive element
JPH0427170A (en) Photovoltaic element
JPH0669526A (en) Organic photovoltaic element
JPH05152594A (en) Photovoltaic element
JP2947593B2 (en) Stacked organic solar cells
JP2763619B2 (en) Electrical element
JPH05291598A (en) Organic photovoltaic element
JPH06232435A (en) Organic photovoltaic element
JPH05308145A (en) Organic photovoltaic element
JPH05326994A (en) Photovoltaic element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees