JPS58130440A - Magnetic disc - Google Patents

Magnetic disc

Info

Publication number
JPS58130440A
JPS58130440A JP57012722A JP1272282A JPS58130440A JP S58130440 A JPS58130440 A JP S58130440A JP 57012722 A JP57012722 A JP 57012722A JP 1272282 A JP1272282 A JP 1272282A JP S58130440 A JPS58130440 A JP S58130440A
Authority
JP
Japan
Prior art keywords
magnetic
medium
recording
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57012722A
Other languages
Japanese (ja)
Inventor
Minoru Hosokawa
稔 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57012722A priority Critical patent/JPS58130440A/en
Priority to US06/453,658 priority patent/US4675224A/en
Publication of JPS58130440A publication Critical patent/JPS58130440A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73917Metallic substrates, i.e. elemental metal or metal alloy substrates
    • G11B5/73919Aluminium or titanium elemental or alloy substrates

Abstract

PURPOSE:To improve orientability in a vertical direction by using a soft magnetic material having high magnetic permeability as a base plate. CONSTITUTION:A magnetic alloy plate having high magnetic permeability such as ''Permalloy '' is worked to a disc shape and is annealed to relieve mechanical strains and magnetic strains; thereafter, the surface of the disc is finished to a specular surface by polishing. Magnetic films 602, 603 of Co-Cr, etc. are formed by sputtering on both surfaces of a base plate 601. The base plate may be formed into the type wherein the soft magnetic alloy plates having high magnetic permeability are laminated on both surfaces of an aluminum alloy plate. It is also possible to provide an amorphous non-magnetic thin film layer between the soft magnetic material having high magnetic permeability and the magnetic film for recording.

Description

【発明の詳細な説明】 不発明は磁気配球媒体、特に媒体面に垂直方向の磁化成
分全人さくシ、高蟹度紀録會行なわせるS気ttFfi
媒体の構造に関する。
[Detailed Description of the Invention] The invention is directed to a magnetic ball distribution medium, in particular, to a magnetic distribution medium, in particular, to a magnetic component perpendicular to the surface of the medium, which allows a high-magnetization record meeting to be carried out.
Concerning the structure of the medium.

感更e録媒体上の茜e録密朗會上げていく時、媒体上の
磁化は、媒体厚み方向即ち媒体面に垂直方向の成分が犬
きくなる。更に言C録密度を大きくすると、媒体上出仕
は垂直方向の成分が大勢含みめる。従って、8ef#、
時において配録磁界は予め、媒体面に垂直になる嗜に加
わる事が望1しく、又媒湊上の残留配録磁化も、予ぬ媒
体面に垂直になる様な構造をとっておく事が望捷しい。
When increasing the temperature on the e-recording medium, the magnetization on the medium becomes stronger in the direction of the thickness of the medium, that is, in the direction perpendicular to the surface of the medium. Furthermore, when the recording density is increased, the appearance on the medium includes a large number of components in the vertical direction. Therefore, 8ef#,
In some cases, it is desirable to apply the recording magnetic field perpendicularly to the medium surface in advance, and also to take a structure in which the residual recording magnetization on the medium port is also perpendicular to the medium surface. is promising.

一般に媒体面に垂直力向に(媒体厚み対向に)配録再生
する技術ケ垂直磁化@e鈴と称し、詳しくは日不応用硼
気学会第−回資料「垂直磁気@e録の可能性について」
(昭52年5月26日)に記載さ扛ている。
In general, the technology of recording and reproducing in the direction of force perpendicular to the medium surface (opposing the thickness of the medium) is called perpendicular magnetization@e-ring. ”
(May 26, 1972).

第1図は、媒体面に垂直方向に磁化記録する原理を示し
ている。図中基板101の表面にm霜言e録媒体となる
S性薄膜層102がある。該媒体102に対向するS気
ヘッドの磁極103は、コイルによって発生する配録磁
界を該磁極106の先端、即媒体102に対向する伺近
に集中ζせて媒体全磁化、配録させる。この時媒体に印
加さnる記録磁界は破線の矢印106の如く、磁極10
3の中心部で媒lX102の面に垂直即ち媒体102の
厚み方向に向く。この様な垂直記録磁界によって媒体は
垂直磁化さnる。一般に薄膜磁性媒体會その媒体面に垂
直な方向に磁化する時(矢印104〕媒体自身によって
生ずる反磁界105によって記録磁化は減Sさ扛る。し
かし配録S化の反転間隔が媒体厚み相当程度である時、
前記減感効果は無視できる様になる。第1図中磁極10
3の媒体対向部において、その端部の磁界は矢印107
の如く媒体面に平行な方向の成分が犬さくなる。従って
媒体102が磁極103に苅して移動する事によってデ
ータ全出化記録する時、媒体はS極103の後端部磁界
によって磁化さ扛、上記の様な媒体面に平行方向の成分
の大きい磁化記録がなをnる事になる。第2図は、磁7
記録媒体202と基板201との間に高遭招率軟磁性薄
膜層203ケ設ける事によって磁、隊103による記録
磁界を、磁極端面後端においても媒体面に垂直にすると
共に配録S化の反転間隔が媒体厚みに対して比較的太き
な領域においても自身の反出界にょる減磁効果が起きな
い桶にしたものである。第2図においてF録磁界は破線
で示した様に、磁極103が媒体202に対向する句近
で媒体に垂直となる。第3図は、第2図の如く磁界全印
加し、磁極103に対して媒体202を移動しつつ記録
磁界を反転させた結果媒体上に記録はn′fC6B化と
そnによって生ずる磁界の向P’に示している。矢印は
媒体202内の磁化、破線は磁界の向き、即ち磁束の流
tである。隣接し万に方向の異なる磁化同志によって磁
界は閉ループ會#45y、シている。特に高透出率出性
ノm 20 sの存在によって媒体内の磁化はすべて媒
体面に垂直方向を向き、高?j磁率性層203内で磁界
は、該磁性層と平行方同會回〈。
FIG. 1 shows the principle of magnetic recording in the direction perpendicular to the medium surface. In the figure, on the surface of a substrate 101, there is an S thin film layer 102 that serves as a frost recording medium. The magnetic pole 103 of the S-air head facing the medium 102 concentrates the recording magnetic field generated by the coil on the tip of the magnetic pole 106, near the tip of the magnetic pole 106, which faces the medium 102, thereby completely magnetizing the medium and recording. At this time, the recording magnetic field applied to the medium is applied to the magnetic pole 10 as shown by the broken arrow 106.
3, perpendicular to the plane of the medium X102, that is, facing in the thickness direction of the medium 102. The medium is perpendicularly magnetized by such a perpendicular recording magnetic field. Generally, when a thin film magnetic medium is magnetized in the direction perpendicular to the medium surface (arrow 104), the recording magnetization is reduced by the demagnetizing field 105 generated by the medium itself.However, the reversal interval of the S distribution is approximately equivalent to the thickness of the medium. When
The desensitizing effect becomes negligible. Figure 1: Magnetic pole 10
In the medium facing section No. 3, the magnetic field at the end is indicated by the arrow 107.
The component in the direction parallel to the medium surface becomes sharper. Therefore, when the medium 102 is moved to the magnetic pole 103 to record all data, the medium is magnetized by the magnetic field at the rear end of the S pole 103, and the component parallel to the medium surface is large as described above. This results in a long magnetization recording. Figure 2 shows magnetic 7
By providing the high-encounter rate soft magnetic thin film layer 203 between the recording medium 202 and the substrate 201, the recording magnetic field generated by the magnetic field 103 is made perpendicular to the medium surface even at the rear end of the magnetic pole tip, and the recording magnetic field is made to be S. The tub is designed so that the demagnetizing effect due to its own repulsion field does not occur even in a region where the reversal interval is relatively large relative to the thickness of the medium. In FIG. 2, the F recording magnetic field becomes perpendicular to the medium near the point where the magnetic pole 103 faces the medium 202, as indicated by the broken line. FIG. 3 shows that when the full magnetic field is applied as shown in FIG. 2 and the recording magnetic field is reversed while moving the medium 202 relative to the magnetic pole 103, the recording on the medium becomes n'fC6B and the direction of the magnetic field generated by this n. It is shown in P'. The arrow indicates the magnetization within the medium 202, and the broken line indicates the direction of the magnetic field, ie, the magnetic flux flow t. The magnetic field is created in a closed loop by adjacent magnetized comrades with different directions. In particular, due to the presence of high permeability m 20 s, all magnetization within the medium is oriented perpendicular to the medium surface, and the magnetization is high. j The magnetic field within the magnetic layer 203 has the same rotation in the direction parallel to the magnetic layer.

従来第3図に示した高密庶出り記録媒体を用い′fC磁
妬ディスクは、塗布形媒体を用いたディスクと同様に、
アルミニウム合金をディスク形状に加工し、表面ヶ研摩
等で鏡面壮士げしたものを基板とする。このアルミニウ
ム合金基板上に、2o2及び203の二層の薄膜ン、真
空中で蒸層又はスパッタ形成するものである一絹4図4
01は、前二磁性膜全連続的にスパッタ形成する真空装
愉の例である。402は前段真空室で、ここに表面研摩
加工後のアルミディスク會多数マウントしたマガジン4
06を刺入し真空にする。前Meマカジンよりディス4
10i一枚づつ順次抜き取りFθ−N1スパッタ室40
3に送る。凍づディス上側面に向けてF e −N i
のターゲット408全スパツターしFθ−N1の薄11
1に形成する。次にターゲット409によりディス上側
面に同様のF p −N i薄ff1ik形成する。両
面にFθ−Ni  O高透招率磁性薄勝が形成さ扛タデ
ィスク412 ’k Co−C!rスパッター室404
に送り、前室と同様に、Co−Crのターゲット413
と414によって両面にCo−0r磁性膜をスパッタ形
成する。全層のスパッタを形成したディスクは終段のデ
ィスク取り出し室405に送す、ディスクマウントマガ
ジン407に収納する。ここで前段と後段の室はスパッ
タ室と真空壁416・417によって遮断さnている。
Conventionally, a 'fC magnetic disk using a high-density outsourced recording medium as shown in FIG.
The substrate is made by processing aluminum alloy into a disk shape and polishing the surface to give it a mirror finish. On this aluminum alloy substrate, two thin films of 2o2 and 203 are vaporized or sputtered in vacuum.
01 is an example of a vacuum system in which the first two magnetic films are completely continuously formed by sputtering. 402 is the front stage vacuum chamber, where magazine 4 is mounted with a large number of aluminum disks after surface polishing.
Insert 06 and apply vacuum. Dis 4 from previous Me Makazin
Sequentially extracting 10i one by one Fθ-N1 sputtering chamber 40
Send to 3. F e −N i toward the upper side of the frozen disk
target 408 all sputtered Fθ-N1 thin 11
Form into 1. Next, a similar F p -Ni thin fflik is formed on the upper surface of the disk using a target 409 . Fθ-NiO high permeability magnetic thin film is formed on both sides of the disc 412'k Co-C! r sputtering chamber 404
Co-Cr target 413 in the same way as in the front chamber.
and 414, a Co-Or magnetic film is sputtered on both sides. The disk on which all layers of sputter have been formed is stored in a disk mount magazine 407, which is sent to a disk take-out chamber 405 at the final stage. Here, the front and rear chambers are separated from the sputtering chamber by vacuum walls 416 and 417.

又、スパッタ室403と404は壁415によって遮断
= 5− を扛、各々のスパッタ時に、他室におけるスパッタの影
響が」わnない様にする。即ち、スパッタ条件、或は他
成分の混入等による干渉を防ぐ事が重曹である一第4図
装渡401は大掛かりとなるばかりでなく、工程数が多
くスルーブツトが低い。
Furthermore, the sputtering chambers 403 and 404 are shielded by a wall 415 to prevent the effects of sputtering in other chambers from being influenced during each sputtering operation. That is, baking soda is used to prevent interference due to sputtering conditions or contamination of other components.The fourth design 401 not only requires a large scale, but also requires a large number of steps and has a low throughput.

熱情によって膜形成する場合にあっても略類似の構成と
なシ、更に後述する異方性膜形成の心火性で)ら、実際
には、スパッタ装僧よりも大型化せざるを得ない。
Even in the case of film formation by passion, the structure is almost similar, and due to the incendiary nature of anisotropic film formation, which will be described later), in reality, it has to be larger than the sputtering method. .

さて、磁性媒体内の磁化が、該媒体面に対して垂直方向
に配向し易くする為には、媒体自体の磁区が該媒体面に
苅して垂直力向に配列している事が望ましい。
Now, in order to make it easier for the magnetization in a magnetic medium to be oriented in a direction perpendicular to the surface of the medium, it is desirable that the magnetic domains of the medium itself be aligned in the direction of force perpendicular to the surface of the medium.

換言すnは磁性媒体の結晶配向方向が、該結晶の磁化容
易軸全媒体面に苅して垂直方向を示す様に選ぶ手が望ま
しい。実際、co−Cr等の希土類元素含金む合金を、
スパッタ或は蒸着する事によって、面に垂直力1可に配
向する事が実現できている。
In other words, n is desirably selected so that the direction of crystal orientation of the magnetic medium is perpendicular to the entire surface of the medium along the axis of easy magnetization of the crystal. In fact, alloys containing rare earth elements such as co-Cr,
By sputtering or vapor deposition, it has been possible to achieve orientation with a force perpendicular to the surface of about 1.

ここで一般に膜の結晶成長は、護膜を形成する 6− 基板の表面特性に大きく依存し、該基板表面の影#を大
食〈受ける事が知ら扛ている。実際、C0−Cr或は類
似の合金B’4’s−スパッタによって形成する時、基
板によって膜の結晶異方性は大きく異なる。第5図は、
作製し71:Co−Cr合金磁性胛の結晶配向状態をX
線回折によって測定したグラフであり横軸に角度、縦+
l11に出力奢示しである。505は磁化容易軸が媒体
面に対して垂直となる時のX線回折グラフ上の角ばであ
る。曲線の、角度505伺近での分布が狭い程、又ピー
クの値が大きい程a区の配向は媒体面に対して垂直にそ
ろっている事になる。反対に角11i505−1−j近
での分布が広くピークの値が小きい時、磁区の配向がば
らついている手になる。第5図501はカラス基板上に
前1i7C!o−Or招性膜を形成した場合の測足デー
タ全示し、502はスパッタによりFe−Ni合合金系
基板上形成して、こnを高透磁率感性膜とし、更にこの
上にスパッタでC0−0r合金?形成した場合の測定デ
ータである。明らかにFe−Ni合金膜上に形成したc
o−cr磁性膜の力の配向状態が悪い。即ち、既述した
様な、第2図或は第3図に示す構造の磁気記録媒体を作
製すると、第1図に示す様な招11媒体一層のみの場合
に比較して、缶外媒体自体の磁気異カ性が劣り、媒体下
層に設けた高透磁率感性膜の効果が実質的に減じてし1
つ。
In general, it is known that the crystal growth of a film greatly depends on the surface characteristics of the substrate on which the protective film is formed, and is greatly influenced by the shadow of the substrate surface. In fact, when the film is formed by C0-Cr or similar alloy B'4's-sputtering, the crystal anisotropy of the film varies greatly depending on the substrate. Figure 5 shows
71: The crystal orientation state of the Co-Cr alloy magnetic chain is
This is a graph measured by line diffraction, with the horizontal axis representing the angle and the vertical +
This is an output luxury for l11. 505 is a square corner on the X-ray diffraction graph when the axis of easy magnetization is perpendicular to the medium surface. The narrower the distribution of the curve near the angle 505 and the larger the peak value, the more aligned the orientation of section a is perpendicular to the medium surface. On the other hand, when the distribution near the corner 11i505-1-j is wide and the peak value is small, the orientation of the magnetic domains is uneven. Figure 5 501 shows the previous 1i7C! on the glass substrate! All foot measurement data are shown when an o-Or sensitive film is formed. 502 is formed by sputtering on a Fe-Ni alloy substrate, this is made into a high magnetic permeability sensitive film, and furthermore, C0 film is formed by sputtering on this. -0r alloy? This is measurement data when formed. It is clear that c formed on the Fe-Ni alloy film
The force orientation of the o-cr magnetic film is poor. That is, when a magnetic recording medium having the structure shown in FIG. 2 or 3 is manufactured as described above, the outer medium itself becomes smaller than when the magnetic recording medium has only one layer as shown in FIG. The magnetic anisotropy of the medium is inferior, and the effect of the high magnetic permeability sensitive film provided under the medium is substantially reduced.
Two.

不発明は係る従来の問題に対して、高密度S気HC録に
適する。高透磁率軟磁性体を有し且つ媒1本面に垂直力
向の配向!特性が優nだ磁気記録媒体を供する事を目的
とするものである。
The invention is suitable for high-density S-HC recorders for such conventional problems. It has a soft magnetic material with high magnetic permeability and is oriented in the direction of force perpendicular to one medium! The purpose is to provide a magnetic recording medium with excellent characteristics.

第6図(Alは例えばパーマロイの様な高透磁率軟感性
合金板全ディスク林に加工し、焼鈍して機械歪み及び、
凪鉋企み會取り除いた後、ディスク表面會鐘面研磨仕上
げし女ものである。焼鈍による歪み取り、或はS気%性
の改良を研摩仕上げ後に行なってもよい。該基板(Al
2O2の両面に、前記スパッタic 、K t) Co
 −Or等(7)am件M602.6037形成し、磁
気ディスク全形成する。従って第6図(B)の基板60
1は、ディスク自体の機械的強度を祷る為の磯横部+4
であると同時に、第3崗203にボし1ζ−高透磁率感
性膜をも兼ねる。第4図で示した従来ディスクの製造工
程に比較して、略スバツタ工程が半減する墨が明らかで
あシスループツトの大幅な向上が得らnた。又前8eシ
タ、異種物・凶のスバッタ工程が隣接して生ずる干渉の
問題が無くなり、装部の構造及び工程条件が極めて単純
化さn、又歩留の同上に寄与している。環7図は別の例
である。(C)に示す如くアルミニウム合金板701を
中心にしてその両側に薄い高透磁率s外板702を配す
る。上記三枚の基板全圧接によってラミネートし、(D
)の如きラミネート基8!ヲ形成する。(D)の基板を
加工、研摩、及び歪み取シし。
Figure 6 (Al is processed into a high magnetic permeability soft sensitive alloy plate such as permalloy into a whole disk forest, annealed to prevent mechanical distortion,
After removing the Nagi plane, the surface of the disk was polished and finished. Distortion removal by annealing or improvement of S gas percentage may be performed after polishing. The substrate (Al
On both sides of 2O2, the sputtered ic, Kt)Co
-Or, etc. (7) am M602.6037 is formed, and the entire magnetic disk is formed. Therefore, the substrate 60 in FIG. 6(B)
1 is the rock side part + 4 for the mechanical strength of the disc itself.
At the same time, the third layer 203 also serves as a 1ζ-high magnetic permeability sensitive film. Compared to the conventional disk manufacturing process shown in FIG. 4, it is clear that the sputtering process is reduced by approximately half, resulting in a significant improvement in system loop. In addition, there is no problem of interference caused by adjacent dissimilar materials or harmful spatter processes, which greatly simplifies the structure and process conditions of the mounting section, contributing to improved yields. Ring 7 diagram is another example. As shown in (C), thin high magnetic permeability S outer plates 702 are placed on both sides of an aluminum alloy plate 701 at the center. The above three boards are laminated by full pressure welding (D
) Laminating group like 8! Form wo. Process, polish, and remove distortion from the substrate in (D).

て、ディスク基板(K)を形成する。三枚の基板は溶接
してラミネートする手も出来、又接着剤によってラミネ
ートする事もできる。高透磁率感性膜702の板厚を、
アルミニウム合金’701の板厚に対して十分/JSキ
く選らぶ手によって倒置の走に伴う熱膨張率の差は無視
さnる。基板(蜀は実効的にアルミニウム合金と同等の
重さ、機械強度が得らnる。基板(lfl)の両面に前
言eと同様の工程で、記録用磁性膜全形Fi′iして、
磁7デイスクとする。第 9− 7図の基板にあっても第6図同様、従来に比較して大幅
に工程が短縮さn1実用的なディスク會供する華がでそ
る。
Then, a disk substrate (K) is formed. The three boards can be welded and laminated, or they can be laminated with adhesive. The thickness of the high magnetic permeability sensitive film 702 is
Depending on the thickness of the aluminum alloy '701, the difference in thermal expansion coefficient due to inversion is ignored. The substrate (Shu) can effectively achieve the same weight and mechanical strength as aluminum alloy.The entire recording magnetic film is coated on both sides of the substrate (lfl) in the same process as described above.
It will be a magnetic 7 disc. Similarly to FIG. 6, the substrate shown in FIG. 9-7 has a significantly shorter manufacturing process than the conventional one, making it possible to provide a practical disk.

七て、C0−0r合金を、異なる基板上にスパッタで形
成した結果、前Mix’ Lだカラス基板以外でもガラ
ス4板と同様に配回の優nた眸の得られたものがある。
Seventh, as a result of forming the C0-0r alloy on different substrates by sputtering, there are some substrates other than the previous Mix'L glass substrate that have the same excellent distribution of eyes as the four glass plates.

Sin、或は他の、一般に非晶質に近い膜會形成した鏝
にC0−0r膜會形成すると、基板材質に係らず、第5
図501に示したカラス基板±のCo−0rPIAと同
等の急峻な)U9回折ピークが傅らnた。第5図150
6はビーク出力に対して50%以上の出力が測ださnる
角度の範囲を示し、@紀非晶質性下地上に形成したCo
−0r膜の場合0度程度である。又、所謂、ポリイミド
基板上に形成したCo−Crpについても同様の値が得
らnk、更にその他の高分子材料についてCo−Cr膜
全形反した場合にも同様の結果が傅らfした。こnに対
し、@fii’N1−Fθパーマロイ合金上に形成した
CCo−0rの測定データ曲線502についてはピーク
出力が501に対し大幅に落ち込み、又ビ10− −り出力に対する50%以上の出力が測定さ扛る角度範
囲は10〜20度程度と広くなる。Ni−Fe系以外の
パーマロイ、例えばCrx−Mof含むパーマロイ膜を
下地とする場合も同様である。更に、アルミニウム、そ
の他の金属及びその合金を基板とした場合についても同
等或はそn以上に劣化する事がわかつ’fco同第5図
の測定曲線の出力ピークの大きさとその急峻性は、その
1ま磁性膜の垂直方向の磁7特性と対応する軍が、磁性
膜の磁気異方性の測定の結果から得らfL友。
When a C0-0r film is formed on a trowel formed with Sin or other films that are generally close to amorphous, the fifth
A U9 diffraction peak as steep as that of Co-0rPIA on the glass substrate shown in FIG. 501 was observed. Figure 5 150
6 indicates the range of angles in which an output of 50% or more with respect to the peak output is measured.
In the case of -0r film, it is about 0 degrees. Further, similar values were obtained for Co--Cr formed on a so-called polyimide substrate, and similar results were obtained for other polymeric materials when the entire Co--Cr film was formed. On the other hand, for the measurement data curve 502 of CCo-0r formed on the @fii'N1-Fθ permalloy alloy, the peak output is significantly lower than that of 501, and the output is more than 50% of the vibration output. The measured angle range is about 10 to 20 degrees. The same applies to the case where a permalloy film other than Ni-Fe based, for example, a permalloy film containing Crx-Mof is used as the base. Furthermore, it can be seen that when aluminum, other metals, and their alloys are used as substrates, the deterioration is the same or more than that. 1) The magnetic properties corresponding to the perpendicular magnetic properties of the magnetic film can be obtained from the results of measuring the magnetic anisotropy of the magnetic film.

以上の結果から出性薄膜會iN成する材料の結晶に対し
、該結晶の格子に対して極端に異なる格子の大きさ全待
った材料全基板とする部が望ましい。
From the above results, it is desirable that the entire substrate be made of a material that has a lattice size that is extremely different from the lattice of the crystal for the crystal of the material that forms the thin film.

金属は互に格子定数が近接する手から、磁性膜は、基板
金属の影響を受けた膜の成長會し易くなる。
Since the lattice constants of metals are close to each other, the growth of the magnetic film is likely to be influenced by the substrate metal.

逆に非晶質、或は部分−7材料を基鈑とする時磁性膜は
、基板の影響ケ受けずに@成長するので磁気異方性の優
nたwaケ形成できる手になる。実際、非晶質材料或は
高分子材料上に形成したC0−Cr磁性Illは該膜厚
が数千オングストローム以上の領域ですべて第5図50
1の様な優nrc回折特性を示す。
On the other hand, when a magnetic film is made of an amorphous or part-7 material as a base plate, it grows without being influenced by the substrate, so it becomes possible to form a film with excellent magnetic anisotropy. In fact, the C0-Cr magnetic Ill formed on an amorphous material or a polymeric material has a film thickness of several thousand angstroms or more, as shown in Fig. 50.
It exhibits excellent NRC diffraction characteristics like 1.

絹8図はこnらのデータに基づいて作製した磁父ge鍮
媒体の断面構造を示すもので、基板aoi上に高透磁率
軟磁性体802が形成してあり、更に軟磁性体802の
上に、非磁性11# 803がある。
Figure 8 shows the cross-sectional structure of the magnetomagnetic medium produced based on these data, in which a high permeability soft magnetic material 802 is formed on the substrate Aoi, and the soft magnetic material 802 is further On top is non-magnetic 11#803.

非磁性1圀803は上Pした非晶質又は非晶ηに近い#
腸か、或は高分子材料701ら成る。
The non-magnetic region 803 is amorphous or close to amorphous η with the upper P
It is made of intestines or a polymeric material 701.

第8図801を第6図の如く高透磁率基板で構成する時
は、802は勿論不要である。非磁性層503はOVD
法、或はディッピング、或はスビンコ〜ト等によって簡
単に形成する事ができる。
When 801 in FIG. 8 is constructed of a high magnetic permeability substrate as shown in FIG. 6, 802 is of course unnecessary. The nonmagnetic layer 503 is OVD
It can be easily formed by method, dipping, coating, etc.

又スパッタによって形成する串も可能である。Skewers formed by sputtering are also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明に関連する磁気記録の原理と特命ケ示し
ている。第2図、第3図は出側記録媒体の下に設けた高
透磁率基板1模の効果について示す第4図は2層のイ出
性膜會連続形成する装壷についてボしである。第5図は
、配録媒体のX線1回折による結晶配回特性ケ示しであ
る。y46.7.8図は本発明になる磁気ディスクの構
造會示しである。 102.202.804・<ii記録媒体203.60
1,702.802−・・高透磁率磁性体 803・・・非磁性膜 以   よ =13− 6Qス (日ン 193−
FIG. 1 shows the principle and mission of magnetic recording related to non-invention. FIGS. 2 and 3 show the effect of a high magnetic permeability substrate 1 provided under the recording medium on the output side, and FIG. 4 shows a blank for a mounting pot in which a two-layer ejectable film is continuously formed. FIG. 5 shows the crystal distribution characteristics of the recording medium by X-ray diffraction. Figure y46.7.8 shows the structure of the magnetic disk according to the present invention. 102.202.804・<ii Recording medium 203.60
1,702.802-...High permeability magnetic material 803...Non-magnetic film = 13-6Qs (Sun 193-

Claims (1)

【特許請求の範囲】 (1)高透磁率軟磁性体全基板とし、該軟侶性基板上に
F錘用磁性薄膜層全形成した磁気ディスク(2)二枚の
高透磁率軟率性基板の間にアルミニウム合金基板紮サン
ドイッチしてラミ洋−トシ、該ラミネート基板表面に紀
録用磁性?!!胛層全形成したa気ディスク。 (3)  高透磁率軟感性体と8e録録磁磁性薄膜との
間には非出性?lJ障J−がある事會釣辛とする特許稍
求範囲第−項、及び第二項記載の1iBiデイスク。 (41非磁性薄説層は非晶黄体である事を特徴とする特
許請求範囲第三項紀載の磁気ディスク。
[Scope of Claims] (1) A magnetic disk entirely made of a high magnetic permeability soft magnetic material and having a magnetic thin film layer for F weight formed entirely on the soft substrate (2) Two high magnetic permeability soft substrates Sandwich the aluminum alloy substrate between them and laminate, and the surface of the laminate substrate has magnetic properties for recording. ! ! A-disc with complete formation of the spindle layer. (3) Is there any hidden property between the high magnetic permeability soft sensitive material and the 8e recording magnetic thin film? 1. The 1iBi disk according to paragraphs 1 and 2 of the patent scope, in which the invention is difficult to overcome. (41) The magnetic disk according to claim 3, wherein the non-magnetic thin layer is an amorphous corpus luteum.
JP57012722A 1981-12-26 1982-01-29 Magnetic disc Pending JPS58130440A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57012722A JPS58130440A (en) 1982-01-29 1982-01-29 Magnetic disc
US06/453,658 US4675224A (en) 1981-12-26 1982-12-27 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012722A JPS58130440A (en) 1982-01-29 1982-01-29 Magnetic disc

Publications (1)

Publication Number Publication Date
JPS58130440A true JPS58130440A (en) 1983-08-03

Family

ID=11813316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012722A Pending JPS58130440A (en) 1981-12-26 1982-01-29 Magnetic disc

Country Status (1)

Country Link
JP (1) JPS58130440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057524A (en) * 1983-09-08 1985-04-03 Seiko Epson Corp Vertical magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451804A (en) * 1977-09-30 1979-04-24 Shiyunichi Iwasaki Magnetic recording medium
JPS5729922A (en) * 1980-07-31 1982-02-18 Tokyo Optical Co Ltd Measuring device for refractive characteristic of optical system
JPS57169924A (en) * 1981-04-14 1982-10-19 Canon Inc Magnetic recording medium
JPS57208631A (en) * 1981-06-19 1982-12-21 Hitachi Ltd Vertical magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451804A (en) * 1977-09-30 1979-04-24 Shiyunichi Iwasaki Magnetic recording medium
JPS5729922A (en) * 1980-07-31 1982-02-18 Tokyo Optical Co Ltd Measuring device for refractive characteristic of optical system
JPS57169924A (en) * 1981-04-14 1982-10-19 Canon Inc Magnetic recording medium
JPS57208631A (en) * 1981-06-19 1982-12-21 Hitachi Ltd Vertical magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057524A (en) * 1983-09-08 1985-04-03 Seiko Epson Corp Vertical magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS61117747A (en) 2-layer-film optical magnetic recording medium
JP2002208129A (en) Magnetic recording medium, its manufacturing method and magnetic recording device
KR100418640B1 (en) Magnetic recording medium and its manufacturing method
JPH09293227A (en) Magnetic recording medium and magnetic disk device
US4683176A (en) Optical magnetic recording member
JP3481252B2 (en) Magnetic recording medium and method of manufacturing the same
JP3230223B2 (en) Magnetic recording media
US4675224A (en) Magnetic recording medium
JPS58130440A (en) Magnetic disc
JP4123806B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JPS6379968A (en) Production of magnetic recording medium
JP3582435B2 (en) Perpendicular magnetic recording medium
US6555248B1 (en) Magnetic recording medium
JPH0268716A (en) Production of magnetic disk medium
JPH0770037B2 (en) Metal thin film magnetic recording medium for in-plane magnetization recording
US7118815B2 (en) Method to improve coercivity radial profile in magnetic recording media and product thereof
JP2911797B2 (en) Magnetic recording medium and method of manufacturing the same
CN100414611C (en) Magnetic recording medium and magnetic recording and reproducing device
JPH06187628A (en) Magnetic recording medium and magnetic memory device
JP2834154B2 (en) Metal thin film magnetic recording media for in-plane magnetization recording
JPS63311611A (en) Composite type magnetic head
JPH0268711A (en) Magnetic recording medium
JPH0261819A (en) Perpendicular magnetic recording medium
JPH06103555A (en) Perpendicular magnetic recording medium
JPH01269211A (en) Magnetic head