JPS58129257A - Detecting apparatus of body cracked grain of rice grain - Google Patents
Detecting apparatus of body cracked grain of rice grainInfo
- Publication number
- JPS58129257A JPS58129257A JP3680082A JP3680082A JPS58129257A JP S58129257 A JPS58129257 A JP S58129257A JP 3680082 A JP3680082 A JP 3680082A JP 3680082 A JP3680082 A JP 3680082A JP S58129257 A JPS58129257 A JP S58129257A
- Authority
- JP
- Japan
- Prior art keywords
- grain
- light
- rice
- grains
- split
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/10—Starch-containing substances, e.g. dough
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は米粒の胴割粒検出装置に関する。[Detailed description of the invention] The present invention relates to an apparatus for detecting split rice grains.
近時の稲作作業の機械化に伴い、収穫後の籾乾燥にも乾
燥機が用いられるが、乾燥機は天候に左右されることな
く、一定条件でしかも能率よく乾燥作業できるが、籾の
温度、乾減率が高くなると胴割粒が多発することになる
。また、従来の胴割粒検出装置は、選別用樋体の底壁面
に、スリットまたは透明材から成る透光窓を設けると共
に、該窓の上下位置に光源と受光素子から成る光電検出
装置を配設したので、前記透光窓は樋内の流↑゛米粒付
着した粉塵により目詰まりまたは汚染して前記受光素子
による米粒の透過光線の受光量が変化したり、また前記
透光窓に固着した粉塵に前記米粒が接触して正常な流動
を乱したりし、その選別精度と選別能率をしばしば低下
する欠点を有していた。With the recent mechanization of rice cultivation, dryers are also used to dry the paddy after harvesting.Dryers are not affected by the weather and can be used to dry efficiently under constant conditions, but the temperature of the paddy When the drying loss rate increases, split grains will occur frequently. In addition, in the conventional split grain detection device, a slit or a light-transmitting window made of a transparent material is provided on the bottom wall of the sorting gutter body, and a photoelectric detection device consisting of a light source and a light receiving element is arranged above and below the window. As a result, the light-transmitting window may become clogged or contaminated by dust adhering to the rice grains, which may change the amount of light transmitted by the rice grains received by the light-receiving element, or may become stuck to the light-transmitting window. This method has the disadvantage that the rice grains come into contact with dust and disrupt the normal flow, often reducing the sorting accuracy and efficiency.
本発明は1記の諸欠点を解決するため、流下樋のI!端
から流下する米粒の流下軌跡に対向して光源と受光素子
から成る光電検出装置を関連的に配設し、前記流下軌跡
にある米粒に投光してその透過した光線の明暗部を受光
素子によって受光し、その受光量の変化により胴割粒を
検出することにより、前記流下軌跡を流下する米粒に直
接的に光源から@射してその透過光線を受光素子によっ
て受光するようにし、以って前述の透光窓によって生ず
る弊害を防止し、常に高精度でしかも高率的に胴割粒を
検出する装置を開発して提供せんとするものである。The present invention solves the drawbacks listed in 1 above, and aims to improve the I! A photoelectric detection device consisting of a light source and a light-receiving element is arranged in relation to the falling locus of the rice grains flowing down from the edge, and light is emitted onto the rice grains in the falling locus, and the bright and dark parts of the transmitted light are detected by the light-receiving element. By receiving light from the light source and detecting split grains based on changes in the amount of light received, the light source directly irradiates the rice grains flowing down the flow trajectory, and the transmitted light is received by the light receiving element. Therefore, it is an object of the present invention to develop and provide a device that prevents the disadvantages caused by the above-mentioned light-transmitting window and always detects split grains with high accuracy and high efficiency.
本発明を実施例図について説明する。第1図および第2
図において、符号1は箱形機枠で、該機枠1内部に籾粒
を縦走状に流動する送穀用条溝2を設けた振動送穀樋3
を横架状に設置用条溝4を設けた傾斜状の流下樋6を連
設し、該流下樋5の樋端に光電検出用固定板6を固着し
、該固定板605上下部に光電検出装置17の光源8と
受光装置9を設けてこれら7,8を流下41!5−の樋
端から流下する米粒の流下軌跡Xに対向状にそれぞれ配
設すると共に固定板6の一例部に噴風装置・衝撃装置な
どから成るエゼクタ装置10を設けて前記流下軌跡Xに
対向させて関連的に配設し、前記流下軌跡Xの任意の粒
子検出位置Pの近傍の照射点Qを通過する米粒に光源8
から照射してその透過光線の明暗部を受光装置9によっ
て受光し、その受光量の変化により胴割粒を検出すると
共に、その検出信号によって前記エゼクタ装置10を作
動して前記胴割粒を選別するように形成しである。The present invention will be explained with reference to embodiment figures. Figures 1 and 2
In the figure, reference numeral 1 denotes a box-shaped machine frame, and inside the machine frame 1, there is a vibrating grain feed trough 3 provided with grain feed grooves 2 for vertically flowing paddy grains.
A horizontal downflow gutter 6 with installation grooves 4 is installed in series, and a photoelectric detection fixing plate 6 is fixed to the gutter end of the gutter 5, and photoelectric detection is mounted on the upper and lower parts of the fixing plate 605. A light source 8 and a light receiving device 9 of the device 17 are provided, and these 7 and 8 are respectively disposed opposite to the falling trajectory X of the rice grains flowing down from the end of the gutter of the downstream 41!5-. An ejector device 10 consisting of a device, an impact device, etc. is provided and disposed in relation to the falling trajectory light source 8
The bright and dark parts of the transmitted light are received by the light receiving device 9, and the split grains are detected based on the change in the amount of received light, and the ejector device 10 is actuated based on the detection signal to sort out the split grains. It is shaped like this.
また、前記振動送穀樋3は、′その側部に振動傾斜送穀
樋11を並列して横架状に配置し、該傾斜送穀樋11は
その低位側受入部の上部に供給ホッパー12を設けると
共に、該樋面に籾粒を誘導する案内壁13を立設し、前
記送穀用条t112の初端部に設けた流人「】14と、
前記傾斜送穀樋11の高位側の一例に設けた排穀口15
を相互に連結して一体的に形成しである。Further, the vibrating grain feeding gutter 3 has a vibrating inclined grain feeding gutter 11 arranged horizontally in parallel on its side, and the inclined grain feeding gutter 11 has a supply hopper 12 at the upper part of its lower side receiving portion. At the same time, a guide wall 13 for guiding the paddy grains is erected on the gutter surface, and a drifter "] 14 provided at the beginning end of the grain feeding row t112,
A grain discharging port 15 provided on an example of a higher side of the inclined grain feeding trough 11
are integrally formed by interconnecting them.
また、前記受光装置9は、2条のオプティカル・ファイ
バ16,17の一側端をそれぞれ光学レンズを介して前
記流下軌跡Xの粒子検出位置P近情の照書橿点Qに臨設
すると共に、その他端側に一対の受光素子18.19を
設け、また各受光素子18.19は導線によって制御回
路20に連結すると共に、出力側は前記エゼクタkn@
1oと機枠1上部のデジタル表示器21にそれぞれ連結
する。22は胴割面のない整粒籾を収集する集穀筒、2
3は流下軌跡Xから離脱した胴割粒の受樋に設けた排出
口、24は流下軌跡Xの粒子検出位置Pに達した米粒を
検出するための米粒位置検出センサーである。Further, the light receiving device 9 has one end of two optical fibers 16 and 17 provided at a reference point Q near the particle detection position P of the falling trajectory X through an optical lens, respectively, and A pair of light receiving elements 18.19 is provided on the other end side, and each light receiving element 18.19 is connected to the control circuit 20 by a conductive wire, and the output side is connected to the ejector kn@
1o and a digital display 21 on the top of the machine frame 1, respectively. 22 is a grain collection tube for collecting grain-sized paddy without a body-splitting surface;
Reference numeral 3 designates a discharge port provided in the receiving channel for the split grains that have left the flow path X, and 24 represents a rice grain position detection sensor for detecting the rice grains that have reached the particle detection position P on the flow path X.
次に第3図の籾粒の明暗部について説明する。本図は前
記粒子検出値1llPに粒子先端が達した場合にその下
方から照射された籾粒な示し、その各図B、b、cにお
いて中央の編状点線(太線)の中央部が光源8から籾粒
を照射する照射度Q、橢円形の閉曲線(点線)は籾粒内
の米粒25、また米粒25中に記した編状点線(組lは
亀裂面Rをそれぞれ表わす。また図a <Zおいて、A
およびBは前記各受光素子18.19の各ファイバが対
向するそれぞれの視点位置で、この視点位置において、
前記光源8から籾粒に投光した透過光線で照射された該
籾粒像を光学レンズを透して結ぶ籾像の籾粒両側部26
A、26Bの光量をそれぞれ受光した場合、各受光素子
18.19の受光量(明暗度)は共に等しく、その光量
差が基準光量限界値(11!圧)内になるので、この米
粒は亀裂面のない整粒子として識別される。図すの米粒
25′はその亀裂面Rが照射点Qの左側に位置し、ため
に照射点Qから射入した粒子内の透過光線は前記亀裂面
Rで散乱してその粒子左側靜の光量は低下してその光量
差が基準光量限界値外となるので、この粒子は亀裂粒と
して識別される。Next, the bright and dark parts of the rice grains in FIG. 3 will be explained. This figure shows the rice grains irradiated from below when the particle tip reaches the particle detection value 1llP, and in each figure B, b, and c, the central part of the central knitted dotted line (thick line) is the light source 8. The irradiation intensity Q for irradiating the rice grains, the oval closed curve (dotted line) represents the rice grain 25 inside the rice grain, and the knitted dotted line drawn inside the rice grain 25 (set 1 represents the crack surface R, respectively. At Z, A
and B are respective viewpoint positions where each fiber of each of the light receiving elements 18, 19 faces, and at this viewpoint position,
Both sides 26 of the rice grain image of the rice grain, which is formed by connecting the rice grain image irradiated with the transmitted light beam projected onto the rice grain from the light source 8 through an optical lens.
When the amounts of light A and 26B are received, the amount of light received (brightness) of each light receiving element 18 and 19 is equal, and the difference in light amount is within the standard light amount limit value (11! pressure), so this rice grain is cracked. It is identified as a regular particle with no faces. In the rice grain 25' shown in the figure, the crack surface R is located on the left side of the irradiation point Q. Therefore, the transmitted light inside the grain that enters from the irradiation point Q is scattered by the crack surface R, resulting in the amount of light on the left side of the grain. decreases and the light intensity difference falls outside the reference light intensity limit value, so this particle is identified as a crack grain.
図Cの米粒25″は 上記米粒25′と反対の明暗彩画
を生してその光量差が基準光量限界値外となるので、こ
の粒子も亀裂粒子として識別される。The rice grain 25'' in Figure C produces a contrasting contrast to the rice grain 25', and the difference in light intensity is outside the reference light intensity limit value, so this particle is also identified as a crack particle.
次に、第4図の制御回路20について説明する。米粒両
側部のそれぞれの透過光線を受光する受光装置9の一対
の受光素子18.19は、各増幅器27.28を介して
胴割粒用検出回路29の差動増幅器30に連結され、そ
の出力側はアナログスイッチ31、比較器32を介して
エゼクタ装置10と胴割粒用カウンター33にそれぞれ
連結され34は設定器で、整粒子と胴割粒の光量差の基
準光量限界値を設定する。また米粒位置検出センサー2
4は、増幅器35を介して総粒数用検出回路36の比較
器37、アナログスイ・ソチ回路38を介して総粒数用
カウンター39に連結され、なお前記米粒位置検出セン
サー24は、流動する米粒が前記照射点Qを通過する際
、前記米粒の先端部が所定の粒子検出位置Pに達すると
、その中心部が照射点Qの中心に一致するように形成し
、また前記胴割粒用カウンター33と総粒数用カウンタ
ー39とは共に側割比率を表示するデジタル表示器21
に連結され、40は設定器で、所定位置Pに米粒の先端
部が到達したことを確認するための基準光量値を設定す
る。Next, the control circuit 20 shown in FIG. 4 will be explained. A pair of light-receiving elements 18, 19 of the light-receiving device 9, which receive the respective transmitted light beams from both sides of the rice grain, are connected to the differential amplifier 30 of the split-grain detection circuit 29 via each amplifier 27, 28, and the output thereof is The side is connected via an analog switch 31 and a comparator 32 to the ejector device 10 and a counter 33 for shell-split grains, respectively, and 34 is a setting device for setting a reference light intensity limit value for the difference in light intensity between regular particles and shell-split grains. In addition, rice grain position detection sensor 2
4 is connected to a comparator 37 of a total grain number detection circuit 36 via an amplifier 35 and a total grain number counter 39 via an analog switch/sochi circuit 38, and the rice grain position detection sensor 24 When the rice grain passes through the irradiation point Q, when the tip of the rice grain reaches a predetermined particle detection position P, the center of the rice grain is formed to coincide with the center of the irradiation point Q. The counter 33 and the total number of grains counter 39 are both a digital display 21 that displays the side split ratio.
40 is a setting device that sets a reference light amount value for confirming that the tip of the rice grain has reached a predetermined position P.
上述の構成であるから、供給ホッパー12から振動傾斜
送穀樋11に流下する籾粒は、該送穀樋11の振動作用
によって棚面高位側に1送されて排穀口15から振動送
穀41!3の条溝2に流入すると共に、該送穀樋3の振
動作用によって前記条溝2に縦送状に配列して流動し、
また該籾粒は流下樋50条溝4を急流状に流下走行して
その樋端から流下軌跡Xを流下して粒子検出位置Pをそ
れぞれ通過するが、その際、任意の米粒の先端部が所定
位置Pに到達すると、米粒位置検出センサー24がその
透過光線を受光してその受光信号を増幅器35を介して
比較器37に人力し、該比較器37において設定した基
準光量値と比較すると共に、その比較信号をアナログス
イッチ回路38に人力し、該スイッチ回路38では、前
記信号が入力される都度スイッチ18号を発して前記ア
ナログスイッチ31を閉成すると共に、その信号を総粒
数用カウンター39を介してデジタル表示器21に人力
する。また一方、前記照射点Q上部に設けた受光装置9
の一対の受光素子18.19が受光した米粒両側部のそ
れぞれの受光信号を人力した胴割粒用検出回路29の差
動増幅器30は、その出力を前記アナログスイッチ31
が閉成した瞬間に比較器32に入力し、該比較器32で
は、設定した基準光量限界値と比較されて胴割粒を検出
すると共に、その検出信号を前記エゼクタ装fill(
1と胴割粒用カウンター33に人力し、胴割粒用カウン
ター33において胴割粒数を算定してデジタル表示器2
1に人力し、該表示器21では、検出した米粒総数と胴
割粒数を比較してその側割比率を算定して表示し、また
エゼクタ装置10に人力された検出信号は、該装置lO
の作動部を作動して流下軌跡Xを流下する前記胴割粒を
その都度噴射し、前記軌跡Xから離脱した胴割粒は受樋
に流下して排出口26から機外に排出され、また胴割面
のない整粒籾は流下軌跡Xを流下し集穀1e122を介
して機外に取出される。With the above-mentioned configuration, the paddy grains flowing down from the supply hopper 12 to the vibrating inclined grain feeding trough 11 are sent to the higher side of the shelf surface by the vibration action of the grain feeding trough 11, and are sent through the grain threshing port 15 to the vibrating grain feeding trough 11. 41!3, and flows into the grooves 2 in a longitudinal manner due to the vibration action of the grain feeder 3,
In addition, the rice grains flow down the 50 grooves 4 of the downflow gutter in a rapid flow, flow down from the end of the gutter along the flow trajectory When reaching the position P, the rice grain position detection sensor 24 receives the transmitted light beam and inputs the received light signal to the comparator 37 via the amplifier 35, where it is compared with a reference light amount value set, The comparison signal is inputted to the analog switch circuit 38, and in the switch circuit 38, every time the signal is input, the switch No. 18 is activated to close the analog switch 31, and the signal is sent to the total grain counter 38. A manual input is made to the digital display 21 via the . On the other hand, the light receiving device 9 provided above the irradiation point Q
The differential amplifier 30 of the split-grain detection circuit 29 receives the respective light reception signals from both sides of the rice grain received by the pair of light receiving elements 18 and 19, and outputs the output from the analog switch 31.
At the moment when the fill is closed, the light is input to the comparator 32, and the comparator 32 compares it with the set reference light amount limit value to detect the shell-split grain, and sends the detection signal to the ejector equipment fill (
1 and the counter 33 for split grains, calculate the number of split grains at the counter 33, and display the number on the digital display 2.
1, the display 21 calculates and displays the side split ratio by comparing the detected total number of rice grains and the number of split grains, and the detection signal manually input to the ejector device 10 is displayed on the display 21.
The actuating part is actuated to inject the shell-split grains flowing down the flow trajectory The sized rice grains without a body-splitting surface flow down the flow path X and are taken out of the machine via the grain collector 1e122.
特許請求の範囲第121項のものは、前記受光装置9A
が、1個の受光素子41によって米粒全体の透過光線の
光量変化を受光するものであるから、光電検出装置が簡
潔化すると共に、米粒全体をカウント状に走査して各部
の光量を検出して胴割粒以外の砕粒・未熟粒・元来なと
の判別を可能にし、その選別性能を向上できる等の効果
がある。Claim 121 provides the light receiving device 9A.
However, since a single light-receiving element 41 receives changes in the amount of light transmitted through the entire rice grain, the photoelectric detection device is simplified, and the entire rice grain is scanned in a counting manner to detect the amount of light in each part. It has the effect of making it possible to distinguish between crushed grains, immature grains, and original grains other than shell-split grains, and improving the sorting performance.
このように、本発明の米粒の胴割粒検出装置は、流下樋
の樋端から流下する米粒の流下軌跡に対向して光源と受
光装置から成る光電検出装置ならび・にエゼクタ装置を
関連的に配設することにより、前記流下軌跡にある米粒
に投光してその透過光線の明暗部を受光素子によって受
光するようにし、その受光量の変化により胴割粒を検出
するので、流下樋の樋底面にスリットまたは透明材から
成る透光窓を設けた従来の胴割粒検出装置において、透
光窓の目詰まりまたは汚染によって生じた受光量の変化
および米粒流動の乱れ等の弊害を完全に防止でき、また
米粒の透過光線の光量変化を直接的に照射または受光し
てその検出精度を確実に向上でき、胴割粒の検出作用の
自動化を完成して検出作業の省力化を達成でき、常に、
高精度でしかも高率的に胴割粒を検出して良質の精選米
粒の量産を促進させ得る等の効果を奏するものである。As described above, the rice grain shell-split grain detection device of the present invention has a photoelectric detection device consisting of a light source and a light receiving device, and an ejector device that are arranged in relation to the falling locus of rice grains flowing down from the gutter end of the gutter. By setting the light beam to the rice grains in the flowing trajectory, the light and dark parts of the transmitted light are received by the light receiving element, and the split grains are detected based on the change in the amount of light received, so that the bottom surface of the flowing gutter can be detected. In conventional split grain detection devices equipped with a transparent window made of slits or transparent material, it is possible to completely prevent adverse effects such as changes in the amount of light received and disturbances in the flow of rice grains caused by clogging or contamination of the transparent window. In addition, the detection accuracy can be improved by directly irradiating or receiving changes in the amount of light transmitted through rice grains, and the automation of the detection of split grains can be completed to save labor in the detection work.
This method has the advantage of being able to detect split grains with high precision and efficiency, thereby promoting the mass production of high-quality refined rice grains.
図面は本発明の実施例−である。第1図は本装置の側断
面図、第2図はその流下樋の平面図、13図は米粒の明
暗影の説明図、第4図はその制御回路図、第5図は別実
施例図の一部拡大断面図である。
1・・・箱形機枠 2・・・送穀用条溝 3・・・振動
送穀樋 4・・・流穀用条溝 5・・・流下樋 6・・
・光電検出用固定板 7・・・光電検出装置 8・・・
光源9.9A・・・受光装置 10・・・エゼクタ装置
11・・・振動傾斜送穀樋 12・・・供給ホッパー
13・・・案内壁 14・・・流入口 15・・・排
穀口 16・・・オプティカル・ファイバ 17・・・
オプティカル・ファイバ 18・・・受光素子 19・
・・受光素子 20・・・制御回路 21・・・デジタ
ル表示器22・・・集穀筒 23・・・排出口 24・
・・米粒位置検出センサー 25.25’、25− ・
・・米粒28A、26B・・・籾粒側部 27・・・増
幅器2B・・・増幅器 29・・・胴割粒用検出回路
3゜・・・差動増幅器 31・・・アナログスイッチ
32・・・比較器 33・・・胴割粒用カウンター 3
4・・・設定器 35川増輻器 36・・・総粒数用検
出回路 37・・・比較器 38・・・アナログスイッ
チ回路 39・・・総粒数用カウンター 4o・・・設
定器41・・・受光素子
P・・・粒子検出位置 R・・・亀裂面 Q・・・照射
点X・・・流下軌跡
1i1図
第2図
第3図
第4図
第5図
手続補正tl(自制
昭和57年7月30日
特許庁長官 名 杉 和 夫 殿
1、事件の表示
昭和57年特許願第036800号
2、発明の名称 米粒の胴割粒検出装置3、補正をす
る者
事件との関係 特許出願人
住所 東京都台東区上野1丁目19番10号5、補正の
対象
明細1の1−特許請求の範囲」 1発明の詳細な説明」
[図面の簡単な説明」の各欄および図面の第2図。
〔i、補正の内容
明 細 −
1、発明の名称 米粒の胴割粒検出装置2、特許請求の
範囲
光iA&から成る光電検出装置を関連的に配設し、前記
通過軌跡にある米粒に投光してその透過光線の明暗部を
受光素子によって受光し、その受光鰺の変化によって胴
割粒を検出するようにした米粒の胴割粒検出装置。
(2)、#配量光装置が、1個の受光素子によって米粒
全体の透過光線の光鰻変化を受光するものである特許請
求の範囲第(1)項記載の米粒の胴割粒検出装置。
(3)、前記受光装置が、複数個の受光素子によって米
粒の複数個所の透過光線の光饅変化をそれぞれ受光する
ものである特許請求の範囲第(1)項記載の米粒の胴割
粒検出装置。
けだ米粒位置検出用センサーが米粒の位置を検出した信
号によって受光するように形成した制御回路に連結しで
ある特許請求の範囲第(1)項または第(2)項または
第(3)項記載の米粒の胴割粒検出装置。
(5)、前記受光装置が、胴割粒比率を表示するように
形成した制御回路に連結しである特許請求の範囲第(1
)項または第(9項または第(3)項記載の米粒の胴割
粒検出装置。
3、発明の詳細な説明
本発明は米粒の胴割粒検出装置に関する。
近時の稲作作業の機械化に伴い、収穫後の籾乾燥にも乾
燥機が用いられるが、乾燥機は天候に左右されることな
く、一定条件でしかも能率よく乾燥作′業できるが、籾
の温度、乾減率が高くなると胴割粒が多発することにな
る。また、従来の胴割粒検出装置は、選別用樋体の底壁
面に、スリットまたは透明材から成る透光窓を設けると
共に、該窓の1上位置に光源と受光素子から成る光電検
出装置を配設したので、前記透光窓は樋内の流下米粒に
付着した粉塵により目詰まりまたは汚染して前記受光素
子による米粒の透過光線の受光量が変化したり、また前
記透光窓に固着した粉塵に前゛記米粒が接触して正常な
流動を乱したりし、その選別精度と選別能率をしばしば
低下する欠点を有していた。
本発明は上記の諸欠点を解決するため、通過する米粒の
通過軌跡に対向して光源と受光素子から成る光電検出装
置を関連的に配設し、前記通過軌跡にある米粒に投光し
てその透過光線の明暗部を受光素子によって受光し、そ
の受光量の変化により胴割粒を検出することにより、前
記流下軌跡を流下する米粒に直接的に照射してその透過
光線を受光するようにし、以て前述の透光窓によって生
ずる弊害を防止し、常に高精度でしかも高率的に胴割粒
を検出する高性能な装置を開発して提供せんとするもの
である。
本発明を実施例図について説明する。第1図および第2
図において、符号1は箱形機枠で、該機枠1内部に籾粒
を縦走状に流動する送穀用条溝2を設けた振動送穀樋3
を横架状に設置し、その排出側に籾粒を一列状に流下す
る流穀用条下樋5の機端に光電検出用固定板6を固着し
、該固定板6の上下部に光電検出装置7の光源8と受光
装置9を設けてこれら7.8を米粒の通過軌跡Xに対向
状にそれぞれ配設すると共に固定板6の一側部に噴風装
置・衝撃装置などから成るエゼクタ装置10を設けて前
記通過軌跡Xに対向させて関連的に配設し、前記通過軌
跡Xに対設した粒子検出位置Pの近傍の照射点Qを通過
する米粒に光源8から照射してその透過光線の明暗部を
受光装置9によって受光し、その受光量の変化により胴
割粒を検出すると共に、その検出信号によって前記エゼ
クタ装置10を作動して前記胴割粒を選別するように形
成しである。
また、前記振動送穀$13は、その側部に振動傾斜樋1
1を並列して横架状に配置し、該傾斜樋11はその低位
側受入部の上部に供給ホッパー12を設けると共に、該
線面に籾粒を誘導する案内113を立設し、前記送穀用
条溝2の初端部に設けた流入口14と、前記傾斜樋11
の^値開の一側に設けた排穀口15を相互に連結して一
体的に形成しである。
また、前記受光装置9は、2条のオプティカル・フIイ
バ16,17の一側端をそれぞれ光学レンズを介して前
記通過軌跡Xに対設した粒子検出位置P近傍の照射点Q
に臨設すると共に、その他端側に一対の受光素子18.
19を設け、また各受光素子18.19は導線によって
制御回路20に連結すると共に、その出力側は前記エゼ
クタ装置10と機枠1上部のデジタル表示器21にそれ
ぞれ連結する。22は胴割面のない整粒籾を収集する集
穀筒、23は通過軌跡Xから1IiI脱した胴割粒の受
樋に設けた排出口、24は通過軌跡Xの粒子検出位1f
Pに達した米粒を検出するための米粒位置検出センサー
である。
次に第3図の籾粒の明暗部について説明する。
本図は前記粒子検出位11Pに粒子の先端が達した場合
にその下方から照射した籾粒を示し、その各図a、b、
cにおいて中央の譲状点線(太−線)の中心部が光源8
から籾粒を照射する照射点Q1楕円形の閉曲線(点線)
は籾粒内の米粒25、また米粒25中に記した譲状点線
(細線)は亀裂面Rををそれぞれ表わす。また図aにお
いて、AおよびBは前記各受光素子18.19のファイ
バが対向するそれぞれの視点位置で、この視点位置にお
いて、前記光源8から籾粒に投光し、その透過光線で照
射された該籾粒像の籾粒両側部26A、26Bの光量を
それぞれ受光した場合、各受光素子18.19の受光量
(明暗度)は共に等しく、その光量差が基準光量限界値
(電圧)内になるので、この米粒は亀裂面のない整粒子
として識別される。図すの米粒25′はその亀裂面Rが
照射点Qの左側に位置し、ために照射点Qから射入した
粒子内の透過光線は前記亀裂面Rで散乱してその粒子左
側部の光量は低下してその光量差が基準光量限界値外と
なるので、この粒子は亀裂粒として識別される。
図Cの米粒25″は上記米粒25′と反対の明暗膨面を
1じてその光―差が基準光量限界値外となるのぐ、この
粒子も亀裂粒子として識別される。
次に、第4図の制御回路20について説明する。米粒両
側部のそれぞれの透過光線を受光する受光装置19に設
けた一対の受光素子18.19は、各増幅器27.28
を介しで胴割粒用検出回路29の差動増幅器30に連結
され、その出力側はアナログスイッチの接点31、比較
器32を介して]ゼクタ装置10と胴割粒用カウンター
33にそれぞれ連結される。34は設定器で、整粒子と
胴割粒の光量差の基準光量限界値を設定する。また米粒
位置検出センサー24は、増幅器35を総粒数用検出回
路36の比較器37、アナグスイッチ38を介して総粒
数用カウンター39に連結される。なお前記米粒位置検
出センサー24は、米粒が前記照射点Qを通過する際、
前記米粒の先端部が所定の粒子検出位置Pに達すると、
その中心部が照射点Qの中心に一致するように形成され
る。また前記胴9とは共に胴側比率を表示するデジタル
表示器21に連結され、40は設定器で、所定位IPに
米粒の先端部が到達したことを確認するための基準光量
値を設定する。
上述の構成であるから、供給ホッパー12から振動傾斜
樋11に流下する籾粒は、該傾斜樋11の振動作用によ
って線面^位側に1送されて排穀口15から振動送穀樋
3の条溝2に流入すると共k、該送穀613の振動作用
によって前記条溝2に縦走状に配列して流動し、また該
籾粒は流下樋5の条溝4を流下走行してその部端から通
過軌跡Xを流下して粒子検出位置Pを通過するが、その
際、米粒の先端部が所定位置Pに到達すると、米粒位置
検出センサー24がその透過光線を受光してその受光信
号を増幅器35を介して比較器37に入力し、該比較器
37において設定した基準光量値と比較すると共に、そ
の比較信号をアナログスイッチ38に入力、該スイッチ
38では、前記信号が入力される都度スイッチ信号を発
して前記アナログスイッチの接点31を閉成すると共に
、その信号を総粒数用カウンター39を介してデジタル
表示器21に入力する。また一方、前記照射点Qの上部
に設けた一対の受光素子18.19が受光した米粒両側
部のそれぞれの受光信号を入力した胴割粒用検出回路2
9の差動増幅器30は、その出力を前記アナログスイッ
チの接点31が閉成した瞬間に比較器32に入力し、比
較器32rは、設定した基準光量限界値と比較して胴割
粒を検出すると共に、その検出信号を前記エゼクタ装置
10と胴割粒用カウンター33に入力し、胴割粒用カウ
ンター33において胴割粒数をカウントしてデジタル表
示器21に人力し、表示器21では、検出した米粒総数
と胴割粒数を比較してその胴側比率を算定して表示し、
またエゼクタ装置10に入力された検出信号は、該装W
10の作動部を作動して通過軌跡Xを通過する前記胴割
粒をその都度噴射し、前記軌跡Xからl1lI82シた
胴割粒は排出口26から機外に排出され、また胴割面の
ない整粒籾は通過軌跡Xを通過し集穀筒22を介して機
外に取出される。
特iFF請求の範囲第(z項のものは、前記受光装置9
Aが、1個の受光素j41によって米粒全体の透過光線
の光最変化を受光するものであるから、光電検出装置が
簡潔化すると共に、米粒全体をカウント状に走査して各
部の先優変化をそれぞれ検出して胴割粒以外の砕粒・未
熟粒・元来などの判別を可能にし、その選別性能を向上
できる等の効果がある。
このように、本発明の米粒の胴割粒検出装置は、通過す
る米粒の通過軌跡に対向して光源と受光装置から成る光
電検出装置ならびにエゼクタ装置を関連的に配設するこ
とにより、前記通過軌跡にある米粒に投光してその透過
光線の明暗部を受光素子によって受光するようにし、そ
の受光量の変化により胴割粒を検出するので、流下樋の
樋底面にスリットまたは透明材から成る透光窓を設けた
従来の胴割粒検出装置において、透光窓の目詰まりまた
は沃染によって生じた受光鏝の変化および透光窓に固着
した粉塵による米粒流動の乱れ等の弊害を完全に防止で
き、また米粒の透過光線の光鰻変化を直接的に受光づる
ので、その検出精度を大幅に向上でき、胴割粒の検出作
用の自動化を完成すると共に、その検出作業の省力化を
達成でき、常に、i&精度ひしかも高率的に胴割粒を検
出して良質の精選米粒の量産を達成できる等の効果を奏
するものである。
4、図面の簡単な説明
図面は本発明の実施例図である。第1図は本装置の側断
面図、第2図はその流下樋の平面図、第3図は米粒の明
暗形の説明図、第4図はそのIi制御回路図、第5図は
別実施例図の一部拡大断面図である。
1・・・箱形機枠 2・・・送穀用条溝3・・
・振動送穀樋 4・・・流穀用条溝5・・・流下
樋 6・・・光電検出用固定板7・・・光電
検出装置 8・・・光源9.9A・・・受光装置
10・・・:lゼクタ装置13・・・案内W!
14・・・流入口15・・・排穀口 16・・・
オプティカル・ファイバ17・・・オプティカル・ファ
イバ 18・・・受光素子19・・・受光素子
20・・・制御回路21・・・デジタル表示器 22・
・・集穀筒23′・・・排出口 24・・・米粒位
置検出センサー25.25’ 、25”・・・米粒
26A、26B・・・籾粒側部
27・・・増幅器 28・・・増幅器29・・
・胴割粒用検出回路 30・・・差動増幅器31・・
・アナログスイッチの接点
32・・・比較器 33・・・胴割粒用カウンタ
ー34・・・設定器 35・・・増幅器36・
・・総粒数用検出回路 37・・・比較器38・・
・アナログスイッチ
39・・・総粒数用カウンター 40・・・設定器4
1・・・受光素子 P・・・粒子検出位置R・・
・亀裂面 Q・・・照射点X・・・流下軌跡The drawings are examples of the present invention. Fig. 1 is a side sectional view of this device, Fig. 2 is a plan view of its downflow gutter, Fig. 13 is an explanatory diagram of light and shade of rice grains, Fig. 4 is its control circuit diagram, and Fig. 5 is a diagram of another embodiment. FIG. 2 is a partially enlarged cross-sectional view. 1... Box-shaped machine frame 2... Grain feed groove 3... Vibrating grain feed gutter 4... Grain flow groove 5... Downflow gutter 6...
・Fixing plate for photoelectric detection 7...Photoelectric detection device 8...
Light source 9.9A... Light receiving device 10... Ejector device 11... Vibrating inclined grain feeding trough 12... Supply hopper 13... Guide wall 14... Inflow port 15... Grain discharging port 16 ...Optical fiber 17...
Optical fiber 18... Light receiving element 19.
... Light receiving element 20 ... Control circuit 21 ... Digital display 22 ... Grain collection tube 23 ... Discharge port 24.
・Rice grain position detection sensor 25.25', 25- ・
...Rice grains 28A, 26B...Rice grain side parts 27...Amplifier 2B...Amplifier 29...Detection circuit for split grains
3゜...Differential amplifier 31...Analog switch
32...Comparator 33...Counter for split grains 3
4... Setting device 35 River intensifier 36... Detection circuit for total grain number 37... Comparator 38... Analog switch circuit 39... Counter for total grain number 4o... Setting device 41 ... Light-receiving element P ... Particle detection position R ... Crack surface Q ... Irradiation point July 30, 1957 Commissioner of the Japan Patent Office Name: Kazuo Sugi 1, Indication of the case, Patent Application No. 036800, filed in 1982, 2, Title of the invention: Apparatus for detecting split grains in the shell of rice grains 3, Relationship with the person making the amendment Patent Applicant Address: 1-19-10-5 Ueno, Taito-ku, Tokyo, Specification Subject to Amendment 1-1 - Scope of Claims 1 Detailed Description of the Invention
Each column of [Brief Description of Drawings] and Figure 2 of the drawings. [i. Details of the amendment - 1. Title of the invention A photoelectric detection device consisting of a rice grain shell-split grain detection device 2 and a claimed light iA & is arranged in conjunction with each other, and a photoelectric detection device consisting of a light iA & This apparatus detects split grains of rice by emitting light, receiving bright and dark parts of the transmitted light by a light receiving element, and detecting split grains by detecting changes in the received light. (2) The rice grain shell-split grain detection device according to claim (1), wherein the metering light device receives optical changes in the light beam transmitted through the entire rice grain using one light-receiving element. . (3) The rice grain shell-split detection according to claim (1), wherein the light receiving device receives light changes of transmitted light beams at a plurality of locations on the rice grain using a plurality of light receiving elements, respectively. Device. Claims (1), (2), or (3), wherein the sensor for detecting the position of rice grains is connected to a control circuit formed to receive light in response to a signal that detects the position of the rice grains. The rice grain split grain detection device described above. (5) The light-receiving device is connected to a control circuit formed to display the barrel-split ratio.
) or (9) or (3). 3. Detailed Description of the Invention The present invention relates to a rice grain split grain detection device. For the recent mechanization of rice cultivation work. Accordingly, dryers are also used to dry paddy after harvesting, but dryers can dry efficiently under certain conditions without being affected by the weather, but when the temperature and drying rate of paddy increases, In addition, conventional split grain detection devices provide a light-transmitting window made of a slit or a transparent material on the bottom wall of the sorting gutter, and a window located above the window. Since a photoelectric detection device consisting of a light source and a light-receiving element is provided, the light-transmitting window may become clogged or contaminated by dust adhering to the falling rice grains in the gutter, and the amount of light transmitted through the rice grains received by the light-receiving element may change. In addition, the rice grains come into contact with the dust stuck to the transparent window and disturb the normal flow, resulting in a disadvantage that the sorting accuracy and sorting efficiency are often reduced. In order to solve the various drawbacks, a photoelectric detection device consisting of a light source and a light-receiving element is arranged in relation to the locus of passing rice grains, and light is emitted onto the rice grains on the said locus to detect the transmitted light beam. Light is received by a light-receiving element in bright and dark areas, and split grains are detected based on changes in the amount of received light, so that the rice grains flowing down the flow trajectory are directly irradiated and the transmitted light is received. It is an object of the present invention to develop and provide a high-performance device that prevents the harmful effects caused by the light-transmitting window and always detects split grains with high accuracy and high efficiency.The present invention will be explained with reference to embodiment figures. Figures 1 and 2
In the figure, reference numeral 1 denotes a box-shaped machine frame, and inside the machine frame 1, there is a vibrating grain feed trough 3 provided with grain feed grooves 2 for vertically flowing paddy grains.
A fixed plate 6 for photoelectric detection is fixed to the end of a grain row gutter 5 which is installed in a horizontal structure, and the paddy grains flow down in a line on the discharge side. A light source 8 and a light receiving device 9 of the detection device 7 are provided, and these 7 and 8 are arranged opposite to the trajectory X of the rice grains, and an ejector consisting of a blower device, an impact device, etc. is provided on one side of the fixed plate 6. A device 10 is provided and disposed in relation to the passing trajectory The light-receiving device 9 receives bright and dark portions of the transmitted light beam, detects split grains based on changes in the amount of received light, and operates the ejector device 10 based on the detection signal to sort out the split grains. It is. In addition, the vibrating grain feeder $13 has a vibrating inclined gutter 1 on its side.
1 are arranged in parallel in a horizontal structure, and the inclined gutter 11 is provided with a supply hopper 12 at the upper part of the lower side receiving part, and a guide 113 for guiding the paddy grains is erected on the line surface, and the above-mentioned feeding An inlet 14 provided at the beginning end of the grain groove 2 and the inclined gutter 11
The grain discharging ports 15 provided on one side of the opening are interconnected and integrally formed. In addition, the light receiving device 9 is arranged at an irradiation point Q in the vicinity of the particle detection position P, which is arranged opposite to the passage trajectory X by one side end of two optical fibers 16 and 17, respectively, through an optical lens.
and a pair of light receiving elements 18. at the other end.
Each of the light receiving elements 18 and 19 is connected to a control circuit 20 by a conductive wire, and its output side is connected to the ejector device 10 and a digital display 21 on the upper part of the machine frame 1, respectively. Reference numeral 22 denotes a grain collecting cylinder for collecting grain-sized paddy without a splitting surface, 23 indicates a discharge port provided in a receiving channel for splitting grains that have left the passing trajectory X by 1IiI, and 24 indicates a particle detection position 1f on the passing trajectory X.
This is a rice grain position detection sensor for detecting rice grains that have reached P. Next, the bright and dark parts of the rice grains in FIG. 3 will be explained. This figure shows the rice grains irradiated from below when the tip of the particle reaches the particle detection position 11P, and each of the figures a, b,
In c, the center of the central dotted line (thick line) is the light source 8.
Irradiation point Q1 elliptical closed curve (dotted line) that irradiates rice grains from
indicates the rice grain 25 inside the rice grain, and the concessional dotted line (thin line) drawn inside the rice grain 25 indicates the crack surface R, respectively. In addition, in FIG. When the amounts of light on both sides of the rice grains 26A and 26B of the rice grain image are received, the amounts of light received by each light receiving element 18 and 19 (brightness) are equal, and the difference in the amount of light is within the reference light amount limit value (voltage). Therefore, this rice grain is identified as a regular grain without crack surfaces. In the rice grain 25' shown in the figure, the crack surface R is located on the left side of the irradiation point Q. Therefore, the transmitted light inside the grain that enters from the irradiation point Q is scattered by the crack surface R, and the amount of light on the left side of the grain is decreases and the light intensity difference falls outside the reference light intensity limit value, so this particle is identified as a crack grain. As soon as the rice grain 25'' in Figure C crosses the light-dark expansion surface opposite to the rice grain 25', the light difference becomes outside the standard light intensity limit value, and this particle is also identified as a crack particle. The control circuit 20 shown in FIG.
is connected to the differential amplifier 30 of the shell split grain detection circuit 29, and its output side is connected to the zector device 10 and the shell split grain counter 33, respectively, via an analog switch contact 31 and a comparator 32. Ru. Reference numeral 34 denotes a setting device for setting a reference light amount limit value for the difference in light amount between regular grains and split grains. Further, the rice grain position detection sensor 24 is connected to a total grain number counter 39 via an amplifier 35, a comparator 37 of a total grain number detection circuit 36, and an analog switch 38. Note that the rice grain position detection sensor 24 detects when the rice grain passes through the irradiation point Q.
When the tip of the rice grain reaches a predetermined particle detection position P,
It is formed so that its center coincides with the center of the irradiation point Q. The barrel 9 is also connected to a digital display 21 that displays the barrel side ratio, and 40 is a setting device that sets a reference light amount value for confirming that the tip of the rice grain has reached a predetermined position IP. . With the above-mentioned configuration, the rice grains flowing down from the supply hopper 12 to the vibrating inclined gutter 11 are sent to the linear side by the vibration action of the inclined gutter 11, and are sent from the grain threshing port 15 to the vibrating grain feeding gutter 3. As they flow into the grooves 2 of the grain feeder 613, the grains flow in a longitudinal arrangement in the grooves 2 due to the vibration of the grain feeder 613, and the paddy grains flow down the grooves 4 of the downflow trough 5 and flow therethrough. The rice grains flow down the passing trajectory X from the edge of the rice grain and pass through the particle detection position P. At this time, when the tip of the rice grain reaches a predetermined position P, the rice grain position detection sensor 24 receives the transmitted light beam and generates a light reception signal. is input to the comparator 37 via the amplifier 35, and compared with the reference light amount value set in the comparator 37, and the comparison signal is input to the analog switch 38. A switch signal is generated to close the contact 31 of the analog switch, and the signal is input to the digital display 21 via the total grain counter 39. On the other hand, a split-grain detection circuit 2 receives light reception signals from both sides of the rice grain received by a pair of light receiving elements 18 and 19 provided above the irradiation point Q.
The differential amplifier 30 of No. 9 inputs its output to the comparator 32 at the moment when the contact 31 of the analog switch is closed, and the comparator 32r detects split grain by comparing it with a set reference light amount limit value. At the same time, the detection signal is inputted to the ejector device 10 and the shell split grain counter 33, and the shell split grain counter 33 counts the number of shell split grains and displays it on the digital display 21. The total number of rice grains detected and the number of split grains are calculated and displayed.
Furthermore, the detection signal input to the ejector device 10 is
10 actuating parts are actuated to inject the shell split grains that pass through the passing trajectory The grain-sized paddy that is not used passes through the passage path X and is taken out of the machine via the grain collection cylinder 22. Particularly iFF Claim No. (Z) refers to the light receiving device 9.
Since A detects the maximum change in the light beam transmitted through the entire rice grain using one photodetector element j41, the photoelectric detection device is simplified, and the entire rice grain is scanned in a counting manner to determine the priority change in each part. It is possible to detect crushed grains other than shell-split grains, immature grains, original grains, etc. by detecting each of them, and has the effect of improving the sorting performance. As described above, the rice grain shell-split grain detection device of the present invention has a photoelectric detection device consisting of a light source and a light receiving device, and an ejector device, which are arranged in relation to the locus of passing rice grains. Light is projected onto the rice grains in the trajectory, and the bright and dark parts of the transmitted light are received by a light receiving element, and split grains are detected based on changes in the amount of light received, so the bottom of the gutter is made of slits or transparent material. In conventional cracked grain detection devices equipped with a transparent window, the problems such as changes in the light receiving trowel caused by clogging of the transparent window or iodization, and disturbances in the flow of rice grains due to dust stuck to the transparent window can be completely eliminated. In addition, since it directly receives the optical changes in the light beam transmitted through the rice grains, the detection accuracy can be greatly improved, and the automatic detection of split grains has been completed, as well as labor-saving in the detection work. This method has the advantage of being able to consistently detect split grains with high accuracy and high efficiency, thereby achieving mass production of high-quality refined rice grains. 4. Brief description of the drawings The drawings are examples of the present invention. Fig. 1 is a side sectional view of this device, Fig. 2 is a plan view of its downflow gutter, Fig. 3 is an explanatory diagram of the bright and dark shapes of rice grains, Fig. 4 is its Ii control circuit diagram, and Fig. 5 is a separate implementation. It is a partially enlarged sectional view of an example figure. 1...Box-shaped machine frame 2...Grain feeding groove 3...
・Vibrating grain feeder 4...Grain flow groove 5...Draining gutter 6...Fixing plate for photoelectric detection 7...Photoelectric detection device 8...Light source 9.9A...Light receiving device
10...: l Zecta device 13...Guidance W!
14... Inflow port 15... Grain removal port 16...
Optical fiber 17... Optical fiber 18... Light receiving element 19... Light receiving element
20... Control circuit 21... Digital display 22.
...Grain collecting cylinder 23'...Discharge port 24...Rice grain position detection sensor 25, 25', 25"...Rice grains 26A, 26B...Rice grain side part 27...Amplifier 28... Amplifier 29...
・Detection circuit for shell split grain 30...Differential amplifier 31...
・Analog switch contact 32... Comparator 33... Counter for split grain 34... Setting device 35... Amplifier 36.
...Total grain number detection circuit 37...Comparator 38...
・Analog switch 39... Counter for total grain number 40... Setting device 4
1... Light receiving element P... Particle detection position R...
・Crack surface Q...Irradiation point X...Flowing trajectory
Claims (1)
向して光源と受光装置から成る光電検出装置を関連的に
配設し、前記流下軌跡にある米粒に投光してその透過光
線の明暗部を受光素子によって受光し、その受光量の変
化によって胴割粒を検出するようにした米粒の胴割粒検
出装置。 (21,前記受光装置が、1個の受光素子によって米粒
全体の透過光線の光量変化を受光するものである特許請
求の範囲第+11項記載の米粒の胴割粒検出装置。 I、前記受光装置が、複数個の受光素子によって米粒の
複数個所の透過光線の光量変化をそれぞれ受光するもの
である特許請求の範囲第(1)項記載の米粒の胴割粒検
出装置。 (4)、前記受光装置が、前記流下軌跡に対向して設け
た米事α位置検出用センサーが米粒の位置を検出した信
号によって受光するように形成した制御回路に連結しで
ある特許請求の範囲第T11項または第(2項または第
(3:1項記載の米粒の胴割粒検出装置。 (■、前記受光装置が、胴割粒比率を表示するように形
成した制御回路に連結しである特許請求の範囲第(11
項または第(2)項または第((8)項記載の米粒の胴
割粒検出装置。[Claims] (1) A photoelectric detection device consisting of a light source and a light receiving device is arranged in relation to the trajectory of the rice grains flowing down from one end of the gutter, and This rice grain split grain detection device is configured to emit light, receive the bright and dark parts of the transmitted light beam by a light receiving element, and detect split grains based on changes in the amount of received light. (21. The rice grain split grain detection device according to claim 11, wherein the light receiving device receives changes in the amount of light transmitted through the entire rice grain using one light receiving element. I. The light receiving device The rice grain shell-split grain detection device according to claim (1), wherein a plurality of light-receiving elements respectively receive changes in the amount of transmitted light at a plurality of locations on the rice grain. Claim T11 or Claim 1, wherein the device is connected to a control circuit formed such that a sensor for detecting the rice grain α position provided opposite to the falling locus receives light in response to a signal that detects the position of the rice grain. (Claim 2 or (3: 1) The rice grain shell-split detection device according to item 1. No. (11)
The apparatus for detecting split grains of rice grains according to item (2) or item (8).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3680082A JPS58129257A (en) | 1982-03-08 | 1982-03-08 | Detecting apparatus of body cracked grain of rice grain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3680082A JPS58129257A (en) | 1982-03-08 | 1982-03-08 | Detecting apparatus of body cracked grain of rice grain |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1258482A Division JPS58131181A (en) | 1982-01-28 | 1982-01-28 | Apparatus for sorting cracked rice grain |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58129257A true JPS58129257A (en) | 1983-08-02 |
Family
ID=12479857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3680082A Pending JPS58129257A (en) | 1982-03-08 | 1982-03-08 | Detecting apparatus of body cracked grain of rice grain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58129257A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5478191A (en) * | 1977-12-02 | 1979-06-22 | Omron Tateisi Electronics Co | Detecting method of defect of rice grains |
JPS566141A (en) * | 1979-06-27 | 1981-01-22 | Satake Eng Co Ltd | Condenser of color separator |
-
1982
- 1982-03-08 JP JP3680082A patent/JPS58129257A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5478191A (en) * | 1977-12-02 | 1979-06-22 | Omron Tateisi Electronics Co | Detecting method of defect of rice grains |
JPS566141A (en) * | 1979-06-27 | 1981-01-22 | Satake Eng Co Ltd | Condenser of color separator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4572666A (en) | Apparatus for detecting cracked rice grain | |
US3097744A (en) | Quantitative photometric materials sorter | |
EP0044014A1 (en) | Photoelectric sorting device for color sorting apparatus | |
US11872596B2 (en) | Object conveying and/or sorting system | |
CN206139532U (en) | Rice color sorter | |
CN1134663C (en) | Apparatus and methods for measurement and classification of generalized neplike entities in fiber samples | |
US3914601A (en) | Compact viewing assembly for light sensitive sorting machine | |
KR19980072295A (en) | Color sorter | |
JPS58129257A (en) | Detecting apparatus of body cracked grain of rice grain | |
EP0086289B1 (en) | Apparatus for detecting cracked grain of unhulled rice or hulled rice | |
Thomasson et al. | Cotton mass flow measurement: experiments with two optical devices | |
DE4412889C2 (en) | Method and arrangement for monitoring a solid-liquid separation device | |
JPS59145951A (en) | Measuring device for damaged grain | |
JPS58159882A (en) | Selector for granular material | |
JPS58107145A (en) | Cracked rice grain detector | |
JPS58131181A (en) | Apparatus for sorting cracked rice grain | |
KR860000504B1 (en) | Apparatus for detecting cracked grain of unhulled rice or hulled rice | |
JPS60241979A (en) | Color selector | |
JPS58137479A (en) | Information apparatus of cracked grain detector | |
JPS6330072B2 (en) | ||
JPS6171878A (en) | Color selector | |
JPS5880557A (en) | Detector for body crack of rice grain | |
GB2117111A (en) | Detecting cracked rice grains | |
JPH0228814B2 (en) | ||
JPH0136572B2 (en) |