JPS58128765A - High dielectric-resistance semiconductor element - Google Patents

High dielectric-resistance semiconductor element

Info

Publication number
JPS58128765A
JPS58128765A JP1116782A JP1116782A JPS58128765A JP S58128765 A JPS58128765 A JP S58128765A JP 1116782 A JP1116782 A JP 1116782A JP 1116782 A JP1116782 A JP 1116782A JP S58128765 A JPS58128765 A JP S58128765A
Authority
JP
Japan
Prior art keywords
section
impurity
bevel
layer
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1116782A
Other languages
Japanese (ja)
Inventor
Kazuhisa Wada
和田 一久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1116782A priority Critical patent/JPS58128765A/en
Publication of JPS58128765A publication Critical patent/JPS58128765A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/102Cathode base regions of thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To prevent the increase of field strength in the surface, and to improve dielectric resistance by making the gradient of impurity concentration smaller in a peripheral bevel section not related with the conduction of the high dielectric- resistance semiconductor element having negative bevel structure. CONSTITUTION:P-layers 2, 3 are formed by the diffusion of the impurity of both surfaces of an N type Si board 1, and an N<+> layer 4 is formed by the diffusion of a donor impurity. The exposing section of a reverse dielectric-resistance junction 8 is made a positive bevel and the exposing section of a forward dielectric- resistance junction 9 a negative bevel. In a high dielectric-resistance semiconductor having such constitution, high surface impurity-concentration is required only in an electrode coating region A, and a peripheral section B is releated only to the voltage stopping power of the element, not in conduction. Consequently, the profile of the impurity concentration of a layer such as the P- layer 3 is held in surface impurity-concentration required for ohmic contact with a cathode electrode in a central section A, and the profile is made gentle extending over the whole direction of depth in the peripheral section B. Accordingly, the field strength of the surface can be weakened by making a depletion layer extensible in a peripheral bevel section.

Description

【発明の詳細な説明】 本発明は半導体の一方の表面の周縁に負ベベル構造を有
し、中央の平面部分に電極が設けられる高耐圧半導体素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high voltage semiconductor element having a negative bevel structure at the periphery of one surface of the semiconductor and an electrode provided at the central plane portion.

高耐圧の必要な半導体素子において、半導体素体の表面
をPM接合に対して傾斜させたベベル構造は周知である
。ベベル構造には正ベベルと負ベベルがあるが、その双
方を利用したものとして代表的なのはサイリスタである
。第1図はそのような高耐圧サイリスタを示し、y形シ
リコン板1の両表面からアクセプタ不純物の拡散により
pegおよび3を形成し、ついでシリコン板1の全表面
を酸化した後光蝕刻法により酸化膜を除来した領域に、
例えばりんのようなドナー不純物の拡散により夏十層番
を設ける。pi@12はアルミニウムによソード電極お
よびゲート電極となるアルミニウム電極6および7がそ
れぞれ備えられる。さらに機械的あるいは化学的表面成
形によって逆方向耐圧接合8の露出部を正ベベルに、順
方向耐圧接合9の露出部を負ベベルにする。このあと図
示しない表面保護膜を被着する。2M13に対しては、
シリコン板1の上面におけるゲート電極あるいは図示し
ないエミッタ短絡構造におけるカソード電極とやかにし
て表面の電界分担を軽くするために、アルミニウムとガ
リウム、あるいはアルミニウムとほう素の二重拡散によ
って第2図のような二股の不純物分布にすることが行わ
れる。なおサイリスタにおいては、舅エミッタ層4との
接合に近いPベース層3の不純物濃度が高くないと、点
弧しやすくなりすぎる問題もある。このような不純物分
布においては、サイリスタに加わる順方向阻止電圧が大
きくなるにつれて、接合9の両側に広がる空乏層のPベ
ース領域側への広がりは第aWJでaで示すGaあるい
は1の拡散前面で阻止され、それ以降は空乏層はもっば
ら夏ペース領域側にのみ広がる。
In semiconductor devices that require high breakdown voltage, a bevel structure in which the surface of the semiconductor body is inclined with respect to the PM junction is well known. There are two types of bevel structures: positive bevel and negative bevel, and a typical example that utilizes both is the thyristor. FIG. 1 shows such a high voltage thyristor, in which pegs and 3 are formed by diffusion of acceptor impurities from both surfaces of a Y-shaped silicon plate 1, and then the entire surface of the silicon plate 1 is oxidized by a post-photoetching method. In the area where the membrane was removed,
Diffusion of donor impurities, such as phosphorus, provides a summer layer. pi@12 is provided with aluminum electrodes 6 and 7, which are made of aluminum and serve as a soode electrode and a gate electrode, respectively. Furthermore, by mechanical or chemical surface shaping, the exposed portion of the reverse pressure-resistant joint 8 is made to have a positive bevel, and the exposed portion of the forward-direction pressure-resistant joint 9 is made to be a negative bevel. After that, a surface protective film (not shown) is applied. For 2M13,
In order to make the gate electrode on the upper surface of the silicon plate 1 or the cathode electrode in the emitter short-circuit structure (not shown) light and reduce the electric field distribution on the surface, double diffusion of aluminum and gallium or aluminum and boron is used to form the structure shown in FIG. A bifurcated impurity distribution is created. In addition, in the thyristor, unless the impurity concentration of the P base layer 3 close to the junction with the end emitter layer 4 is high, there is a problem that the thyristor becomes too easy to ignite. In such an impurity distribution, as the forward blocking voltage applied to the thyristor increases, the depletion layer that spreads on both sides of the junction 9 expands toward the P base region side at the front of the Ga or 1 diffusion indicated by a in the aWJ. After that, the depletion layer will only expand towards the summer pace region.

本発明はこれに対し、負ベベル構造の表面近傍における
空乏層の広がりが阻止されることに基づく表面での電界
強度の上昇を防ぎ、表面での降伏の発生の虞の少ない半
導体素子を提供することを目的とする。
In view of this, the present invention prevents the increase in electric field strength at the surface due to the prevention of the spread of the depletion layer near the surface of the negative bevel structure, and provides a semiconductor element with less risk of occurrence of breakdown at the surface. The purpose is to

この目的は、半導体素体の一方の表面の周縁に負ベベル
構造を有し、中央の平面部分に電極が設ケラれる高耐圧
半導体において、ベベル構造ノ形成される接合の高不純
物濃度側の層の少なくとも接合より遠い領域における周
縁部の不純物濃度の厚さ方向の傾きが中央部のそれより
ゆるやかであることによって達成される。
The purpose of this is to create a layer on the high impurity concentration side of the junction formed by the bevel structure in a high-voltage semiconductor that has a negative bevel structure on the periphery of one surface of the semiconductor body and an electrode on the central plane part. This is achieved by making the slope of the impurity concentration in the peripheral portion in the thickness direction, at least in the region far from the junction, more gradual than that in the central portion.

以下図を引用して本発明の実施例について説明する。本
発明はオーム接触のため、あるいはサイリスタにおける
点弧感度の調整のための高い表面不純物濃度が必要なの
は第1図にAで示される電極被着領域のみであり、Bで
示される周縁部は素子の電圧阻止能力にのみ与り、導通
には関与しないとの認識に基づき、例えば2層3の不純
物濃度のプロフィルを中央部大では第3図に実線31で
示すように従来と同様にするが、周縁部Bでは点線32
で示すように深さ方向全体にわたってゆるやかにする。
Embodiments of the present invention will be described below with reference to the drawings. In the present invention, a high surface impurity concentration for ohmic contact or for adjusting the firing sensitivity of the thyristor is required only in the electrode deposition area shown as A in FIG. 1, and the peripheral area shown as B in FIG. Based on the recognition that the impurity concentration of the second layer 3 is the same as the conventional one, as shown by the solid line 31 in FIG. , dotted line 32 at the periphery B
Make it gentle throughout the depth direction as shown in .

このような二種類の不純物濃度プロフィルを形成するに
は、第4図のようにシリコン板lの表面の周縁部のみに
光蝕刻法によって酸化膜10を残留させ、このシリコン
板を例えば所定の量のムlソースおよびBソースと共に
石英アンプル中に真空封入し、長時間加熱する。酸化膜
は1のじやへい効果があるため、Al、の拡散前面は第
4図の実li[9まで達するが、Bの拡散前面は点l1
llのような形状になる。すなわち1回の拡散工程だけ
で、中央部には第3図の実線31で示すプロフィル、周
縁部では点線3zで示すプロフィルが得られる。この結
果、第す図において従来のB拡散前面12の場合には空
乏層の広がりは1113のように阻止されたのに対して
、本発明によるB拡散前面11の場合には線14で示す
ように広がり、表面の電界は低く抑えられ、表面での降
伏が防止されるのでサイリスタの順方向耐圧が向上する
O 以上述べたように本発明は負ベベル構造を有する高耐圧
半導体素子の導通に関与しない周縁のベベル部では不純
物濃度の傾きを小さくして空乏層が広がり得るようにす
ることによって表面の電界の強さを弱めるものである。
In order to form these two types of impurity concentration profiles, as shown in FIG. The mixture is vacuum sealed in a quartz ampoule with the Mul sauce and the B sauce, and heated for a long time. Since the oxide film has a diffusion effect of 1, the diffusion front of Al reaches the point li[9 in Fig. 4, but the diffusion front of B reaches point l1.
It will have a shape like ll. That is, with only one diffusion step, a profile shown by the solid line 31 in FIG. 3 in the central part and a profile shown by the dotted line 3z in the peripheral part can be obtained. As a result, in the case of the conventional B diffusion front surface 12 in FIG. The electric field at the surface is suppressed to a low level, and breakdown at the surface is prevented, so the forward breakdown voltage of the thyristor is improved. In the beveled portion of the periphery, the slope of the impurity concentration is made smaller so that the depletion layer can expand, thereby weakening the strength of the electric field at the surface.

そのような二種類の不純物濃度プロフィルは、例えば7
層においては酸化膜によるほう素のしゃへい効果を利用
してほう素とアルJニウ^の同時拡散により1回の拡散
工程でできるので、極めて容易に耐圧の向上した素子を
得ることができ、サイリスタに限らず負ベベル構造を有
するならばダイオード、トライアックなどにも有効に本
発明を適用することができる。
Such two types of impurity concentration profiles are, for example, 7.
In the layer, boron and aluminum can be simultaneously diffused in one diffusion process by utilizing the boron shielding effect of the oxide film, so it is possible to obtain an element with improved breakdown voltage extremely easily. The present invention can be effectively applied not only to diodes, triacs, etc., but also to diodes, triacs, etc., as long as they have a negative bevel structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象例である高耐圧サイリスタの断面
図、第2図は従来の高耐圧サイリスタの一例の不純物濃
度のプロフィル図、第3図は本発明による高耐圧サイリ
スタの一実施例の不純物濃度のプロフィル図、第4図は
その不純物濃度プロフィルの作成方法を示す断面図、第
す図は負ベベル構造における従来例と本発明の実施例の
空乏層の広がりの差異を示す断面図である。 1:シリコン板、9FPN接合、11:はう素の拡散前
面。 第2図   73図 C−+塚さ        →う靭 74図 第5図 2
Figure 1 is a cross-sectional view of a high voltage thyristor that is an example of the present invention, Figure 2 is an impurity concentration profile diagram of an example of a conventional high voltage thyristor, and Figure 3 is an embodiment of a high voltage thyristor according to the present invention. Figure 4 is a cross-sectional view showing the method of creating the impurity concentration profile, Figure 4 is a cross-sectional view showing the difference in the spread of the depletion layer between the conventional example and the embodiment of the present invention in a negative bevel structure It is. 1: silicon plate, 9FPN junction, 11: boron diffusion front. Fig. 2 Fig. 73 C-+ Tsukasa → Utsui Fig. 74 Fig. 5 2

Claims (1)

【特許請求の範囲】[Claims] 1)半導体素体の一方の表面の周縁に負ベベル構造を有
し、中央の平面部分に電極が設けられるものにおいて、
ベベル構造の形成される接合の高不純物濃度側の層の少
なくとも接合より遠い領域における周縁部の不純愉濃度
の厚さ方向の傾きが中央部のそれよりゆるやかなことを
特徴とする高耐圧半導体素子。
1) In a semiconductor element having a negative bevel structure at the periphery of one surface and an electrode provided at the central plane part,
A high-voltage semiconductor device characterized in that, in at least a region of a layer on the high impurity concentration side of a junction where a bevel structure is formed, the slope of the impurity concentration at the periphery in the thickness direction is gentler than that at the center. .
JP1116782A 1982-01-27 1982-01-27 High dielectric-resistance semiconductor element Pending JPS58128765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116782A JPS58128765A (en) 1982-01-27 1982-01-27 High dielectric-resistance semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116782A JPS58128765A (en) 1982-01-27 1982-01-27 High dielectric-resistance semiconductor element

Publications (1)

Publication Number Publication Date
JPS58128765A true JPS58128765A (en) 1983-08-01

Family

ID=11770485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116782A Pending JPS58128765A (en) 1982-01-27 1982-01-27 High dielectric-resistance semiconductor element

Country Status (1)

Country Link
JP (1) JPS58128765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144871A (en) * 1984-12-19 1986-07-02 Toyo Electric Mfg Co Ltd Beveled structure of semiconductor element
US5003368A (en) * 1987-08-11 1991-03-26 Bbc Brown Boveri Ag Turn-off thyristor
US5710442A (en) * 1995-02-03 1998-01-20 Hitachi, Ltd. Semiconductor device and method of manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144871A (en) * 1984-12-19 1986-07-02 Toyo Electric Mfg Co Ltd Beveled structure of semiconductor element
US5003368A (en) * 1987-08-11 1991-03-26 Bbc Brown Boveri Ag Turn-off thyristor
US5081050A (en) * 1987-08-11 1992-01-14 Bbc Brown Boveri Ag Method of making a gate turn-off thyristor using a simultaneous diffusion of two different acceptor impurities
US5710442A (en) * 1995-02-03 1998-01-20 Hitachi, Ltd. Semiconductor device and method of manufacturing same

Similar Documents

Publication Publication Date Title
US3832732A (en) Light-activated lateral thyristor and ac switch
JPS5598858A (en) Gate turn-off thyristor
DE2525329A1 (en) BIDIRECTIONAL PHOTOTHYRISTOR
JPH04127480A (en) High breakdown strength low resistance semiconductor device
GB1018399A (en) Semiconductor devices
JPS5691478A (en) Manufacture of punch-through type diode
US4004949A (en) Method of making silicon solar cells
US3994011A (en) High withstand voltage-semiconductor device with shallow grooves between semiconductor region and field limiting rings
JPS60231363A (en) Manufacture of gate turn-off thyristor
EP0214485B1 (en) Asymmetric thyristor and method of making the same
JPH01274471A (en) Thyristor
JPS58128765A (en) High dielectric-resistance semiconductor element
GB983266A (en) Semiconductor switching devices
JP3718223B2 (en) Semiconductor device for high voltage with vertical groove
JPS5473585A (en) Gate turn-off thyristor
JPH0974187A (en) High withstand voltage lateral type semiconductor device
JPS61285766A (en) Manufacture of semiconductor device
US3495138A (en) Semi-conductor rectifiers with edgegeometry for reducing leakage current
JPS6279667A (en) Semiconductor device
JPH02142184A (en) Semiconductor device and manufacture thereof
JPH0268949A (en) High withstand voltage semiconductor device
JPS562667A (en) Semiconductor device and manufacture thereof
JP2603083B2 (en) High voltage semiconductor device
JPH065841A (en) Manufacture of semiconductor device
JPS639670B2 (en)