JPS58128663A - Silver oxide battery - Google Patents

Silver oxide battery

Info

Publication number
JPS58128663A
JPS58128663A JP1073682A JP1073682A JPS58128663A JP S58128663 A JPS58128663 A JP S58128663A JP 1073682 A JP1073682 A JP 1073682A JP 1073682 A JP1073682 A JP 1073682A JP S58128663 A JPS58128663 A JP S58128663A
Authority
JP
Japan
Prior art keywords
battery
oxide
active material
sodium hydroxide
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1073682A
Other languages
Japanese (ja)
Inventor
Kazuhiro Imazawa
計博 今澤
Yukio Muramatsu
村松 幸男
Toshio Shigematsu
重松 敏雄
Kenzo Kawashima
川島 健三
Masatsugu Kondo
近藤 正嗣
Tadashi Sawai
沢井 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1073682A priority Critical patent/JPS58128663A/en
Publication of JPS58128663A publication Critical patent/JPS58128663A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To increase the battery performance of a silver oxide battery, in which zinc is used as a negative active material and silver oxide is used as a positive active material, by restricting the composition of electrolyte which is used for the battery and made of an aqueous solution which principally consists of sodium hydroxide and contains zinc oxide. CONSTITUTION:A small button-type silver-oxide battery is constituted by using zinc as a negative active material, silver oxide as a positive active material, and an aqueous solution which principally consists of sodium hydroxide and contains zinc oxide as an electrolyte. In such a battery, the electrolyte is restricted to contain 20-25wt% of sodium hydroxide, and zinc oxide in a concentration from 100% to 40% of its solubility. As a result, the increase of the internal resistance during the electric-discharge process can be suppressed, and the closed-circuit voltage characteristic of the battery is enhanced. Besides, a battery with excellent electric discharge and preservation performances can be obtained.

Description

【発明の詳細な説明】 本発明は、正極活物質として酸化銀、負極活物質として
亜鉛、電解液として酸化亜鉛を含んだ水酸化ナトリウム
主体の水溶液を用いた酸化銀電池のうち、時計など小型
電子機器に用いる小型のボタ/電池において、電解液と
して限定した組成のものを用いることにより、放電中の
電池内部抵抗の低減あるいは安定化、およびそれに伴う
閉路電圧特性の向上】図ることを目的とするものである
Detailed Description of the Invention The present invention is a silver oxide battery that uses silver oxide as a positive electrode active material, zinc as a negative electrode active material, and a sodium hydroxide-based aqueous solution containing zinc oxide as an electrolyte. The purpose of this technology is to reduce or stabilize internal battery resistance during discharge and improve closed-circuit voltage characteristics by using an electrolyte with a limited composition in small batteries/batteries used in electronic devices. It is something to do.

近年、カメラ、電子腕時計、補聴器などの小型電子機器
の普及には目ざましいものがある。これらの機器、特に
電子腕時計用の電源として、電圧の安定性、保存特性、
耐漏液特性の優秀さから、水酸化ナトリウムを主体とす
るアルカリ電解液を使用した小型のボタン型酸化銀電池
が数多く使われている。
In recent years, the spread of small electronic devices such as cameras, electronic wristwatches, and hearing aids has been remarkable. As a power source for these devices, especially electronic watches, voltage stability, storage characteristics,
Due to their excellent leakage resistance, many small button-type silver oxide batteries that use an alkaline electrolyte mainly composed of sodium hydroxide are in use.

従来、この種の酸化銀電池の電解液組成としては、水酸
化ナトリウムが30〜4o重量係で、かつ、酸化亜鉛を
その飽和状態まで溶解させた水溶液が用いられていた。
Conventionally, as the electrolyte composition of this type of silver oxide battery, an aqueous solution containing sodium hydroxide at a weight ratio of 30 to 40 and zinc oxide dissolved to its saturated state has been used.

これは主に強アルカリである電解液中での陰極亜鉛の溶
出による保存中の容駄劣化および、水素ガスの発生全防
止するためであった0しかしこの電解液組成の場合、最
大重導度を示す18重量%NaOHからかなり離ねた組
成であり、電導度が低くなっている。このことは電池の
静特性としての内部抵抗を高くすると同時に、放電過程
において、放電深度と共に混油の内部抵抗が急激に上昇
するという欠点があった。この放電過程でめ内部抵抗の
上昇は、時計等小型電子機器への適応に対して閉路電圧
特性上重大な欠点となっている。
This was mainly to prevent the deterioration of the container during storage due to elution of the cathode zinc in the strongly alkaline electrolyte and to completely prevent the generation of hydrogen gas.However, with this electrolyte composition, the maximum heavy conductivity The composition is quite different from that of 18 wt% NaOH, which has a low electrical conductivity. This increases the internal resistance as a static characteristic of the battery, and at the same time has the drawback that the internal resistance of the mixed oil increases rapidly with the depth of discharge during the discharge process. The increase in internal resistance during this discharge process is a serious drawback in terms of closed circuit voltage characteristics when applied to small electronic devices such as watches.

本発明は、以上の点に着目し電解液組成について詳細に
検討したところ、水酸化す) IJウムを20〜25重
jt%含み、かつ酸化亜鉛をその飽和溶解量から飽和溶
解量の40%量の間の領域のものを用いることにより、
保存性に問題がなく、かつ放電、閉路電圧特性の優れた
小型のボタン型酸化銀電池を得ることができた。
The present invention focused on the above points and studied the electrolyte composition in detail, and found that it contains 20 to 25% by weight of IJium hydroxide and 40% of the saturated dissolved amount of zinc oxide. By using those in the area between the quantities,
It was possible to obtain a small button-type silver oxide battery with no problems in storage stability and excellent discharge and closing voltage characteristics.

以下、その詳細を実施例とともに説明する。The details will be explained below along with examples.

第1図は電解液のNaOH濃度の違いによる放電中の電
池内部抵抗の変化を示しだ図である。図中AはNaOH
濃度を20重歇係、Bば30重量%とした電池であり、
酸化亜鉛はそれぞれ飽和溶解量のsol量溶したもので
ある。試験は直径7.9咽、総厚2.○順 サイズの電
池を用い30KQの定抵抗連続放電で行った。
FIG. 1 is a diagram showing changes in battery internal resistance during discharge due to differences in NaOH concentration of the electrolyte. A in the figure is NaOH
It is a battery with a concentration of 20 cycles and 30% by weight of B,
Zinc oxide is dissolved in a sol amount corresponding to the saturated solubility amount. The test is 7.9 mm in diameter and 2.9 mm in total thickness. The test was carried out using a battery of size ○ with constant resistance continuous discharge of 30KQ.

図に示したように、放電開始時の内部抵抗は約1.6 
倍の差であるが、Bは放電深度と共に、内部抵抗の上昇
が激しく放電深度80チではAの4倍にもなり、100
Ωを超えてしまう。電子腕時計用、特に水酸化ナトリウ
ムを主成分とするアルカリ電解液を使用する電池では、
放電中白部抵抗が50Ω以上となると機器のICやLS
Iに誤動作が生じることから、この上昇を60Q以下に
おさえることが必要となっている。
As shown in the figure, the internal resistance at the start of discharge is approximately 1.6
However, in B, the internal resistance increases sharply with the depth of discharge, and at a depth of discharge of 80 inches, it is four times that of A, and 100
It exceeds Ω. For electronic watches, especially batteries that use an alkaline electrolyte containing sodium hydroxide as the main component,
If the white part resistance becomes 50Ω or more during discharge, the device's IC or LS
Since a malfunction occurs in I, it is necessary to suppress this increase to 60Q or less.

次表は、酸化亜鉛を飽和溶解量のso%量とした場合の
N a OH濃度と電池の内部抵抗、閉路電圧の関係を
示したものである。NaOHが30重喰係以上のもので
は内部抵抗は非常に高くなり、閉路電圧も26重量係以
下のものに比べてかなり低くなっている。
The following table shows the relationship between the NaOH concentration, the internal resistance of the battery, and the closed circuit voltage when zinc oxide is expressed as so% of the saturated dissolved amount. When NaOH is 30% by mass or more, the internal resistance becomes very high, and the closed circuit voltage is considerably lower than when the NaOH is 26% by mass or less.

以   下   余   白 但し閉路電圧は2にΩ負荷6秒放電時の最低電圧である
Margin below However, the closed circuit voltage is the lowest voltage when discharging a 2Ω load for 6 seconds.

またこの表は第1図の場合と同一試験条件のものである
Moreover, this table is for the same test conditions as in the case of FIG.

第2図は電解病液中の各々のNaOH濃度における酸化
亜鉛溶解量と放電深度80多時の内部抵抗、および60
℃40日保存時の容量劣化率との関係を示したものであ
る。図中イはHa OH濃度が15重量%、口は20重
量%、ハは26重量係ニル3Q重量%のときの容量劣化
率を、ホは16重量%、へは20重量%、トは26重量
%、チは30重量%のときの内部抵抗を示す。各々のN
 a OH濃度おいて、放電深度80チ時の内部抵抗は
酸化亜鉛量によっては大きな変化は見られないが、容量
劣化ではNaOH20重量%以上のものについて酸化亜
鉛が飽和量の4o%量を境にそれ以下では急激に大きく
なっている。またHaOH15重量%のものについては
酸化亜鉛が40係量から飽和量であってもかなり容量劣
化があった。
Figure 2 shows the dissolved amount of zinc oxide at each NaOH concentration in the electrolytic solution, the internal resistance at a discharge depth of 80, and the internal resistance at 60
The figure shows the relationship between the capacity deterioration rate and the capacity deterioration rate when stored for 40 days at ℃. In the figure, A is the capacity deterioration rate when the HaOH concentration is 15% by weight, 20% by weight, C is 26% by weight, H is 16% by weight, 20% by weight, and G is 26% by weight. % by weight, CH indicates the internal resistance at 30% by weight. each N
a In terms of OH concentration, the internal resistance at a discharge depth of 80 degrees does not change significantly depending on the amount of zinc oxide, but in terms of capacity deterioration, for NaOH of 20% by weight or more, the zinc oxide reaches the saturated amount of 40%. Below that, it increases rapidly. In addition, in the case of 15% by weight HaOH, there was considerable capacity deterioration even if the zinc oxide content was from 40% to saturation.

以下の結果より、電解液として、水酸化ナトリウム濃度
を20〜26重量係、酸化亜鉛を各NaOH濃度におけ
る飽和溶解量の4o〜100  係量の間で組成が規定
されるアルカリ水溶液を使用することによって、閉路電
圧特性に優れかつ放電、保存性にも優れた小型のボタン
型酸化銀電池を得ることができる。
From the results below, it is found that an alkaline aqueous solution whose composition is specified as an electrolyte with a sodium hydroxide concentration of 20 to 26 weight coefficients and a zinc oxide concentration of 40 to 100 weight coefficients of the saturated dissolution amount at each NaOH concentration is used. As a result, a small button-type silver oxide battery with excellent closed-circuit voltage characteristics and excellent discharge and storage properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルカリ電解液中の水酸化ナトリウム濃度の違
いによる放電中の電池内部抵抗の変化を示した図、第2
図は電解液中の各々の水酸化ナトリウム濃度における酸
化亜鉛溶解量と放電深度80係時の内部抵抗および6o
℃40日保存時の容量劣化率との関係を示しだ図である
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
 1  図
Figure 1 shows changes in battery internal resistance during discharge due to differences in sodium hydroxide concentration in the alkaline electrolyte, Figure 2
The figure shows the dissolved amount of zinc oxide at each sodium hydroxide concentration in the electrolyte, the internal resistance at a depth of discharge of 80, and the 6o
It is a figure which shows the relationship with the capacity deterioration rate after 40 days of storage at °C. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 figure

Claims (1)

【特許請求の範囲】[Claims] 亜鉛を負極活物質、酸化銀を正極活物質とし、電解液と
して酸化亜鉛を含み水酸化ナトリウム主体の水溶液を用
いた電池であって、前記電解液組成が水酸化ナトリウム
を20〜26重−i%含み、かつこの水酸化す) IJ
ウム濃度1こおいて酸化亜鉛はその飽和溶解量から飽和
溶解量の40%量の間に規制されていることを特徴とす
る酸化銀電池。
A battery in which zinc is used as a negative electrode active material, silver oxide is used as a positive electrode active material, and an aqueous solution containing zinc oxide and mainly consisting of sodium hydroxide is used as an electrolytic solution, wherein the electrolytic solution composition is 20 to 26 F-i of sodium hydroxide. % and its hydroxylation) IJ
A silver oxide battery characterized in that zinc oxide is regulated between a saturated dissolution amount and 40% of the saturated dissolution amount when the zinc oxide concentration is 1.
JP1073682A 1982-01-25 1982-01-25 Silver oxide battery Pending JPS58128663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073682A JPS58128663A (en) 1982-01-25 1982-01-25 Silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073682A JPS58128663A (en) 1982-01-25 1982-01-25 Silver oxide battery

Publications (1)

Publication Number Publication Date
JPS58128663A true JPS58128663A (en) 1983-08-01

Family

ID=11758572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073682A Pending JPS58128663A (en) 1982-01-25 1982-01-25 Silver oxide battery

Country Status (1)

Country Link
JP (1) JPS58128663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261806A (en) * 2003-02-28 2004-09-24 Illinois Tool Works Inc <Itw> Repeatable mounting unit for automatic spray apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261806A (en) * 2003-02-28 2004-09-24 Illinois Tool Works Inc <Itw> Repeatable mounting unit for automatic spray apparatus
US9199260B2 (en) 2003-02-28 2015-12-01 Carlisle Fluid Technologies, Inc. Repeatable mounting unit for automatic spray device

Similar Documents

Publication Publication Date Title
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
US6790558B2 (en) Electrode alloy powder and method of producing the same
JP2007128707A (en) Alkaline battery
JPS58128663A (en) Silver oxide battery
JPH0222984B2 (en)
JPH04212269A (en) Alkaline storage battery
JP2610565B2 (en) Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode
JP3512826B2 (en) Button type alkaline battery
JP2995893B2 (en) Nickel / metal hydride storage battery
JPH06223834A (en) Button type alkaline battery
JPH0992279A (en) Alkaline storage battery
JPS5966060A (en) Zinc electrode for alkaline zinc storage battery
JPS63138646A (en) Cylindrical nonaqueous electrolyte cell
JPS63226881A (en) Nonaqueous electrolyte cell
JP2935855B2 (en) Alkaline battery
JP3316394B2 (en) Method for producing hydrogen storage alloy for electrode
JPS61264663A (en) Silver oxide battery
JP3082341B2 (en) Hydrogen storage electrode
JPS5947431B2 (en) alkaline battery
JPS6215767A (en) Organic electrolyte battery
JPH04188561A (en) Alkaline storage battery
JPS62168344A (en) Nonaqueous electrolyte battery
JPH09147906A (en) Alkaline storage battery
JPH0760687B2 (en) Organic electrolyte battery
JPS59151754A (en) Silver oxide battery