JPS5812819A - Vehicle refrigerator - Google Patents

Vehicle refrigerator

Info

Publication number
JPS5812819A
JPS5812819A JP56110689A JP11068981A JPS5812819A JP S5812819 A JPS5812819 A JP S5812819A JP 56110689 A JP56110689 A JP 56110689A JP 11068981 A JP11068981 A JP 11068981A JP S5812819 A JPS5812819 A JP S5812819A
Authority
JP
Japan
Prior art keywords
compressor
engine
waste heat
expansion unit
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56110689A
Other languages
Japanese (ja)
Inventor
Seigo Miyamoto
宮本 誠吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56110689A priority Critical patent/JPS5812819A/en
Publication of JPS5812819A publication Critical patent/JPS5812819A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3222Cooling devices using compression characterised by the compressor driving arrangements, e.g. clutches, transmissions or multiple drives

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To aim at enhancing refrigerating effect irrespective of waste heat capacity in a vehicle refrigerator utilizing waste heat, by combining an expansion unit, an engine and a compressor, power-transmissibly, so that they are selectively driven in dependence upon waste heat and refrigerating load. CONSTITUTION:Operating fluid, in a Rankine cycle 10, heated by cooling water from a radiator 3 is evaporated in a steam generator 14 and then, flows into an expansion unit 11 for rotating the latter. The steam from the expansion unit 11 flows into a heat recovering heat exchanger 15 and a condenser 12 for condensation, and is circulated. Rotating power of the expansion unit 11 is transmitted to a compressor shaft 37 in a refrigerating cycle 20 through a clutch 34 for driving a compressor 21. In this state, if the capacity of engine waste heat is extremely little, power transmission between the expansion unit 11 and an engine shaft 2 and between the expansion unit 11 and the compressor 21 is disconnected so that the compressor 21 is driven by the engine alone. Thus, the power transmission is switched in dependence upon waste heat or refrigerating load, thereby refrigerating effect and waste heat recovering effect are enhanced.

Description

【発明の詳細な説明】 本発明は車両用冷凍機、特に自動車の廃熱を利用した熱
機関により、冷凍サイクルを駆動して冷凍効果をうる冷
凍機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigerator for a vehicle, and more particularly to a refrigerator that drives a refrigeration cycle with a heat engine that utilizes waste heat from an automobile to obtain a refrigeration effect.

従来、自動車の廃熱を利用した冷凍機としては、ランキ
/機関駆動冷凍機および吸収式冷凍機が提案さ゛れてい
る。ところがこれらの冷凍機では、自動車の負荷が小さ
い時、すなわち廃熱量が少ない時に十分な冷凍効果をう
ることができない欠点がある。
BACKGROUND ART Conventionally, as refrigerators that utilize waste heat from automobiles, rank/engine-driven refrigerators and absorption refrigerators have been proposed. However, these refrigerators have the disadvantage that they cannot provide a sufficient refrigeration effect when the load on the vehicle is small, that is, when the amount of waste heat is small.

不発明は上記にかんがみ廃熱量の多少に関係なく所望の
冷凍効果がえられ、かつ冷凍負荷が少ないときには廃熱
を動力として回収することができる車両用冷凍機を提供
することを目的とするものである。
In view of the above, an object of the present invention is to provide a refrigerator for a vehicle that can obtain a desired refrigeration effect regardless of the amount of waste heat and can recover waste heat as power when the refrigeration load is small. It is.

上記目的を達成する友め、本発明は公知のランキンサイ
クル、冷凍サイクルおよびエンジンを備え、前記ランキ
ンサイクルの膨張機と冷凍サイクルの圧縮機とをクラッ
チを介して連係すると共に、その膨張機および圧縮機と
エンジンとをそれぞれ動力伝達手段を介して連係するこ
とにより、廃熱量が少ない時にはエンジンを介して圧縮
機を駆動し、廃熱量が多い時には膨張機出力をエンジン
に回収するようにしft−ものでるる。
To achieve the above object, the present invention includes a known Rankine cycle, a refrigeration cycle, and an engine, and connects the expander of the Rankine cycle and the compressor of the refrigeration cycle via a clutch, and By linking the machine and engine through power transmission means, the compressor is driven through the engine when the amount of waste heat is low, and the output of the expander is recovered to the engine when the amount of waste heat is large. Out.

以下本発明の一実施例を図面について説明する。An embodiment of the present invention will be described below with reference to the drawings.

1は工ンジ/、2はエンジン1の軸、3は軸2の先端に
ラジェータ4と対向するように取付けられたファン、1
1は膨張機、12はラジェータ4の前方に設置されたラ
ンキンサイクル用凝縮器、13′it、凝縮器12と熱
回収交換器15との間に設けらnた冷媒ポンプ、14は
ラジェータ4に装着された蒸気発生器で、これらの機器
11〜15および機器11〜15を接続する配管により
ランキンサイクル10を構成している。
1 is an engine, 2 is a shaft of the engine 1, 3 is a fan installed at the tip of the shaft 2 so as to face the radiator 4, 1
1 is an expander, 12 is a Rankine cycle condenser installed in front of the radiator 4, 13' is a refrigerant pump installed between the condenser 12 and the heat recovery exchanger 15, and 14 is a refrigerant pump installed in the radiator 4. The installed steam generator constitutes a Rankine cycle 10 by these devices 11 to 15 and piping connecting the devices 11 to 15.

21は冷媒圧縮機、22けラジェータ4の前方に設置さ
れた冷凍サイクル用凝縮器、23は膨張手段、24は蒸
発器、25は蒸発器24のファンで、これらの機器21
〜25および機器21〜25を接続する配管により冷凍
サイクル2oを構成している。
21 is a refrigerant compressor, a refrigeration cycle condenser installed in front of the 22-digit radiator 4, 23 is an expansion means, 24 is an evaporator, 25 is a fan for the evaporator 24, and these devices 21
25 and the piping connecting the devices 21 to 25 constitute a refrigeration cycle 2o.

上記ランキンサイクル1oの膨張機11、冷凍サイクル
20の圧縮機21およびエンジンlは下記のような機構
により保合および離脱できるように構成さnている。す
なわち膨張機11の軸31はこの軸31に装着された動
力取出用電磁クラッチ32、エンジン軸2に取付けらr
′L、たプーリ33およびベルト38を介してエンジン
1と連係されている。
The expander 11 of the Rankine cycle 1o, the compressor 21 of the refrigeration cycle 20, and the engine 1 are constructed so that they can be engaged and detached by the following mechanism. That is, the shaft 31 of the expander 11 is connected to a power take-off electromagnetic clutch 32 mounted on this shaft 31, and a power extraction electromagnetic clutch 32 mounted on the engine shaft 2.
'L is connected to the engine 1 via a pulley 33 and a belt 38.

上記電磁クラッチ32は第2図に示すように、膨張機1
1の固定部材11aに固定さ扛、がっコイル32bを内
蔵するステータ32aと、前記固定部材11aに回動可
能に嵌合され、かつベルト溝を有するロータ32Cと、
膨張機軸31に固定さ扛たディスク32dと、このディ
スク32dにばねを介して取付けられたディスク部材3
2eにより構成さtしている。前記ステータ32a内の
コイル32bに通電さ扛ると、電磁力によりディスク部
材32eはロータ32Cに吸引されるため、ロータ32
Cとディスク32dすなわち膨張機軸31は一体に結合
されるから、膨張機11とエンジン1は動力的に結合さ
nる。
The electromagnetic clutch 32 is connected to the expander 1 as shown in FIG.
a stator 32a that is fixed to one fixed member 11a and has a built-in coil 32b; a rotor 32C that is rotatably fitted to the fixed member 11a and has a belt groove;
A disk 32d fixed to the expander shaft 31 and a disk member 3 attached to the disk 32d via a spring.
2e. When the coil 32b in the stator 32a is energized, the disk member 32e is attracted to the rotor 32C by electromagnetic force.
Since C and the disk 32d, that is, the expander shaft 31 are integrally connected, the expander 11 and the engine 1 are dynamically connected.

一万、冷凍サイクル20側では、その圧縮機21は圧縮
機軸37に装着された動力導入用電磁クラッチ35、エ
ンジン軸2に取付けられたプーリ36およびベルト39
を介してエンジン1と連係さnている。前記電磁クラッ
チ35は第2図゛に示す電磁クラッチ32と同一構造か
らなる。
On the refrigeration cycle 20 side, the compressor 21 includes a power introduction electromagnetic clutch 35 attached to the compressor shaft 37, a pulley 36 attached to the engine shaft 2, and a belt 39.
It is linked to engine 1 via n. The electromagnetic clutch 35 has the same structure as the electromagnetic clutch 32 shown in FIG.

上記膨張機軸31と圧縮機軸37は電磁クラッチ34介
して連結さ扛ている。そのクラッチ34は第3図に示す
ように、固定部材34fに固定され、かつコイル34b
を内蔵するステータ34aと、膨張機軸31に取付けら
扛たロータ34Cと、圧縮機軸37に取付けられたディ
スク34dと、このディスク34dにばねを介して取付
けらnたディスク部材34eにより構成されている。前
記ステータ34a内のコイル34bに通電すると、電磁
力によりディスク部材34eはロータ34Cに吸引され
るため、膨張機軸31と圧縮機軸37は一体的に結合さ
れる。
The expander shaft 31 and compressor shaft 37 are connected via an electromagnetic clutch 34. As shown in FIG. 3, the clutch 34 is fixed to a fixed member 34f and has a coil 34b.
A stator 34a with a built-in rotor 34C, a rotor 34C attached to the expander shaft 31, a disk 34d attached to the compressor shaft 37, and a disk member 34e attached to the disk 34d via a spring. . When the coil 34b in the stator 34a is energized, the disk member 34e is attracted to the rotor 34C by electromagnetic force, so that the expander shaft 31 and the compressor shaft 37 are integrally coupled.

上述した本実施例では、ランキンサイク/I/′10お
よび冷凍サイクル20の各凝縮器12.22をラジェー
タ4の前方に配設されたラジェータファン3および車両
走行に伴う空気流により冷却するように構成したが、前
記凝縮器12.22を車両の適当な空間に適宜配置し、
別個のファンにより冷却するようにしてもよい。またラ
ンキンサイクル10の蒸気発生器14をラジェータ4内
に配設したが、その蒸気発生器を適当な場所に設け、エ
ンジン冷却媒体と熱交換させるようにしてもよい。
In this embodiment described above, the condensers 12 and 22 of the Rankincike/I/'10 and the refrigeration cycle 20 are cooled by the radiator fan 3 disposed in front of the radiator 4 and the air flow accompanying the vehicle running. However, the condenser 12.22 is appropriately placed in an appropriate space of the vehicle,
Cooling may be provided by a separate fan. Furthermore, although the steam generator 14 of the Rankine cycle 10 is disposed within the radiator 4, the steam generator may be disposed at an appropriate location to exchange heat with the engine cooling medium.

さらにエンジン廃熱としてエンジン冷却水を考慮したが
、この外に排気ガスも考えられる。この場合には蒸気発
生器14を排気ガスの流通する通路に設け、同ガスから
熱を回収するようにしてもよい。
Furthermore, although engine cooling water was considered as engine waste heat, exhaust gas may also be considered. In this case, the steam generator 14 may be provided in a passage through which exhaust gas flows, and heat may be recovered from the exhaust gas.

次に上記のような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

ラジェータ3内のエンジン冷却水により加熱されたラン
キンサイクル10の作動流体は、蒸気発生器14内で高
温高圧の蒸気となって膨張機11に流入する。この際、
前記蒸気は減圧膨張しながらエネルギを放出し、膨張機
11の回転動力として出力される。その膨張機11から
吐出さnた低圧蒸気は熱回収用熱交換器15を経て凝縮
器12に流入し、ここでラジェータファン3およヒ車両
の走行に伴う空気流により冷却されて凝縮し液化する。
The working fluid of the Rankine cycle 10 heated by the engine cooling water in the radiator 3 becomes high-temperature, high-pressure steam in the steam generator 14 and flows into the expander 11 . On this occasion,
The steam releases energy while being expanded under reduced pressure, and is output as rotational power of the expander 11. The low-pressure steam discharged from the expander 11 flows into the condenser 12 via the heat recovery heat exchanger 15, where it is cooled by the radiator fan 3 and the air flow accompanying the vehicle's travel, and is condensed and liquefied. do.

この液化した作動流体は冷媒ポンプ13により昇圧され
、さらに熱回収用熱交換器15を経て蒸気発生器14に
送ら扛てランキンサイクル10を終了する。
This liquefied working fluid is pressurized by the refrigerant pump 13, and is further sent to the steam generator 14 via the heat recovery heat exchanger 15 to complete the Rankine cycle 10.

上記膨張機11から吐出された低圧流体は圧力的には低
レベルであるが高温でめるので、冷媒ポンプ13により
熱交換器15を経て蒸気発生器14へ圧送さn、ここで
加熱される液状流体の予熱に、熱交換器15の顕熱を利
用す扛ば、サイクル上の熱効率を向上させることができ
る。しかしスペース的制限の厳しい場合には、熱交換器
15を省略しても基本的な効果が失われる恐れはない。
The low-pressure fluid discharged from the expander 11 has a low pressure level but is quenched at a high temperature, so it is sent under pressure by the refrigerant pump 13 to the steam generator 14 via the heat exchanger 15, where it is heated. By using the sensible heat of the heat exchanger 15 to preheat the liquid fluid, the thermal efficiency of the cycle can be improved. However, in cases where space limitations are severe, there is no risk that the basic effect will be lost even if the heat exchanger 15 is omitted.

このようにして膨張機11から取出さ扛た回転動力は、
クラッチ34を介して冷凍サイクル20の圧縮機軸37
に伝達さ扛るから、圧縮機21は駆動さnる。この駆動
により冷凍サイクル20の蒸発器24から流出して圧縮
機21に流入した低温低圧の冷媒は、圧縮さ牡て高温高
圧のガス冷媒となって凝縮器22へ送られる。そのガス
冷媒はラジェータファン3と車両の走行に伴う空気流に
より冷却され、凝縮、液化した後に膨張手段23へ送ら
れる。この膨張手段23で高圧の液状冷媒は断熱的に減
圧膨張し、低温低圧の気液混相状冷媒となって蒸発器2
4へ送られる。この蒸発器24において前記気液混相状
冷媒は気化蒸発して低温低圧のガス状冷媒となり、再び
圧縮機21に吸入されて冷凍サイクル20を終了する。
The rotational power extracted from the expander 11 in this way is
The compressor shaft 37 of the refrigeration cycle 20 via the clutch 34
The compressor 21 is driven by the signal transmitted to it. Due to this drive, the low-temperature, low-pressure refrigerant that flows out of the evaporator 24 of the refrigeration cycle 20 and flows into the compressor 21 is compressed and becomes a high-temperature, high-pressure gas refrigerant and is sent to the condenser 22. The gas refrigerant is cooled by the radiator fan 3 and the air flow accompanying the running of the vehicle, condensed and liquefied, and then sent to the expansion means 23. In this expansion means 23, the high pressure liquid refrigerant is adiabatically expanded under reduced pressure to become a low temperature, low pressure, gas-liquid multiphase refrigerant, which is transferred to the evaporator 2.
Sent to 4. In the evaporator 24, the gas-liquid multiphase refrigerant is vaporized and becomes a low-temperature, low-pressure gaseous refrigerant, which is sucked into the compressor 21 again to complete the refrigeration cycle 20.

前記蒸発器24で冷却された空気は適当な手段により、
所望の場所へ送られて冷却に供される。
The air cooled by the evaporator 24 is treated by suitable means.
It is sent to a desired location and subjected to cooling.

以上のように、エンジン1の廃熱はランキンサイクル1
0の膨張機11の回転動力に変換されるから、軸31は
回転さ扛る。この軸31の回転により、電磁クラッチ3
4および軸37をブ「して冷凍サイクル20の圧縮機2
1は駆動されて冷凍効果を発揮する。
As mentioned above, the waste heat of engine 1 is the Rankine cycle 1
Since the rotational power of the expander 11 is converted to zero, the shaft 31 is rotated. This rotation of the shaft 31 causes the electromagnetic clutch 3
4 and shaft 37 to connect the compressor 2 of the refrigeration cycle 20.
1 is driven to produce a refrigeration effect.

次に不冥施例の基本的な制御回路を第4図について説明
するに、Aはt源、Bはアース%  ”I JCはスイ
ッチ、32bは電磁クラ、ツチ32のコイル、34bは
電磁クラッチ34のコイル、35bは電磁クラッチ35
のコイルでおる。
Next, to explain the basic control circuit of the Mumei Example with reference to Fig. 4, A is the t source, B is the ground%, I JC is the switch, 32b is the electromagnetic clutch, the coil of Tsuchi 32, and 34b is the electromagnetic clutch. 34 coil, 35b is electromagnetic clutch 35
The coil is used.

上記スイッチa、b、cのスイッチを投入すると、各ス
イッチa、Cに対応したコイル32b。
When the switches a, b, and c are turned on, the coils 32b corresponding to the switches a and c are turned on.

34b、35bに通電されて各クラッチ32゜34.3
5がそnぞれ励磁されるため、膨張機11とエンジン軸
2、膨張機11と圧縮機21、エンジン軸2と圧縮機2
1がそ−nぞ牡動力的に係合される。
34b and 35b are energized and each clutch 32°34.3
5 are respectively excited, the expander 11 and the engine shaft 2, the expander 11 and the compressor 21, and the engine shaft 2 and the compressor 2
1 are engaged with each other in a male-force manner.

(I)  エンジン廃熱量が極めて小さい場合、車両の
アイドリンク状態および始動時などのようにエンジン出
力が極めて小さい場合には廃熱量が少ない。この場合、
スイッチa、bをオフ、−スイッチCをオンとする。膨
張機11とエンジン軸2および膨張機11と圧縮機21
はそれぞれ動力的に互に切り離さn1圧細機21とエン
ジン軸2は互に係合されるから、圧縮機1は専らエンジ
ン1の出力により駆動される。
(I) When the amount of engine waste heat is extremely small, the amount of waste heat is small when the engine output is extremely small, such as when the vehicle is in an idling state or when starting. in this case,
Switches a and b are turned off, and switch C is turned on. Expander 11 and engine shaft 2 and expander 11 and compressor 21
Since the compressor 21 and the engine shaft 2 are engaged with each other, the compressor 1 is driven exclusively by the output of the engine 1.

■ 廃熱量はあるが冷凍サイクルの圧縮機を駆動するに
は不十分な場合、 この場合には、スイッチaをオフ、スイッチb。
■ If there is waste heat, but it is insufficient to drive the compressor of the refrigeration cycle, in this case, turn off switch a and turn off switch b.

Ct−オンとする。膨張機11と圧縮機21は動力的に
係合されるから、圧縮機21はランキンサイクル10の
出力とエンジン1の出力の両者により駆動される。
Set Ct-on. Since the expander 11 and the compressor 21 are dynamically engaged, the compressor 21 is driven by both the output of the Rankine cycle 10 and the output of the engine 1.

■ 冷凍サイクルの圧縮機を駆動するに等しい廃熱量が
えられる場合、 このi合には、スイッチa、Cをオフ、スイッチbをオ
ンとする。冷凍サイクル20の圧縮機21はランキンサ
イクル10の膨張機11と動力的に係合され、膨張機1
1の出力のみにより駆動される。
■ When the amount of waste heat equivalent to driving the compressor of the refrigeration cycle can be obtained, in this case, switches a and C are turned off and switch b is turned on. The compressor 21 of the refrigeration cycle 20 is dynamically engaged with the expander 11 of the Rankine cycle 10, and the expander 1
1 output only.

頓 廃熱量が十分に見られる場合、 この場合には、スイッチCをオフ、−イツチa。If a sufficient amount of waste heat is observed, In this case, switch C is turned off.

bをオンとする。膨張機11はエンジン軸2および圧縮
機21と動力的に保合さn、圧縮機21の駆動々力の余
剰動力はエンジン1に回生される。
Turn on b. The expander 11 is dynamically connected to the engine shaft 2 and the compressor 21, and surplus power of the driving force of the compressor 21 is regenerated to the engine 1.

M 冷凍負荷がない場合、 この場合には、スイッチaをオン、スイッチb。M If there is no refrigeration load, In this case, switch a is turned on and switch b is turned on.

Cをオフとする。膨張機11はエンジン軸2と動力的に
係合され、その膨張機11の出力はすべてエンジン1に
回生される。
Turn C off. The expander 11 is dynamically engaged with the engine shaft 2, and all output of the expander 11 is regenerated to the engine 1.

上記制御を自動的に行うには種々の方法かめるが、その
制御回路の一例を第5図に示す。同図において、a〜C
は第4図に示すスイッチ、eは増幅器、fは演算回路、
gは単室温度センサ、hはエンジンの燃料噴射弁の開放
時間を検知するセンサ、jは電源、kはアースでおる。
Various methods can be used to automatically perform the above control, and an example of the control circuit is shown in FIG. In the same figure, a to C
is the switch shown in Fig. 4, e is the amplifier, f is the arithmetic circuit,
g is a single-chamber temperature sensor, h is a sensor that detects the opening time of the engine's fuel injection valve, j is a power supply, and k is a ground.

このような構成の制御回路では、廃熱量の多少は燃料噴
射弁の開放時間を積算して燃料消費量を演算し、予め準
備さnているプログラムにより演算回路で算出できるよ
うに構成さ扛ている。したがって空調空間の温度を温度
センサgにより検出し、この検出温度により圧縮機のオ
/、オフを判断し、前記廃熱量の多少に応じて電磁クラ
ッチ32b、34b、35bのコイルを電磁するための
スイッチa 、 Cを選択的にオン、オフして自動的に
制御する。
In a control circuit having such a configuration, the amount of waste heat is calculated by integrating the open time of the fuel injector to calculate the amount of fuel consumed, and the calculation circuit is configured to calculate the amount of waste heat using a program prepared in advance. There is. Therefore, the temperature of the air-conditioned space is detected by the temperature sensor g, and based on this detected temperature, it is determined whether the compressor is on or off, and the coils of the electromagnetic clutches 32b, 34b, and 35b are electromagnetically activated depending on the amount of waste heat. Automatically control switches A and C by selectively turning them on and off.

以上説明し友ように不発明によnば、エンジン廃熱の多
少に関係なく空調機を運転できるため、常に快適な積項
が見られるばかりでなく、空調不要の際には廃熱を動力
として回生できるので、車両全体の熱効率を向上させる
ことができる。
As explained above, according to this invention, the air conditioner can be operated regardless of the amount of engine waste heat, so not only is a comfortable product term always available, but also waste heat can be used as power when air conditioning is not required. This can improve the overall thermal efficiency of the vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の車両用冷凍機の一実施例を示す概略図
、第2図および第3図は同実施例の動力伝・達手段の断
面図、第4図は動力伝達手段の基本的な電気回路図、第
5図は第4図のスイッチを作動させるための制御回路図
である。 1・・・エンジン、10・・・ランキンサイクル、11
・・・膨張機、12.22・・・#幅器、13・・・冷
媒ポンプ、14・・・蒸気発生器、20・・・冷凍サイ
クル、21・・・圧縮機、23・・・減圧手段、24・
・・蒸発器、32゜34.35・・・電磁クラッチ。 ′M 1 (2) 第2rfU 320L32c
Fig. 1 is a schematic diagram showing an embodiment of the vehicle refrigerator of the present invention, Figs. 2 and 3 are sectional views of the power transmission/delivery means of the same embodiment, and Fig. 4 is the basics of the power transmission means. FIG. 5 is a control circuit diagram for operating the switch of FIG. 4. 1... Engine, 10... Rankine cycle, 11
... Expander, 12.22...# width container, 13... Refrigerant pump, 14... Steam generator, 20... Refrigeration cycle, 21... Compressor, 23... Decompression means, 24.
...Evaporator, 32°34.35...Electromagnetic clutch. 'M 1 (2) 2nd rfU 320L32c

Claims (1)

【特許請求の範囲】 膨張機、#縮器、冷媒ポンプおよび蒸気発生器からなる
ランキンサイクルと、圧縮機、凝縮器。 膨張手段および蒸発器からなる冷凍サイクルと、エンジ
ンとを備え、前記膨張機、エンジンおよび圧縮機の3者
を動力伝達手段を介して互に連係し、エンジン廃熱およ
び冷凍負荷の多少に応じて膨張機、エンジンおよび圧縮
機を選択的にそjLぞれ係合および離脱させるようにし
たことを特徴とする車両用冷凍機。
[Claims] A Rankine cycle consisting of an expander, a #condenser, a refrigerant pump, and a steam generator, a compressor, and a condenser. The system includes a refrigeration cycle consisting of an expansion means and an evaporator, and an engine, and the expander, the engine, and the compressor are interconnected through a power transmission means, and depending on the amount of engine waste heat and refrigeration load. A vehicular refrigerator characterized in that an expander, an engine, and a compressor are selectively engaged and disengaged, respectively.
JP56110689A 1981-07-17 1981-07-17 Vehicle refrigerator Pending JPS5812819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110689A JPS5812819A (en) 1981-07-17 1981-07-17 Vehicle refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110689A JPS5812819A (en) 1981-07-17 1981-07-17 Vehicle refrigerator

Publications (1)

Publication Number Publication Date
JPS5812819A true JPS5812819A (en) 1983-01-25

Family

ID=14541946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110689A Pending JPS5812819A (en) 1981-07-17 1981-07-17 Vehicle refrigerator

Country Status (1)

Country Link
JP (1) JPS5812819A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124255A (en) * 1984-11-20 1986-06-12 Nippon Denso Co Ltd Rotary drive machine
JP2002115931A (en) * 2000-10-12 2002-04-19 Daikin Ind Ltd Air conditioning apparatus
JP2003090641A (en) * 2001-09-17 2003-03-28 Takasago Thermal Eng Co Ltd Cooling system and its operating method
JP2005307951A (en) * 2004-04-26 2005-11-04 Denso Corp Fluid machine
JP2006132523A (en) * 2004-10-05 2006-05-25 Denso Corp Complex fluid machine
JP2007270684A (en) * 2006-03-30 2007-10-18 Toyota Motor Corp Exhaust heat recovery device
JP2008274834A (en) * 2007-04-27 2008-11-13 Sanden Corp Fluid machine, rankine circuit using the fluid machine, and waste heat utilization system for vehicle
WO2009051140A1 (en) * 2007-10-19 2009-04-23 Sanden Corporation Waste heat utilization device for internal combustion engine
WO2009093549A1 (en) * 2008-01-21 2009-07-30 Sanden Corporation Waste heat utilizing device for internal combustion engine
US7748226B2 (en) 2003-03-25 2010-07-06 Denso Corporation Waste heat utilizing system
JP2010242518A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Waste heat recovery device
CN101915133A (en) * 2010-07-06 2010-12-15 青岛科技大学 Thermal-tube flywheel-type turbine generating and energy storage device and method
JP2014037798A (en) * 2012-08-15 2014-02-27 Ulvac-Riko Inc Waste heat power generation system
CN103673384A (en) * 2012-12-04 2014-03-26 摩尔动力(北京)技术股份有限公司 Refrigeration system using waste heat of engine
FR3033633A1 (en) * 2015-03-09 2016-09-16 Francois Kneider CALORIE RECYCLING ENGINE DEVICE FOR COMPRESSORS AS PART OF MOBIL ACCOLE COOLING PROCESS TO THERMAL ENGINE

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124255A (en) * 1984-11-20 1986-06-12 Nippon Denso Co Ltd Rotary drive machine
JP4660908B2 (en) * 2000-10-12 2011-03-30 ダイキン工業株式会社 Air conditioner
JP2002115931A (en) * 2000-10-12 2002-04-19 Daikin Ind Ltd Air conditioning apparatus
JP2003090641A (en) * 2001-09-17 2003-03-28 Takasago Thermal Eng Co Ltd Cooling system and its operating method
US7748226B2 (en) 2003-03-25 2010-07-06 Denso Corporation Waste heat utilizing system
JP2005307951A (en) * 2004-04-26 2005-11-04 Denso Corp Fluid machine
JP2006132523A (en) * 2004-10-05 2006-05-25 Denso Corp Complex fluid machine
JP2007270684A (en) * 2006-03-30 2007-10-18 Toyota Motor Corp Exhaust heat recovery device
JP2008274834A (en) * 2007-04-27 2008-11-13 Sanden Corp Fluid machine, rankine circuit using the fluid machine, and waste heat utilization system for vehicle
WO2009051140A1 (en) * 2007-10-19 2009-04-23 Sanden Corporation Waste heat utilization device for internal combustion engine
WO2009093549A1 (en) * 2008-01-21 2009-07-30 Sanden Corporation Waste heat utilizing device for internal combustion engine
CN101918695A (en) * 2008-01-21 2010-12-15 三电有限公司 Waste heat utilizing device for internal combustion engine
JP2010242518A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Waste heat recovery device
CN101915133A (en) * 2010-07-06 2010-12-15 青岛科技大学 Thermal-tube flywheel-type turbine generating and energy storage device and method
JP2014037798A (en) * 2012-08-15 2014-02-27 Ulvac-Riko Inc Waste heat power generation system
CN103673384A (en) * 2012-12-04 2014-03-26 摩尔动力(北京)技术股份有限公司 Refrigeration system using waste heat of engine
CN103673384B (en) * 2012-12-04 2017-01-04 摩尔动力(北京)技术股份有限公司 Engine exhaust heat refrigeration system
FR3033633A1 (en) * 2015-03-09 2016-09-16 Francois Kneider CALORIE RECYCLING ENGINE DEVICE FOR COMPRESSORS AS PART OF MOBIL ACCOLE COOLING PROCESS TO THERMAL ENGINE

Similar Documents

Publication Publication Date Title
CN100400803C (en) Vapour compression refrigerant cycle system with refrigeration cycle and Rankine cycle
JP2540738B2 (en) Exhaust heat utilization device for vehicle mounting
US7392655B2 (en) Vapor compression refrigerating device
US7536869B2 (en) Vapor compression refrigerating apparatus
CN101059084B (en) Waste heat utilization device and control method thereof
US6928820B2 (en) Waste heat collecting system having rankine cycle and heating cycle
US20150052926A1 (en) Thermally Enhanced Cascade Cooling System
JPS5812819A (en) Vehicle refrigerator
JP4682677B2 (en) Heat cycle equipment
US4384608A (en) Reverse cycle air conditioner system
US2991632A (en) Refrigeration system
JP2007205699A (en) Refrigerating device equipped with exhaust heat utilization device
KR101125328B1 (en) Air Conditioner In Hybrid Electricalvehicle
JP4034219B2 (en) Waste heat recovery cycle
JP4016882B2 (en) Rankine cycle
JP2005024192A (en) Exhaust heat recovering equipment
KR20160019181A (en) Electricity generation system of electric automobile
JP4196890B2 (en) Vapor compression refrigerator
JP4773637B2 (en) Multi-type gas heat pump type air conditioner
JP3557299B2 (en) Cooling method of lubricating oil in heat pump system
JP4196817B2 (en) Vapor compression refrigerator
JP3626927B2 (en) Gas heat pump type air conditioner
JP2004034864A (en) Air conditioner
JPS6311569Y2 (en)
JPS63231138A (en) Refrigerator