JPS58127109A - Interferometer for measuring surface shape of mirror face - Google Patents

Interferometer for measuring surface shape of mirror face

Info

Publication number
JPS58127109A
JPS58127109A JP1040882A JP1040882A JPS58127109A JP S58127109 A JPS58127109 A JP S58127109A JP 1040882 A JP1040882 A JP 1040882A JP 1040882 A JP1040882 A JP 1040882A JP S58127109 A JPS58127109 A JP S58127109A
Authority
JP
Japan
Prior art keywords
mirror
light beam
interferometer
surface shape
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1040882A
Other languages
Japanese (ja)
Inventor
Yoshiaki Matsunaga
松永 佳昭
Hiroaki Nakauchi
中内 宏彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP1040882A priority Critical patent/JPS58127109A/en
Publication of JPS58127109A publication Critical patent/JPS58127109A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Abstract

PURPOSE:To attain an interferometer permitting to simply measure and inspect the surface shape of a mirror having a relatively large area without a need of enlarging the size of its construction by allowing the incident light beam to enter the surface to be inspected obliquely. CONSTITUTION:An irradiation light from a light source Q becomes a parallel light beam through a lens L1 and then is divided into two beams by a half mirror HM1. One beam hits upon a measured mirror M1 obliquely to cover the overall area of the mirror M1 having a relatively large size, while the other beam hits upon a reference surface M2. The light beams reflected by the mirror M1 and the reference surface M2 are combined through another half mirror HM2 to become an interference light in accordance with the surface shape of the mirror M1. This interference light is projected through a lens L2 on a mirror face M'1. Such oblique irradiation eliminates a need of enlarging the size of both lenses L1 and L2. It is thus possible to obtain an interferometer for measuring the surface shape which can be measure and inspect simply the surface shape of a mirror, etc. having a relatively large area without a need of enlarging the size of its construction.

Description

【発明の詳細な説明】 本発明は比較的広い面積を有する平面鏡の平面度等の測
定に適する干渉計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an interferometer suitable for measuring the flatness of a plane mirror having a relatively large area.

複写機に使用されている鏡は比較的面積が大きく、かな
り高精度の平面度が要求される。特に走査用の鏡は運動
せしめられる関係上重さが問題となり、余り厚い鏡を用
いるととができない。このような複写機に用いられる鏡
の検査は非接触でおこなうことが望ましい。これは鏡面
を汚さないだめと、鏡が薄いので原器等の重い加重を加
えると平面度が変るためである。
Mirrors used in copying machines have a relatively large area and require fairly high flatness. In particular, since scanning mirrors are moved, their weight becomes a problem, and if a mirror is too thick, it will not be possible to sharpen the mirror. It is desirable that mirrors used in such copying machines be inspected in a non-contact manner. This is to avoid contaminating the mirror surface, and because the mirror is thin, its flatness changes when a heavy load from a prototype is applied.

通常鏡面の形状を非接触的に測定するには第1図に示ス
ヨうなトワイマン−グリーン型干渉計が用いられる。即
ちM’l、M2の一方が被検査用鏡で他方が参照用鏡で
あり、点光源Qから出た光をレンズLlで平行光束とな
し、ハーフミラ−’HMで2光束に分割し、分割された
光束を鏡Ml、M2に垂直に入射させ、夫々の鏡Ml、
M2からの反射光束をハーフミラ−HMで再び一光束に
合成して干渉縞を観測する。この装置においては被検面
で一度に観測できる面積は入射光束の断面積以内である
。従って複写機に用いる鏡のように大面積の鏡を検査す
る場合には被検鏡をスライドさせて観測しなければなら
ない。しかし被検鏡をスライドさせるようにすると装置
の機械的な遊び等によって振動の影響を受は易くなって
観測かやシに枚 くXなシ、また−析の鏡の検査の所要時間が長くなる。
Normally, a Twyman-Green interferometer as shown in FIG. 1 is used to non-contactly measure the shape of a mirror surface. That is, one of M'l and M2 is a mirror to be inspected and the other is a reference mirror, and the light emitted from the point light source Q is made into a parallel beam by lens Ll, and divided into two beams by half mirror HM. The resulting light flux is incident perpendicularly on the mirrors Ml, M2, and the respective mirrors Ml,
The reflected light beam from M2 is combined again into a single light beam by a half mirror HM, and interference fringes are observed. In this device, the area that can be observed at one time on the surface to be inspected is within the cross-sectional area of the incident light beam. Therefore, when inspecting a mirror with a large area, such as a mirror used in a copying machine, it is necessary to slide the mirror for observation. However, if the mirror is made to slide, it will be more susceptible to vibrations due to the mechanical play of the device, making it difficult to observe, and the time required to inspect the mirror for analysis will be longer. Become.

複写機に用いる鏡のように量産されるものの検査装置と
しては検査工数の関係からなるべく簡単な操作で速かに
鏡面全体の検査ができることが必要であり、振動の影響
を受は難いものでなければならない。従って第1図に示
すような装置は量産が要求される大面積の鏡の検査には
不向きなものである。第1図の装置で広い鏡面全体を一
度に検査できるようにするには被検面に入射させる光束
の断面積を被検面に合せて太きくしなければならないが
、そのだめにはレンズLl、L2等を大きな直径のもの
にしなければならず、加工上からも価格の面からも困難
性が犬であり、また光源にガスレーザーを用いる場合、
光源とレンズL1よシなるエキスパンダーの倍率を犬き
くするにはレンズL1の焦点距離を長くしなければなら
ないから装置を設置するスペースが大きくなり、これも
実用面での難点となる。
For inspection equipment for mass-produced items such as mirrors used in copying machines, it is necessary to be able to inspect the entire mirror surface as quickly and easily as possible due to the number of inspection steps, and it must be resistant to the effects of vibration. Must be. Therefore, the apparatus shown in FIG. 1 is not suitable for inspecting large-area mirrors that require mass production. In order to be able to inspect the entire wide mirror surface at once with the apparatus shown in Figure 1, the cross-sectional area of the light flux incident on the surface to be inspected must be made thicker to match the surface to be inspected. L2 etc. must be made with a large diameter, which is difficult from both a processing and cost perspective, and when using a gas laser as the light source,
In order to increase the magnification of the light source and the expander, which is the lens L1, the focal length of the lens L1 must be increased, which increases the space for installing the device, which is also a practical difficulty.

上述したような状況で現在の所比較的大面積の鏡の表面
形状を簡単に測定し検査できる適当な装置が見当らない
。このような状況に鑑み本発明は、被検査鏡をスライド
させる必要なく簡単な操作で比較的広い面積の鏡面全体
を観測でき、しかも装置を構成するレンズ等の光学素子
に格別大型のものを必要とせず装置全体としても格別大
型化し々いよつな鏡面形状測定装置を提供しようとする
ものである。
Under the above-mentioned circumstances, there is currently no suitable device that can easily measure and inspect the surface shape of a mirror with a relatively large area. In view of this situation, the present invention enables observation of the entire mirror surface over a relatively wide area with a simple operation without the need to slide the mirror to be inspected, and also requires exceptionally large optical elements such as lenses that constitute the device. The purpose of this invention is to provide a mirror surface shape measuring device which is extremely large in size and the overall size of the device is extremely large.

本発明は被検面を入射光束に対して斜めに設置するよう
にしたことを基本原理とするもので、この場合入射光束
の斜断面の大きさが被検査面をカバーすればよいから光
束の太さ即ち垂直断面に比し大きな面を一度に観測でき
ることになる。以下実施例によって本発明を詳述する。
The basic principle of the present invention is that the surface to be inspected is placed obliquely with respect to the incident light flux. This means that a larger surface can be observed at once compared to the thickness, that is, the vertical cross section. The present invention will be explained in detail below with reference to Examples.

第2図は本発明の基本的な一実施例を示す。図でQは光
源であり、この光源から出た光はレンズL1で平行光束
になり、第1のハーフミラ−HMlで2光束に分割され
る。こハ゛ら分割された光束の一方は被検面M1に斜め
に入射せしめられる。
FIG. 2 shows a basic embodiment of the invention. In the figure, Q is a light source, and the light emitted from this light source becomes a parallel beam of light by the lens L1, and is divided into two beams of light by the first half mirror HM1. One of these divided light beams is made to obliquely enter the surface to be inspected M1.

この入射角をθとする。他方の光束は高精度の参照面M
2に斜めに入射せしめられる。この実施例では被検面へ
の光束入射角θと参照面への光束入射角θ!を等しくし
である。被検面M1及び参照面M2で反射された光束は
第2の7・−フミラーHM2によって再び一光束に合成
される。干渉縞の観測は第2のハーフミラ−HM2によ
って一光束に再合成された光束内にレンズL2を挿入し
てその焦点位置に目を置けば干渉縞が見える。或はレン
ズL2による被検面M1の像面M 1’の位置にスクリ
ーンを置けば干渉縞が投影される。更にもつと簡単には
被検面が複写機に用いられる鏡程度の精度であれば被検
面から余り遠くない位置で・・−フミラーHM2で一光
束に合成された光束内に直接スクリーンを挿入した場合
投影される干渉縞でも被検面の干渉縞とみなして支障は
ない。干渉縞の観測方法に関しては後で更に詳述する。
Let this angle of incidence be θ. The other beam is a high-precision reference plane M
2 is made to be incident diagonally. In this example, the angle of incidence of the light beam on the test surface θ and the angle of incidence of the light beam on the reference surface θ! are equal. The light beams reflected by the test surface M1 and the reference surface M2 are combined into one light beam again by the second 7-fumir mirror HM2. To observe the interference fringes, the interference fringes can be seen by inserting the lens L2 into the light beam that has been recombined into one light beam by the second half mirror HM2 and placing the eye at its focal position. Alternatively, if a screen is placed at the position of the image plane M1' of the surface to be inspected M1 formed by the lens L2, interference fringes are projected. Furthermore, if the surface to be inspected is as accurate as a mirror used in a copying machine, then the screen can be inserted at a position not too far from the surface to be inspected... - Insert the screen directly into the light beam that has been combined into a single beam by the Fumirror HM2. In this case, the projected interference fringes can be regarded as interference fringes on the surface to be inspected and there is no problem. The method for observing interference fringes will be described in more detail later.

第3図は本発明の他の実施例を示す。第2図に示した実
施例の各部に対応する部分には同じ符号を付し、−々の
説明は省略する。第2図の実施例では第1のハーフミラ
−HMIから第2のハーフミラ−HM2に至る2光束の
光路長が同じになるように構成されている。これに対し
て第3図の実施例では・・−フミラーHMIから被検面
M 1 iでの距離よりHMIから参照面M2までの距
離の方を犬とし、参照面M2への光束入射角θ1を被検
面M1への光束入射角θよシ小さくシ、第1の71一フ
ミラーHMIから第2のハーフミラ−HM2−iでの2
光束の光路長を不等にしている。光源としてレーザーを
用いる場合、レーザー光は可干渉性が良く、2光束の光
路長を厳密に一致させなくても鮮明な干渉縞を観測でき
るから、第3図の構成により、参照面M2を入射光束に
対し垂直に近くすることにより、被検面M1より小さな
ものとすることができる。第2図の実施例では参照面M
2は被検面M1と同じ大きさが必要である。従って第3
図の実施例は参照面M2の光束入射角θ′が被検面M1
の光束入射角θより小さいだめ参照面が被検面よシ小さ
くてよいと云う点で第2図の実施例より有利である。
FIG. 3 shows another embodiment of the invention. Components corresponding to those in the embodiment shown in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted. The embodiment shown in FIG. 2 is configured so that the optical path lengths of the two beams from the first half mirror HMI to the second half mirror HM2 are the same. On the other hand, in the embodiment shown in FIG. 3, the distance from the HMI to the reference surface M2 is longer than the distance from the mirror HMI to the surface to be inspected M1i, and the incident angle of the light beam to the reference surface M2 is θ1. The angle of incidence of the light beam on the surface M1 to be tested is smaller than θ, and the angle from the first half mirror HMI to the second half mirror HM2-i is 2.
The optical path lengths of the light beams are made unequal. When using a laser as a light source, laser light has good coherence and clear interference fringes can be observed even if the optical path lengths of the two beams do not match exactly. By making it nearly perpendicular to the light beam, it can be made smaller than the surface to be inspected M1. In the embodiment of FIG. 2, the reference plane M
2 needs to have the same size as the surface to be inspected M1. Therefore, the third
In the example shown in the figure, the incident angle θ' of the light beam on the reference surface M2 is
This embodiment is advantageous over the embodiment of FIG. 2 in that the reference surface, which is smaller than the incident angle θ of the light beam, can be smaller than the surface to be measured.

第4図乃至第6図は干渉縞を観測する観測面の配置に関
する色々な変形実施例を示し、図示されたものは第3図
の実施例において適用されたものであるが、第2図の実
施例にも適用できるものであることは言うまでもない。
4 to 6 show various modified embodiments regarding the arrangement of observation planes for observing interference fringes, and the one shown is applied to the embodiment shown in FIG. It goes without saying that this can also be applied to the embodiments.

第4図は第2のハーフミラ−HM2で1光束に合成され
た光束に対して垂直にスクリーンSを挿入して観測面と
したものである。このような構成或は第2図に示すよう
にレンズL2を光束に対して垂直にする構成では投影さ
れる干渉縞の倍率が被検面M1のa側の端とb側の端と
で異ったものとなり被検面の形状の定量的測定がやりに
くい。第5.第6図の実施例はこの点を改良したもので
、第5図ではレンズL2を被検面Mlと平行に置き、被
検面M1のレンズL2による像の位置に被検面M1と平
行にスクリーンSを設置した。このようにすると被検面
MlのレンズL2による像は被検面Mlと平行になり、
従って観測面としてのスクリーンS上の干渉縞はa端で
もb端でも等倍率となる。第6図の実施例はレンズL2
を用いないで直接スクリーンS上に干渉縞を投影するも
のであるが、スクリーンSを被検面M1と平行に配置す
ることにより全面同一倍率の干渉縞を観測できるように
しだものである。
In FIG. 4, a screen S is inserted perpendicularly to the light beam combined into one light beam by the second half mirror HM2 to serve as an observation surface. In such a configuration or in a configuration in which the lens L2 is made perpendicular to the light beam as shown in FIG. This makes it difficult to quantitatively measure the shape of the surface being tested. Fifth. The embodiment shown in FIG. 6 is an improvement on this point, and in FIG. Screen S was installed. In this way, the image of the test surface Ml by the lens L2 becomes parallel to the test surface Ml,
Therefore, the interference fringes on the screen S serving as the observation surface have the same magnification at both the a end and the b end. The embodiment shown in FIG. 6 is the lens L2.
Although the interference fringes are directly projected onto the screen S without using the screen S, the interference fringes can be observed at the same magnification over the entire surface by arranging the screen S parallel to the surface to be inspected M1.

第7図は、棺6図の実施例を更に改良したものである。FIG. 7 shows a further improvement of the embodiment shown in FIG. 6 of the coffin.

第6図の実施例でスクリーンS上の干渉縞を明るく観測
できるようにするには光束の延長方向からスクリーンS
を透過した光を見るのが良いが、そのようにすると見る
者にとって干渉縞の両端壕での距離が異)、観測かやシ
にくい。このためフレネル板Fを被検面M1と平行に置
き、このフレネル板の背後に近接させて平行にスクリー
ンSを配置した。フレネル板Fは第8図に示すように入
射平行光束を一定角度屈折させて入射光束と一定角度を
なす平行光束にするものであり、フレネル板Fにより入
射光束をスクリーンSに略垂直に屈折させ第7図に矢印
で示すようにスクリーン庫 Sに垂直の方向から見て干渉〆が明るく観測できるよう
にしである。
In order to be able to observe the interference fringes on the screen S brightly in the embodiment shown in FIG.
It is best to look at the light that has passed through the interference pattern, but in that case the distances at both ends of the interference fringes will be different for the viewer, making observation difficult. For this purpose, a Fresnel plate F was placed parallel to the surface to be inspected M1, and a screen S was placed parallel to and close to the back of this Fresnel plate. As shown in Fig. 8, the Fresnel plate F refracts an incident parallel light beam at a certain angle to form a parallel light beam that forms a certain angle with the incident light beam, and the Fresnel plate F refracts the incident light beam almost perpendicularly to the screen S. As shown by the arrow in FIG. 7, the interference filter is designed so that it can be observed brightly when viewed from a direction perpendicular to the screen storage S.

実際上参照面M2は非常に大きな曲率半径を有する球面
の一部であシ、上述装置によって観測される干渉縞は通
常同心円状である。被検面の形状の定量的検査はこの同
心円が幾つ見えるかを数えて行うが、干渉縞は同心円の
外側に行く程間隔がつまって数え難くなる。そこで実際
上は直径50mm位の円形開口を有する枠を観測面に置
き、干渉縞の中心と枠の中心とを一致させたとき枠内に
見られる干渉縞の同心円の数を数え、このような操作を
観測面上で干渉縞の中心を移動させながら数個所で行う
ことによって被検面の全面を検査する。干渉縞の中心を
観測面上で移動させるには参照面M2の入射光束に対す
る傾きをわづか変えればよい。第9図は観測面における
干渉縞の見え方を示す。mfが上述した円形枠であり、
第9図Aは同心円状の干渉縞の中心を左に寄せだ状態で
あシ、同Bは中央に同Cは中心を右に寄せだ状態を示し
、夫々の場合において円形枠mfの中心を干渉縞の中心
に合せて枠内の同心円の縞数を数える。
In practice, the reference surface M2 is a part of a spherical surface having a very large radius of curvature, and the interference fringes observed by the above-mentioned apparatus are usually concentric circles. Quantitative inspection of the shape of the surface to be inspected is performed by counting how many of these concentric circles are visible, but the interference fringes become more difficult to count as they become more spaced apart as they go outside the concentric circles. Therefore, in practice, a frame with a circular aperture of about 50 mm in diameter is placed on the observation surface, and when the center of the interference fringes matches the center of the frame, the number of concentric circles of interference fringes that can be seen within the frame is counted. The entire surface of the surface to be inspected is inspected by performing the operation at several locations while moving the center of the interference fringes on the observation surface. In order to move the center of the interference fringes on the observation plane, it is sufficient to slightly change the inclination of the reference plane M2 with respect to the incident light beam. FIG. 9 shows how interference fringes appear on the observation plane. mf is the circular frame mentioned above,
Figure 9A shows a state in which the center of the concentric interference fringes is shifted to the left, Figure 9B shows a state in which the center is shifted to the right, and Figure 9C shows a state in which the center is shifted to the right.In each case, the center of the circular frame mf is Count the number of concentric fringes within the frame based on the center of the interference fringes.

第10図Aは枠内に同心円の干渉縞が3本見えておシ、
同Bは双曲線状の干渉縞が4本見えている状態を示し、
これは被検面が双曲放物面状であることを示す。実際に
は直径50mm程度の枠内に干渉縞が2本位現れる場合
が縞の判定かやシ易く、干渉縞を等高線と見たとき一縞
間の高さの差を0゜3〜0.4μmとすると参照面は曲
率半径400m位のものが適当である。
In Figure 10A, three concentric interference fringes are visible within the frame.
Figure B shows a state in which four hyperbolic interference fringes are visible.
This indicates that the surface to be tested is a hyperbolic paraboloid. In reality, it is easier to judge the fringe when two interference fringes appear within a frame with a diameter of about 50 mm, and when the interference fringes are viewed as contour lines, the difference in height between one fringe is 0°3 to 0.4 μm. In this case, it is appropriate that the reference surface has a radius of curvature of about 400 m.

第11図は参照面の傾きを調節するだめの機構を示す。FIG. 11 shows a mechanism for adjusting the inclination of the reference surface.

機構はa、  b、  cの3部よりなり、aが固定部
で装置本体Bに固定されており、Cの下面に参照面の鏡
(不図示)が鏡面を下に向けて取付けられている。b部
はヒンジlによってX軸を中心に回転可能なようにa部
に取付けられ、abb部間に張設したばね2によって互
に引寄せられている。0部はヒンジ3によってy軸を中
心に回転可能にb部に取付けられ、図では見えない向う
側でbc間に張設されたばねによって互に引寄せられて
いる。4はa部を螺合しながら貫通しているねじで先端
がb部の上面に当っており、このねじを進退させること
によりb部をX軸の周)に微回動させることができる。
The mechanism consists of three parts, a, b, and c, where a is a fixed part and is fixed to the device body B, and a reference surface mirror (not shown) is attached to the bottom surface of C with the mirror surface facing downward. . Part b is attached to part a by a hinge l so as to be rotatable about the X-axis, and is pulled together by a spring 2 stretched between parts abb and b. Part 0 is rotatably attached to part b by a hinge 3 around the y-axis, and is pulled together by a spring stretched between b and c on the opposite side, which is not visible in the figure. Reference numeral 4 denotes a screw that passes through part a while screwing together, and its tip touches the upper surface of part b, and by moving this screw forward and backward, part b can be slightly rotated around the X-axis.

また5ばb部を螺合しつ5貫通しているねじで先端が0
部の上面に当っておシ、このねじの進退によって0部を
b部に対しy軸周りに微回動させることができる。
In addition, the tip of the screw that passes through 5 while screwing the part 5 is 0.
By moving this screw forward and backward, part 0 can be slightly rotated around the y-axis relative to part b.

第12図は観測面における枠体mfの案内機構を示す。FIG. 12 shows the guiding mechanism of the frame mf on the observation plane.

Bは干渉計の本体でFはフレネル板であり、Sはその上
に重ねて取付けられたスクリーン、鎖線はスクリーンS
の有効面を示す。スクリーンSの長手方向両側にガイド
レール6.6があって枠保持板7がこのガイドレール6
.6によってスクリーンS上を長手方向に摺動可能に保
持されている。枠保持板7は両縁にガイドレール6と直
交する方向のガイド溝8,8を有し、主部が長方形に抜
かれている。枠体mfは両縁がガイド溝8゜8に摺動可
能に嵌合しており、円形開口が枠保持板7の長方形の窓
に臨んでおシ、スクリーンS上を2次元的に移動できる
。干渉縞はこの図で上方から観測する。
B is the main body of the interferometer, F is the Fresnel plate, S is the screen mounted on top of it, and the chain line is the screen S.
This shows the effectiveness of There are guide rails 6.6 on both sides of the screen S in the longitudinal direction, and the frame holding plate 7 is attached to the guide rails 6.
.. 6 so as to be slidable in the longitudinal direction on the screen S. The frame holding plate 7 has guide grooves 8, 8 in a direction perpendicular to the guide rail 6 on both edges, and the main part is cut out in a rectangular shape. Both edges of the frame mf are slidably fitted into guide grooves 8°8, and the circular opening faces the rectangular window of the frame holding plate 7, allowing it to move two-dimensionally on the screen S. . The interference fringes are observed from above in this figure.

本発明装置は上述したような構成で既に明かなように格
別大口径のレンズ等を要せず、また被検鏡をスライドさ
せることもなしに比較的大面積の長方形の鏡の面を全面
的に検査できるものであり、参照面(被検面でもよい)
の傾きを微調節可能にしておくことにより干渉縞の中心
を観測面上で移動させると被検面の各部の形状を干渉縞
を数え易い状態で連続的に観測でき枠体を移動可能に設
けることと相俟って被検面の全面的な定量的評価が大へ
んやシ易くなシ、また観測面を被検面と平行にしかつフ
レネル板を利用すると歪のない(両端の倍率が等しい)
明るい干渉縞を垂直方向から観測することができる等の
効果が得られる。
With the above-mentioned configuration, the device of the present invention does not require a particularly large-diameter lens, etc., and can cover the entire surface of a relatively large rectangular mirror without having to slide the examination mirror. The reference surface (the surface to be inspected may also be used)
By making the inclination of the frame finely adjustable, by moving the center of the interference fringes on the observation surface, the shape of each part of the surface to be inspected can be observed continuously while making it easy to count the interference fringes.The frame is movable. Coupled with this, comprehensive quantitative evaluation of the surface to be inspected is very difficult and difficult.Also, if the observation surface is parallel to the surface to be inspected and a Fresnel plate is used, there will be no distortion (the magnification at both ends is equal). )
Effects such as being able to observe bright interference fringes from the vertical direction can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の平面図、第2図は本発明の一実施例の
平面図、第3図は本発明の他の実施例の平面図、第4図
乃至第7図は第3図の実施例における観測面の構成の種
々な実施態様の平面図、第8図は第7図の実施例で用い
るフレネル板の一部拡大断面図、第9図及び第10図は
観測面における干渉縞の見え方を例示する正面図、第1
1図は参照面の傾きを微調節する機構の斜視図、第12
図は枠体の移動機構の斜視図である。 Q・・・点光源、Ll・・・レンズ、HMI・・・第1
のノ・−フミラー、HM2・・・第2のハーフミラ−1
M1・・・被検面、M2・・・参照面、L2・・・レン
ズ、M 1’・・・レンズL2によるMlの像、S・・
・スクリーン、F・・・フレネル板、mf・・・枠体。 代理人 弁理士  係   浩  介 第9図     第10図 第11図
Fig. 1 is a plan view of a conventional example, Fig. 2 is a plan view of an embodiment of the present invention, Fig. 3 is a plan view of another embodiment of the invention, and Figs. 4 to 7 are Fig. 3. 8 is a partially enlarged sectional view of the Fresnel plate used in the embodiment of FIG. 7, and FIGS. 9 and 10 are plan views of various embodiments of the configuration of the observation surface in the embodiment of Front view illustrating how the stripes look, 1st
Figure 1 is a perspective view of the mechanism that finely adjusts the inclination of the reference plane;
The figure is a perspective view of the frame moving mechanism. Q...Point light source, Ll...Lens, HMI...1st
No. half mirror, HM2...second half mirror 1
M1...Test surface, M2...Reference surface, L2...Lens, M1'...Image of Ml by lens L2, S...
・Screen, F...Fresnel board, mf...frame. Agent: Patent Attorney Kosuke Figure 9 Figure 10 Figure 11

Claims (5)

【特許請求の範囲】[Claims] (1)平行光束を第1のノ・−フミラーで分割した後、
分割された光束のうちの一方を被検面に斜めに入射させ
、他方の光束を参照面に入射させ、夫々の面からの反射
光束を第2のノ・−フミラーによって一光束に合成し、
この合成光束に対して被検面と同面への入射光束との間
の角度と同じ角度だけ傾けた観測面において、同合成光
束を観測するようにしたことを特徴とする鏡面の表面形
状測定用干渉計。
(1) After dividing the parallel light beam by the first nof mirror,
One of the divided light beams is made obliquely incident on the test surface, the other light beam is made incident on the reference surface, and the reflected light beams from each surface are combined into one light beam by a second nof mirror,
Surface shape measurement of a mirror surface, characterized in that the combined light beam is observed on an observation surface tilted by the same angle as the angle between the test surface and the incident light beam on the same surface. interferometer.
(2)被検面に対する光束の入反射角よりも参照面に対
する光束の入反射角の方が小さいように構成したことを
特徴とする特許請求の範囲第1項記載の鏡面の表面形状
測定用干渉計。
(2) For measuring the surface shape of a mirror surface according to claim 1, characterized in that the angle of incidence and reflection of the luminous flux with respect to the reference surface is smaller than the angle of incidence and reflection of the luminous flux with respect to the test surface. Interferometer.
(3)被検面或は参照面のそれらへの入射光束に対する
傾きが調整可能である特許請求の範囲第1項記載の鏡面
の表面形状測定用干渉計。
(3) The interferometer for measuring the surface shape of a mirror surface according to claim 1, wherein the inclination of the test surface or the reference surface with respect to the light beam incident thereon is adjustable.
(4)観測面にフレネル板を配置した特許請求の範囲第
1項記載の鏡面の表面形状測定用干渉計。
(4) The interferometer for measuring the surface shape of a mirror surface according to claim 1, wherein a Fresnel plate is arranged on the observation surface.
(5)観測面に沿って移動可能なように円形の枠体を設
けた特許請求の範囲第1項記載の鏡面の表面形状測定用
干渉計。
(5) An interferometer for measuring the surface shape of a mirror surface according to claim 1, which is provided with a circular frame so as to be movable along the observation surface.
JP1040882A 1982-01-25 1982-01-25 Interferometer for measuring surface shape of mirror face Pending JPS58127109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040882A JPS58127109A (en) 1982-01-25 1982-01-25 Interferometer for measuring surface shape of mirror face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040882A JPS58127109A (en) 1982-01-25 1982-01-25 Interferometer for measuring surface shape of mirror face

Publications (1)

Publication Number Publication Date
JPS58127109A true JPS58127109A (en) 1983-07-28

Family

ID=11749310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040882A Pending JPS58127109A (en) 1982-01-25 1982-01-25 Interferometer for measuring surface shape of mirror face

Country Status (1)

Country Link
JP (1) JPS58127109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465406A (en) * 1987-09-04 1989-03-10 Mizojiri Kogaku Kogyosho Kk Interferometer for flatness measurement
KR100457656B1 (en) * 2002-06-27 2004-11-18 한국과학기술원 Phase shifted diffraction grating interferometer and measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465406A (en) * 1987-09-04 1989-03-10 Mizojiri Kogaku Kogyosho Kk Interferometer for flatness measurement
KR100457656B1 (en) * 2002-06-27 2004-11-18 한국과학기술원 Phase shifted diffraction grating interferometer and measuring method

Similar Documents

Publication Publication Date Title
US9273952B2 (en) Grazing and normal incidence interferometer having common reference surface
KR20130095211A (en) Device for noncontact determination of edge profile at a thin disk-shaped object
WO1989011629A1 (en) Compact portable diffraction moire interferometer
JP3206984B2 (en) Lens inspection machine
JPH02161332A (en) Device and method for measuring radius of curvature
US6674521B1 (en) Optical method and system for rapidly measuring relative angular alignment of flat surfaces
JPS58127109A (en) Interferometer for measuring surface shape of mirror face
JPS58129307A (en) Interferometer for measuring shape of mirror surface
KR101379677B1 (en) Eccentricity measurement for aspheric lens using the interferometer producing spherical wave
JP4007473B2 (en) Wavefront shape measurement method
JP3635543B2 (en) Cylinder interferometer
JPS6029057B2 (en) Reflection inspection device for three-sided mirror reflector
Harris et al. Techniques for evaluation of aircraft windscreen optical distortion
JP2001336919A (en) Inspection system of integrated circuit with lead
JP2671479B2 (en) Surface shape measuring device
JPH07332946A (en) Hologram interferometer for measuring cylindrical optical element
JP3410796B2 (en) Surface alignment method and apparatus for interferometer
JP3218723B2 (en) Interferometer device
KR0149007B1 (en) Lens assembling apparatus
JP3282296B2 (en) Hologram interferometer for measuring cylindrical optical elements
JPS6110164Y2 (en)
JP2006090950A (en) Measuring system of inclination of surface to be tested
JPH02242103A (en) Optical inspector operable independently and selectively in various uses
JPH06137993A (en) Lens eccentricity measuring device
JPH0996514A (en) Measuring apparatus for surface shape