JPS58126964A - Amorphous iron alloy containing carbon with high strength, high hardness, high crystallization temperature and high embrittlement temperature - Google Patents

Amorphous iron alloy containing carbon with high strength, high hardness, high crystallization temperature and high embrittlement temperature

Info

Publication number
JPS58126964A
JPS58126964A JP20762482A JP20762482A JPS58126964A JP S58126964 A JPS58126964 A JP S58126964A JP 20762482 A JP20762482 A JP 20762482A JP 20762482 A JP20762482 A JP 20762482A JP S58126964 A JPS58126964 A JP S58126964A
Authority
JP
Japan
Prior art keywords
alloy
amorphous
strength
hardness
iron alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20762482A
Other languages
Japanese (ja)
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Shunsuke Arakawa
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Iron Steel and Other Metals of Tohoku University
Original Assignee
Research Institute for Iron Steel and Other Metals of Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Iron Steel and Other Metals of Tohoku University filed Critical Research Institute for Iron Steel and Other Metals of Tohoku University
Priority to JP20762482A priority Critical patent/JPS58126964A/en
Publication of JPS58126964A publication Critical patent/JPS58126964A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an amorphous Fe alloy contg. C with high strength, high hardness, a high crystallization temp. and a high embrittlement temp. by restricting the composition of an alloy consisting of Fe, Cr, Mo and/or W, and C and by rapidly cooling the alloy from a liq. state. CONSTITUTION:This alloy has a composition represented by the formula (where M is Mo and/or W, Q is C, a is 28-82 atomic%, b is <=20 atomic%, c is 4- 26 atomic% and d is 15-26 atomic%). The alloy is melted, sprayed on an opposite coppr plate for cooling by means of highly pressurized N2, Ar or other gas, and solidified by rapid cooling in the form of fine powder to manufacture amorphous alloy powder.

Description

【発明の詳細な説明】 本発明は、高強度、高硬度、高結晶化温度を有し、かつ
脆化抵抗に優れた炭素系非晶質鉄合金に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carbon-based amorphous iron alloy that has high strength, high hardness, high crystallization temperature, and excellent embrittlement resistance.

通常、固体の金属・合金は結晶状態であるが、液体より
超急冷(冷却速度は合金の組成に依存するが、およそ1
0〜lO℃/秒である)すれば液体に類似した周期的原
子配列を持たない非結晶構造の固体が得られる3、この
ような金属を非晶質金属あるいはアモルファス金属と呼
ぶ。一般に、この型の金属は2種以上の元素からなる合
金であり、通常、遷移金属元素と非金属元素の両者の組
合せよりなり、半金属lは約15〜80原子−程闇であ
る。
Normally, solid metals and alloys are in a crystalline state, but they are cooled much more rapidly than liquids (the cooling rate depends on the composition of the alloy, but approximately 1
0 to 10° C./sec), a solid with an amorphous structure similar to a liquid without a periodic atomic arrangement can be obtained.3 Such metals are called amorphous metals or amorphous metals. Generally, this type of metal is an alloy of two or more elements, usually a combination of both transition metal elements and nonmetal elements, with the metalloid being about 15 to 80 atoms.

また本発明者等は先に高強度、耐疲労、耐全面腐食、耐
孔食、耐隙間腐食、耐応力腐食割れ、耐水素脆性用アモ
ルファス鉄合金(特開昭51−4017号)を発明し特
許出願した。この合金は下記の成分組成の合金である。
In addition, the present inventors had previously invented an amorphous iron alloy with high strength, fatigue resistance, general corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance (Japanese Patent Laid-Open No. 51-4017). A patent application was filed. This alloy has the following composition.

原子慢として、Qrl−40%と、p、cおよびBのう
ち何れか1stたけs糧以上7〜85%を主成分として
含み、かつ副成分として、(リ N1およびcoの何れ
か1111:tはg@0.01〜40%、 (2)  Mo、Zr、Ti、Si、ムt 、 Pt 
、 MnおよびPdの何れか111[または2種以上0
.01−20チ、(8)  V 、 Mb 、 Ta 
、 W 、 GeおよびB9の何れか1種または2種以
上0,01〜10%、(4)   Au、Ou、Zn、
Cd、Sn、As、!9b、B土およびSの何れか1m
または2m以上0.01〜59$1 の群のうちから選ばれた何れか1群またFia群以上を
合装置で0.01〜75チを倉荷し、残部は実質的にF
eの組成から彦る高強度、耐疲労、耐全面腐食、耐孔食
、耐隙間腐食、耐応力腐食割ね−1耐水素脆性用アモル
ファス鉄合金。
Contains as a main component Qrl-40% and 7 to 85% of any one of p, c, and B, and as a subcomponent (1111 of any one of Li N1 and co: t is g@0.01-40%, (2) Mo, Zr, Ti, Si, Mut, Pt
, any one of Mn and Pd 111 [or 2 or more 0
.. 01-20chi, (8) V, Mb, Ta
, W, any one or two or more of Ge and B9 0.01 to 10%, (4) Au, Ou, Zn,
Cd, Sn, As,! 9b, B soil or S 1m
or one group selected from the group of 0.01 to 59 $1 over 2 m, or the Fia group or above, is loaded with a combined device of 0.01 to 75 inches, and the remainder is substantially F
An amorphous iron alloy with high strength, fatigue resistance, general corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, stress corrosion resistance, cracking-1 hydrogen embrittlement resistance, which is derived from the composition of e.

上記特開昭51−4017号の非晶質合金はクロムの添
加により強度および耐熱性を向上させるとともに優れた
耐食性を賦与させた新規な合金であった。また、特筆す
べきは、これらの合金が耐食性の点で新規な特性を有し
、全面腐食に対して強いばかりでなく、現用ステンレス
鋼(804鋼、816鋼など)では避けることができな
い孔食、隙間腐食、応力腐食割れに対しても大きな抵抗
を有するという優れた特徴があった。しかし、これらの
合金において、その成分組成が広範に亘っているため、
実用的ならびに新規な用途に対して耐熱性が高く、硬度
彦らびに強度が高く、かつ脆化温度が高いという諸特性
を保持する範囲内で製造が容易であり、かつ安価である
成分組成範囲につい幸 ては従来知られてい彦かった。
The amorphous alloy disclosed in JP-A No. 51-4017 was a new alloy that had improved strength and heat resistance through the addition of chromium, and was also endowed with excellent corrosion resistance. Also worth mentioning is that these alloys have novel properties in terms of corrosion resistance, and are not only resistant to general corrosion, but also resistant to pitting corrosion that cannot be avoided with modern stainless steels (804 steel, 816 steel, etc.). It had excellent characteristics such as high resistance to crevice corrosion and stress corrosion cracking. However, because these alloys have a wide range of compositions,
A component composition range that is easy to manufacture and inexpensive within a range that maintains various properties such as high heat resistance, high hardness and strength, and high embrittlement temperature for practical and new uses. Fortunately, this was not previously known.

本発明は、高強度、高硬度、高結晶化温度お上び高脆化
温度の諸特性を有しながら、製造が容易でかつ安価な炭
素系非晶質鉄合金を提供することを目的とするものであ
る。すなわち本発明は実質的に下記の式で示される成分
組成よりなることを特徴とする炭素系高強度、高硬度、
高結晶化温度および高脆化温度を有する非晶質鉄合金で
ある。
The purpose of the present invention is to provide a carbon-based amorphous iron alloy that is easy to manufacture and inexpensive while having various properties such as high strength, high hardness, high crystallization temperature, and high embrittlement temperature. It is something to do. That is, the present invention provides a carbon-based high strength, high hardness,
It is an amorphous iron alloy with high crystallization temperature and high embrittlement temperature.

1、  F e a Or bM c Q d(式中F
e  はFeがaJli子−1OrbFiOrがb原子
チ、Moはcr、No、ljのうちから選ばれる何れか
1種または2種以上が0原子チ、QdはCがd原子チ含
有されていることを示し、aは28〜82、bは20以
下(但し零を含まず)、cll:t4〜26、dFi1
5〜26の範囲17’3にあり、a、b、cおよびdの
和は実質的に100である。但しMがWのみよりなると
きは、bは4〜2oの範囲内である。)2、  Fea
McQd (式中FeaはFeがall(子チ、MoはMO,lj
のうちから選ばれる何れが111または2種がC原子優
、Qa ti Oがdjl子チ子育含有ていることを示
し、aFis!8〜82、Cは4〜26、dは16〜2
6の範囲内にあり、a、C及びdの和は実質的に100
である。但しMがWのみより々ることはない。)本発明
者等は、非金属元素として炭素のみを含む鉄合金が広い
組成範囲で容易に非晶質化し、しかも強度、硬度、耐食
性、耐熱性の点で優れた特性を持つことを新規に知見し
て、本発明を守成したのである。
1. F e a Or bM c Q d (in the formula F
e means that Fe contains aJli -1OrbFiOr contains b atoms, Mo contains 0 atoms of one or more selected from cr, No, and lj, and Qd contains d atoms of C. , a is 28 to 82, b is 20 or less (not including zero), cll: t4 to 26, dFi1
The sum of a, b, c and d is substantially 100. However, when M consists only of W, b is within the range of 4 to 2o. )2, Fea
McQd (In the formula, Fe is all (Chi, Mo is MO, lj
Which one selected from among 111 or 2 indicates that C atoms are abundant, Qa ti O contains djl child child rearing, and aFis! 8-82, C is 4-26, d is 16-2
6, and the sum of a, C and d is substantially 100
It is. However, M is never greater than just W. ) The present inventors have newly discovered that an iron alloy containing only carbon as a nonmetallic element easily becomes amorphous over a wide composition range and has excellent properties in terms of strength, hardness, corrosion resistance, and heat resistance. Based on this knowledge, the present invention was created.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

これまで良く知られている非晶質合金において廉価な合
金は鉄を主体としたものであり、例えばFe  P  
 Fe  B  、 Fe8oP□、B8、so  s
io  〜     80 20Fe  Si  B 
  Fe  Si  P  、、Fe8oP18C7フ
B1510’     761!110彦どのように鉄
と非金属元素のP、B、Si、Cとの組合せであった。
Among the well-known amorphous alloys, inexpensive ones are mainly iron-based, such as FeP.
Fe B, Fe8oP□, B8, so s
io ~ 80 20Fe Si B
FeSiP,,Fe8oP18C7FB1510'761!110hiko How was the combination of iron and the nonmetallic elements P, B, Si, and C?

しかる罠、本発明者らは非晶質化するために必要な添加
剤であるこれら半金属元素には各々一長一短があること
を見出した。その効果を纒めて第1表に示す。同表中に
は特性を◎(優)、○(良)、×(町)でもって評価し
である。
However, the present inventors have discovered that these metalloid elements, which are necessary additives for amorphousization, each have advantages and disadvantages. The effects are summarized in Table 1. In the same table, the characteristics are evaluated by ◎ (excellent), ○ (good), and × (town).

同表より、G6は総ての点で好ましりか<、Pは原料費
、非晶質形成能、耐食性勢の性質は良いが、それら以外
の性質は好ましくない。特に溶解中に有害ガスを発生し
、また加熱中に材料の腿化を促進するので問題の多い元
素である。同表中SiおよびBは耐食性を低下させる作
用を有する点で好ましくなく、またBは原料費が高いと
いう欠点を有する。前記諸元素に対してCは同表より明
らかな如く総ての点において好ましい性質を有する元素
であることが判った。
From the same table, G6 is preferable in all respects.P is good in raw material cost, amorphous formation ability, and corrosion resistance, but other properties are not preferable. In particular, it is a problematic element because it generates harmful gases during melting and promotes thickening of the material during heating. In the same table, Si and B are undesirable because they have the effect of reducing corrosion resistance, and B has the disadvantage of high raw material cost. As is clear from the table, C was found to be an element having preferable properties in all respects with respect to the above-mentioned elements.

かくして本発明者等は、非晶質化に寄与する前記半金属
中0だけを含む非晶質鉄合金について畦細に研究して本
発明を完成したのである。
Thus, the present inventors completed the present invention through detailed research on amorphous iron alloys containing only 0 among the metalloids that contribute to amorphization.

一般に非晶質合金は液体状態から急速に冷却することに
よって得られるが、このために種々の冷却方法が考えら
れている。例えば高速回転する1つの円板の外周面上(
第1図(a))または高速に、お互に逆回転する2つの
ロールの間(第1図(b))に液体金属を連続に噴出さ
せて、回転円板または双 iロールの表面上で10〜1
0  ℃/秒程度の速度で急冷凝固させる方法が公知で
ある。また最近本発明者婢が発明した溶融金属から直接
幅広薄帯板を製造する方法からびにその製造装at(%
開昭58−1252518号、同5B−15152!9
号)を用いることができる。
Generally, amorphous alloys are obtained by rapid cooling from a liquid state, and various cooling methods have been considered for this purpose. For example, on the outer peripheral surface of a disk rotating at high speed (
Figure 1 (a)) or at high speed, liquid metal is continuously jetted between two counter-rotating rolls (Figure 1 (b)) onto the surface of a rotating disk or twin rolls. 10-1
A method of rapid solidification at a rate of about 0° C./second is known. In addition, the present inventor has recently invented a method for directly manufacturing wide thin strips from molten metal, and its manufacturing equipment at (%).
Kaisho 58-1252518, 5B-15152!9
(No.) can be used.

本発明の非晶質鉄合金も同様に液体状態から急速に冷却
することによって得ることができ、上記の賭方法によっ
て線または板状の本発明の非晶質合金を製造することが
できる。また、高圧ガス(1!素、アルゴンガスなど)
によシ液体金属を吹き飛ばし、対向する冷却用銅板上で
微粉状に急冷凝固させる例えばアトマイザ−などにより
数μ禦〜数lθμ隅程度の非晶質合金粉末を製造するこ
とができ、この合金は半金属としてCのみからカリ、し
九がって従来の非晶質合金に較べて安価であるばかりで
かく、製造が容易であるため本発明の炭素系非晶質鉄合
金よシなる粉末、線、あるいは板を工業的規模で製造す
ることができる点において極めて有利である。なお本発
明合金にあっては通常の工業材料中に存在する程lの不
純物、例えばP、Si、As、8.Sb、Zn、(u、
ムthどが小置含まれても本発明の目的を達成すること
ができる、っまたXの一部を10原子−以下のV、Ta
、Kn、または5原子チ以下のNb、 Ti、 Zrを
含ませても本発明の目的を達成することができる。
The amorphous iron alloy of the present invention can also be obtained by rapid cooling from a liquid state, and the amorphous alloy of the present invention in the form of a wire or plate can be produced by the above-mentioned method. Also, high pressure gas (1! element, argon gas, etc.)
By blowing off the liquid metal and rapidly solidifying it into a fine powder on an opposing cooling copper plate, for example, using an atomizer, it is possible to produce an amorphous alloy powder with a diameter of several μm to several lθμ. The carbon-based amorphous iron alloy of the present invention is suitable for powders and wires because it is not only cheaper but also easier to manufacture than conventional amorphous alloys. It is extremely advantageous in that plates can be manufactured on an industrial scale. It should be noted that the alloy of the present invention contains impurities present in ordinary industrial materials, such as P, Si, As, 8. Sb, Zn, (u,
The purpose of the present invention can be achieved even if a small amount is included.
, Kn, or five atoms or less of Nb, Ti, or Zr can also achieve the object of the present invention.

本発明の非晶質鉄合金は成分組成上から下記の諸グルー
プに大別することができる。
The amorphous iron alloy of the present invention can be roughly classified into the following groups based on its composition.

(a)  Fe−0r−C (b)  Fe−No−0 (c)  Fe−0r−No−0 (d)  Fe−0r−W−C (e)  Fe−Mo−W−0 (f)  Fe−0r−No−W−0 次は本発明において、成分組成を限定する理由を説明す
る。
(a) Fe-0r-C (b) Fe-No-0 (c) Fe-0r-No-0 (d) Fe-0r-W-C (e) Fe-Mo-W-0 (f) Fe -0r-No-W-0 Next, the reason for limiting the component composition in the present invention will be explained.

yeが28原子チよシ少彦いか、あるいは811原子−
より多いと非晶質合金を容易に得ることが困難であるの
でFeは28〜8g原子チの範囲内にする必要がある。
Is ye 28 atoms chiyoshi Shohiko or 811 atoms -
If the amount is larger, it is difficult to easily obtain an amorphous alloy, so the amount of Fe needs to be within the range of 28 to 8 g atoms.

Qは15原子チよシ少ないか、あるいは26磨子−より
多いと非晶質合金を容易に得ることが困難であるのでQ
は15〜26原子チの範囲内にする必要がある。
If Q is less than 15 atoms or more than 26 atoms, it is difficult to easily obtain an amorphous alloy, so Q
must be within the range of 15 to 26 atoms.

OrbMoのbが0〜!0、Cが4〜26の範囲外では
非晶質合金を得ることが困難であるので・Orb’cの
す、cはそれぞれθ〜20.4〜116の範囲内にする
必l!がある。また舅がWのみよりなるときは、bが番
より少ないと性質が劣化し、一方!0より多いと非晶質
化することが困難であるので、bは4〜SOの範囲内に
する必要がある。
OrbMo's b is 0~! Since it is difficult to obtain an amorphous alloy when 0 and C are outside the range of 4 to 26, ・Orb'c and c must be within the range of θ~20.4 to 116, respectively! There is. Also, when the father-in-law consists of only W, the character deteriorates if B is less than the number, and on the other hand! If it is more than 0, it is difficult to make it amorphous, so b needs to be within the range of 4 to SO.

また舅の一部をV、Ta、Inで置換する場合、y、T
a、Inの何れか111t&はg@以以上(10原子優
より多いときは、あるいはMの一部をNb。
Also, when replacing a part of the father with V, Ta, In, y, T
Either a, In, 111t& is more than g@ (if there are more than 10 atoms, or a part of M is Nb).

〒i、Zrで置換する場合Nb、 Ti、 Zrの何れ
か111または3種以上が5原子チより多いときは非晶
質合金を得ることが困難であるのでV、TIL。
When substituting with 〒i, Zr, it is difficult to obtain an amorphous alloy when there are more than 111 or 3 or more of Nb, Ti, and Zr than 5 atoms, so V, TIL is used.

MrLC)群Fi10原子チ以下、11b、 Ti、 
Zrの群は!IJI子−以下にそれぞれすることが好適
である。
MrLC) Group Fi 10 atoms or less, 11b, Ti,
The Zr group! IJI child - It is preferred to do each of the following.

またQの一部をNで置換する場合Nが4原子−より多い
と急冷凝固時にNが合金組織中に気泡として析出し、合
金の形状が悪化し、機械的強度が低下するのでNは4I
IL−7−1以下にすることが有利である。
In addition, when replacing a part of Q with N, if there are more than 4 atoms of N, N will precipitate as bubbles in the alloy structure during rapid solidification, deteriorating the shape of the alloy and reducing mechanical strength.
It is advantageous to have an IL-7-1 or lower.

次に本発明の非晶質鉄合金の成分組成と結晶化源[Tx
(℃)、硬さHy(DPI)および破壊強度6r(kp
/s票)とを第2表に示す。なお供試の非晶質合金は第
1図(a)に示す片ロール法により厚さ0.06mm%
$1lsuaのリボン状としたものである。但し結晶化
源[Txは5℃/分で加熱した示差熱量曲線における最
初の発熱ピーク開始温度であり、Hvは50f荷重のり
小ビッカース硬度計の測足値である。表中−は未測定で
ある。
Next, the composition of the amorphous iron alloy of the present invention and the crystallization source [Tx
(℃), hardness Hy (DPI) and breaking strength 6r (kp
/s votes) are shown in Table 2. The sample amorphous alloy was made to a thickness of 0.06 mm% by the single roll method shown in Figure 1(a).
It is made into a ribbon shape of $1 lsua. However, the crystallization source [Tx is the first exothermic peak start temperature in the differential calorimetry curve heated at 5° C./min, and Hv is the measured value of a 50 f load small Vickers hardness meter. - in the table means not measured.

!J   り  麦 一般に非晶質合金は加熱することにより結晶化し、非晶
質合金の特徴である延性および靭性を失なうと共にその
他の優れた特性も劣化するので、Txが高い合金でおる
ことが実用上有利である。
! In general, amorphous alloys crystallize when heated and lose their characteristic ductility and toughness, as well as deteriorating other excellent properties. This is practically advantageous.

本発明の非晶質合金のTxは第3表に見る如く大部分大
兄850〜650℃の範囲内であり、(ir、 MO。
As shown in Table 3, the Tx of the amorphous alloy of the present invention is mostly within the range of 850 to 650°C, (ir, MO.

W + V + Ta 、 anの含有量の増加と共に
TXが上昇する傾向にあることが判9、したがって本発
明合金は高いTXを有し、熱に対して安定表合金である
ことかわかる。また硬さくHv)および破壊強度(σf
)祉それぞれ800〜1100 DPNおよび280〜
400 ky/ am でラシ、Or、MO,W、V、
Ta。
Judgment 9 shows that the TX tends to increase as the content of W + V + Ta and an increases. Therefore, it can be seen that the alloy of the present invention has a high TX and is a heat-stable alloy. Also, hardness Hv) and fracture strength (σf
) welfare 800~1100 DPN and 280~ respectively
Rashi, Or, MO, W, V, at 400 ky/am.
Ta.

)(nの含有量の増加と共に何れも上昇する。これらの
値は従来知られている最高値(Fe −B系合金の場合
Hv = 1100 DPN 、  σf== 880
 k47 m−)と同等またはそれ以上であり、優れた
硬さと強さを有することが判る。すなわち第意表中(c
)Fe−MO−0系において硬さが10’00 DPN
以上で、かつ結晶化温度が600℃を越え、さらに破壊
強度    7が400 k4/wtm  に達するも
のがある。
) (Both increase as the n content increases. These values are the highest values conventionally known (for Fe-B alloys, Hv = 1100 DPN, σf = = 880
It is found that it has excellent hardness and strength, which is equivalent to or higher than K47 m-). In other words, in the first table of contents (c
) Hardness is 10'00 DPN in Fe-MO-0 system
There are some which have a crystallization temperature of over 600°C and a breaking strength 7 of 400 k4/wtm.

また上記合金組成中電の一部がloN子−以下のTa、
In、yからなる群のうちから選ばれる何れか1種また
は3種以上の元素、または5N子チ以下のWb、 Ti
、 Zrからなる群のうちから選ばれる何れか1程まえ
は2種以上の元素、あるいはまた上記3つの群のうちの
それぞれの少なくとも1種の元素との組合せを含む合金
も高強度、高硬度、高結晶化温度を有することを知見し
た。
In addition, a part of the above alloy composition is Ta of less than loN,
Any one or three or more elements selected from the group consisting of In, y, or Wb or less than 5N atoms, Ti
An alloy containing at least one element selected from the group consisting of , Zr, or a combination of at least one element from each of the three groups mentioned above also has high strength and high hardness. , was found to have a high crystallization temperature.

また一般に非結晶質鉄合金は結晶化温度よシ低温域でも
脆化してしまう欠点のあることが知られている。本発明
者等の研究によれば、前記非晶質鉄合金の脆化現象はそ
の合金中に含有される半金属元素の含有量と5IllK
大きく依存することを知見した。1!1々の半金属元素
を含む非晶質鉄合金と本発明の0を含む非晶質鉄合金と
の脆化温度を比較した結果を第8*に示す。
Furthermore, it is generally known that amorphous iron alloys have the disadvantage of becoming brittle even at temperatures lower than the crystallization temperature. According to the research of the present inventors, the embrittlement phenomenon of the amorphous iron alloy is caused by the content of metalloid elements contained in the alloy.
We found that it depends greatly on The results of comparing the embrittlement temperatures of an amorphous iron alloy containing 1!1 metalloid elements and an amorphous iron alloy containing 0 of the present invention are shown in No. 8*.

同表に示す脆化温度は各温度で80分間加熱した際に1
80°曲げが可訃な温度を示し、この温度が高い程脆化
傾向が小さいことを意味する。同表に見るように本発明
合金の大部分は、l、。Pg。
The embrittlement temperature shown in the table is 1 when heated for 80 minutes at each temperature.
80° bending indicates the temperature at which it is flexible, and the higher the temperature, the less the tendency to embrittle. As shown in the same table, most of the alloys of the present invention are l. Pg.

合金よりもより高い脆化温度を持ち、脆化し難く、従来
脆化し難い合金として知られているFe8oB、。
Fe8oB, which has a higher embrittlement temperature than alloys and is less likely to become brittle, is conventionally known as an alloy that does not easily become brittle.

合金にほぼ匹敵する脆化温度を有する。このような性質
は本発明の合金を刃物や鋸などの工具材、タイヤコード
やワイヤーローブなどの硬線材、ビニールやゴムなどの
合成樹脂との複合材、アルミニウムなどの低融点金属と
の複合材危どに用いる場合に不可避カ熱処理や製造中の
昇温によっても脆化しないので有利である。
It has a embrittlement temperature almost comparable to alloys. These properties allow the alloy of the present invention to be used as tool materials such as knives and saws, hard wire materials such as tire cords and wire lobes, composite materials with synthetic resins such as vinyl and rubber, and composite materials with low melting point metals such as aluminum. This is advantageous because it does not become brittle even when subjected to unavoidable heat treatment or temperature rise during production when used in hazardous conditions.

本発明の合金は上述したように、驚異的硬さと強度を持
つ高強度材料であり、従来知られている高強度鋼の代表
的カビアノ線の硬度700〜800DPN、破壊強度2
50〜800 kg/ mttt”よりも、さらに優れ
ている。また、一般に高強度鋼を線や板にすることは困
難で、複緒な製造工@(溶解→鋳造→均熱→鍛造、圧延
→熱処理)を必要とするが、本発明の合金は溶解後直接
に最終製品の線や仮を製造することが可能であるという
大きな利点がおる。したがって、本発明の非晶質鉄合金
は刃物や鋸歯などの工具材、タイヤブードやワイヤーロ
ープなどの硬線材、有機・無機材との複合材料(ビニー
ル、フラスチック、ゴム、アルミニウム、コンクリート
などの強化材料)、混紡材(安全作業衣、保額テント、
極超短波保護衣、マイクロウェーブ吸収板、シールドシ
ーツ、導電テープ、手術衣、訓電靴下、カーペット、ベ
ルトなど)、公害防止用フィルター、スクリーン、など
多くの用途がある。
As mentioned above, the alloy of the present invention is a high-strength material with amazing hardness and strength, and has a hardness of 700 to 800 DPN and a breaking strength of 2
50 to 800 kg/mttt". In addition, it is generally difficult to make high-strength steel into wire or plate, and requires a complex manufacturing process (melting → casting → soaking → forging, rolling → However, the alloy of the present invention has the great advantage that it is possible to manufacture final products such as wires and temporary wires directly after melting. Therefore, the amorphous iron alloy of the present invention can be used for cutting tools and Tool materials such as saw teeth, hard wire materials such as tire buds and wire ropes, composite materials with organic and inorganic materials (reinforced materials such as vinyl, plastic, rubber, aluminum, and concrete), blended materials (safety work clothes, security tents,
It has many uses, including ultra-high frequency protective clothing, microwave absorbing plates, shield sheets, conductive tape, surgical gowns, training socks, carpets, belts, etc.), pollution prevention filters, and screens.

次に本発明の非晶質合金の用途例における物性試験した
例を示す。
Next, an example of physical property testing for an application example of the amorphous alloy of the present invention will be shown.

例  1 従来刃物、例えばカミソリ、ペーパーカッター等には炭
素鋼、硬質ステンレス鋼、低合金鋼製刃物材が広く使用
されており、刃物材に適する特性 。
Example 1 Carbon steel, hard stainless steel, and low-alloy steel are widely used for conventional cutlery, such as razors and paper cutters, and these have characteristics suitable for cutlery materials.

としては硬度が高く、耐食性があり、弾性が高く、耐摩
耗性の良いことが簀求されている。本発明合金は前記特
性を十分に具え極めて優秀であることが判った。第4表
に硬さと、エメリーペーパー(#400 )上で1oB
2荷重を加えて10分間摩耗させた時の重置減少すなわ
ち摩耗量を市販品と比較して示す。表中摩耗量は同一試
料につき2口側足した結果を示す。
As such, it is required to have high hardness, corrosion resistance, high elasticity, and good wear resistance. It has been found that the alloy of the present invention fully has the above-mentioned characteristics and is extremely excellent. Table 4 shows hardness and 1oB on emery paper (#400)
The weight reduction, that is, the amount of wear when abrasion was performed for 10 minutes with 2 loads applied, is shown in comparison with a commercially available product. The amount of wear in the table shows the results obtained by adding up the two mouth sides of the same sample.

同表から本合金材は市販カミソリ刃材に較べて約100
分の1以下の摩耗量であることが判る。
From the same table, this alloy material is approximately 100% lower than commercially available razor blade materials.
It can be seen that the amount of wear is less than one-fold.

例  2 本発明合金の補強材としての性質羞びに使用した結果を
現用補強材であるピアノ鋼線、ガラスファイバー、ナイ
ロン線と比較して第5表に示す。
Example 2 Properties of the alloy of the present invention as a reinforcing material Table 5 shows the results of using the alloy as a reinforcing material in comparison with existing reinforcing materials such as piano steel wire, glass fiber, and nylon wire.

同表よシ補強材として要求される抗張力はピアノ線よ)
50〜100 kg/wm−も高く、高温抗張力・曲り
疲労限も優れている。さらにもう1つの重要な性質とし
て要求される接着性はゴム、プラスチックの補強材とし
て使用した場合良好であった。
According to the same table, the tensile strength required as a reinforcing material is that of piano wire)
It has a high tensile strength of 50 to 100 kg/wm-, and has excellent high-temperature tensile strength and bending fatigue limit. Adhesion, which is another important property, was good when used as a reinforcing material for rubber and plastics.

従来補強材としてゴム構造物には鋼線、合成繊維、ガラ
ス繊維が用いられているが、現在鋼線で得られている疲
労強度をさらに上昇させることは困難でToり、また合
成繊維およびガラス繊維も鋼線以上の疲労強度を真備さ
せることは不可能に近いこと社周知の如くである。また
合成樹脂を補強するには従来主としてガラス繊維を加工
したマット状補強材が使用されており、この補強材は耐
食性は良好であるが、脆いため曲げ強度は十分でない。
Traditionally, steel wire, synthetic fibers, and glass fibers have been used as reinforcing materials in rubber structures, but it is difficult to further increase the fatigue strength currently obtained with steel wires, and synthetic fibers and glass It is well known that it is nearly impossible to make fibers have fatigue strength greater than that of steel wires. Furthermore, in order to reinforce synthetic resins, mat-like reinforcing materials mainly made of processed glass fibers have conventionally been used, and although this reinforcing material has good corrosion resistance, it is brittle and therefore does not have sufficient bending strength.

コンクIJ −ト構造物には鋼線あるいは鋼索を補強材
トして用いたPCコンクリート、鋼線を短かく切断した
ものをランダムに混合したコンクリート彦どかあるが、
倒れも耐食性の点で欠点がおる。
Concrete structures include PC concrete, which uses steel wires or cables as reinforcement materials, and concrete, which is made by randomly mixing steel wires cut into short pieces.
Falling also has drawbacks in terms of corrosion resistance.

ところが、本発明合金を補強材とすれば、上記ゴム、合
成樹脂、コンクリート等の補強材として極めて有利罠使
用することができる。以下その数例について説明する。
However, if the alloy of the present invention is used as a reinforcing material, it can be used extremely advantageously as a reinforcing material for the above-mentioned rubber, synthetic resin, concrete, etc. A few examples will be explained below.

CA)  Fell5Ori16C18およびF 6 
a * Or 1s M OB Os s非晶質合金を
第1図(a)の装置を用いて@0.06 tuts、厚
さ0.04 wsa鼻の線とし、これを網状にあんでタ
イヤ用ゴム素材中に埋込んで試験片とした。
CA) Fell5Ori16C18 and F6
a * Or 1s M OB Os s Using the apparatus shown in Figure 1(a), form amorphous alloy into lines of @0.06 tuts and thickness of 0.04 wsa, and then form a mesh into tire rubber. It was embedded in the material and used as a test piece.

なお、網目の間隔は1 wsaて、試片は8×20X1
00II寓板であった。ゴムを加硫する際に試片を約1
50〜180°OK1時間程度昇湿した。
The mesh spacing is 1 wsa, and the specimen is 8 x 20 x 1.
It was a 00II fable board. Approximately 1 sample is used when vulcanizing rubber.
Humidity was raised at 50-180° for about 1 hour.

との試片を用いて引張り型疲労試験機により長時間疲労
試験(振幅伸びl cps )を行なった。その結果、
10 サイクルでも破断せず、しかもゴムと線との剥離
が認められ危かった。この結果は、Fe6fiOrlf
fiM08CI8合金が破壊強[(81110梅/−1
m )、結晶化温度(565℃)、疲労強度(85Ik
id/ss )の点で優れていることによる。
A long-term fatigue test (amplitude elongation l cps) was conducted using a tensile fatigue testing machine using a specimen of the same. the result,
It did not break even after 10 cycles, and peeling between the rubber and the wire was observed, which was dangerous. This result is Fe6fiOrlf
fiM08CI8 alloy has high destructive strength [(81110ume/-1
m ), crystallization temperature (565°C), fatigue strength (85Ik
id/ss).

また、ゴム用合金は硫黄による腐食に耐えねばならない
。そこで、上記合金線を過度に加硫し 9たゴム中に埋
込み、約1年間80℃で放置抜、合金線の表面と強度を
調べたがほとんど変化が無かった。
Rubber alloys must also resist corrosion by sulfur. Therefore, the above-mentioned alloy wire was embedded in excessively vulcanized rubber and left at 80° C. for about one year to be removed.The surface and strength of the alloy wire were examined, but there was almost no change.

CB)   Fe   Cjr   (3Fe   M
o066   2618’     14  818%
Fe、、Orl、No8C□808mの非晶質合金を第
1図(a)の装置を用いて約0.05 m11%φの線
を作製し、これを一定の長さに切断して一定詭だけレジ
ンコンクリート中に混合した。試験片形状は15 X 
15 X 152 cyn角柱であり、試片支持距離は
4 ’ CIl+%荷重負荷点は各支点よシ15cII
Kの21i1所であった。下表は曲げ試験の結果を示す
CB) Fe Cjr (3Fe M
o066 2618' 14 818%
An amorphous alloy of Fe, Orl, No8C□808m was made into a wire of approximately 0.05 m11%φ using the apparatus shown in Fig. 1(a), and this was cut into a certain length and cut into a certain shape. Only resin mixed into concrete. The test piece shape is 15×
It is a 15 x 152 cyn prism, and the specimen support distance is 4' CIl + % load loading point is 15 cII from each fulcrum.
It was K's 21i1 location. The table below shows the results of the bending test.

表に見るように、ファイバー補強材は無強化材の約14
倍の最大荷重と約3倍のたわみを持つことが判る。すな
わち、ファイバー補強コンクリートの強度およびたわみ
は一般の鉄筋補強コンクリートによシ1.5〜g、o倍
の強度を持つと予想される。
As shown in the table, the fiber reinforcement material is about 14% of the unreinforced material.
It can be seen that it has twice the maximum load and approximately three times the deflection. That is, the strength and deflection of fiber-reinforced concrete is expected to be 1.5 to 1.5 g, o times as strong as that of general reinforcing concrete.

以上本発明合金は、硬さおよび強さが大きく、疲労限も
優れ、耐食性に優れ、その上従来の非晶質合金に比し、
安価でかつ製造が容易である等の数々の特徴を有し、多
方面での使用が期待される。
As described above, the alloy of the present invention has high hardness and strength, excellent fatigue limit, and excellent corrosion resistance, and moreover, compared to conventional amorphous alloys,
It has many characteristics such as being inexpensive and easy to manufacture, and is expected to be used in many fields.

本発明の合金は用途により粉末、線あるいは板にmiす
ることができる。
The alloy of the present invention can be made into powder, wire or plate depending on the purpose.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (t))はそれぞれ浴融合金を急冷
することによる非晶質合金の製造装置の原理図である。 1・・・浴融金属、2・・・急冷凝固した非晶質合金の
線あるいは板、8・・・冷却用円板、4・・・ロール。 特許出願人 東北大学金属材料研究所長第1図 <a>         cb) 37 −
FIGS. 1(a) and 1(t) are diagrams showing the principle of an apparatus for producing an amorphous alloy by rapidly cooling a bath alloy. DESCRIPTION OF SYMBOLS 1... Bath molten metal, 2... Rapidly solidified amorphous alloy wire or plate, 8... Cooling disc, 4... Roll. Patent applicant: Director, Research Institute for Metals, Tohoku University Figure 1 <a> cb) 37 -

Claims (1)

【特許請求の範囲】 L 下記の式で示される成分組成より力る高強度、高硬
度、高結晶化温度、高脆化温度を有する炭素系非晶質鉄
合金。 F8aOrbMcQd (式中FeaはFeがa原子チ、Crbはcrがbrf
lA子チ、Moはcr、to、woうちカラ選ばれる何
れか1種または2種以上がC原子チ、QdはCがdJj
j子チ含子宮含有いることを示し、aは28〜8B、b
は20以下(但し零を含まず)、c H4〜26、dは
15〜26の範囲内にあり、a、b、c及びdの和は実
質的に100である3、但しMがWのみよりなるときは
、bは4〜20の範囲内である。)λ 下記の式で示さ
れる成分組成よりなる炭素系非晶質鉄合金。 F e a M c Q d (式中FeaはFeがa原子チ、MoはM。、Wのうち
から選ばれる何れか1種または2種がC原子饅、Qdは
Cがdw、子チ含有されていることを示し、aは88〜
B!、Cは4〜26、dは15〜26の範囲内にあり、
a、C及びdの和は実質的に100である。但しMがW
のみより碌ることはない。)
[Scope of Claims] L A carbon-based amorphous iron alloy having high strength, high hardness, high crystallization temperature, and high embrittlement temperature due to the component composition represented by the following formula. F8aOrbMcQd (In the formula, Fea means Fe is a atom, Crb means cr is brf
lA child, Mo is cr, to, wo, any one or more of the selected ones is C atom, Qd is C is dJj
j Indicates that the child contains a uterus, a is 28-8B, b
is 20 or less (not including zero), c H4 to 26, d is in the range 15 to 26, and the sum of a, b, c and d is substantially 1003, provided that M is only W , b is within the range of 4 to 20. )λ A carbon-based amorphous iron alloy with the composition shown by the formula below. F e a M c Q d (In the formula, Fea means Fe is an atom, Mo is M., any one or two selected from W is a C atom, and Qd is C is dw, containing a child. a is 88~
B! , C is in the range of 4 to 26, d is in the range of 15 to 26,
The sum of a, C and d is substantially 100. However, M is W
There is nothing better than that. )
JP20762482A 1982-11-29 1982-11-29 Amorphous iron alloy containing carbon with high strength, high hardness, high crystallization temperature and high embrittlement temperature Pending JPS58126964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20762482A JPS58126964A (en) 1982-11-29 1982-11-29 Amorphous iron alloy containing carbon with high strength, high hardness, high crystallization temperature and high embrittlement temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20762482A JPS58126964A (en) 1982-11-29 1982-11-29 Amorphous iron alloy containing carbon with high strength, high hardness, high crystallization temperature and high embrittlement temperature

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP53010397A Division JPS6026825B2 (en) 1978-02-03 1978-02-03 Nitrogen-containing carbon-based amorphous iron alloy with high strength, high hardness, high crystallization temperature, and high embrittlement resistance

Publications (1)

Publication Number Publication Date
JPS58126964A true JPS58126964A (en) 1983-07-28

Family

ID=16542873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20762482A Pending JPS58126964A (en) 1982-11-29 1982-11-29 Amorphous iron alloy containing carbon with high strength, high hardness, high crystallization temperature and high embrittlement temperature

Country Status (1)

Country Link
JP (1) JPS58126964A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143768U (en) * 1984-03-02 1985-09-24 久井 宗裕 Control wire molding material
JP2021529892A (en) * 2018-07-11 2021-11-04 アトメタル テック ピーティーイー エルティーディーAttometal Tech Pte. Ltd. Iron-based alloy powder and molded products using this

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143768U (en) * 1984-03-02 1985-09-24 久井 宗裕 Control wire molding material
JP2021529892A (en) * 2018-07-11 2021-11-04 アトメタル テック ピーティーイー エルティーディーAttometal Tech Pte. Ltd. Iron-based alloy powder and molded products using this
US11718900B2 (en) 2018-07-11 2023-08-08 Attometal Tech Pte. Ltd. Iron-based alloy powder and molded article using same

Similar Documents

Publication Publication Date Title
Carlson et al. The effect of austenitizing temperature upon the microstructure and mechanical properties of experimental Fe/Cr/C steels
US4318738A (en) Amorphous carbon alloys and articles manufactured from said alloys
JPS58213857A (en) Amorphous iron alloy having superior fatigue characteristic
TW201350232A (en) Material with high wear resistance
US4584034A (en) Iron-base amorphous alloys having improved fatigue and toughness characteristics
KR20110086716A (en) Exploitation of deformation mechanisms for industrial usage in thin product forms
JPH06509610A (en) High speed steel manufactured by powder metallurgy
CA1231559A (en) Iron-base alloy materials having excellent workability
JPS62227597A (en) Thin two-phase stainless steel strip for solid phase joining
JPS6121299B2 (en)
CN101418418B (en) Low welding crack sensitivity steel plate with yield strength of 690MPa grade and method for producing the same
WO2000026427A8 (en) Steel, use of the steel, product made of the steel and method of producing the steel
JPS59200743A (en) Sintered alloy steel
JPS58126964A (en) Amorphous iron alloy containing carbon with high strength, high hardness, high crystallization temperature and high embrittlement temperature
JPS5913056A (en) Amorphous iron alloy with high strength and resistance to fatigue, general corrosion, pitting corrosion, crevice corrosion, stress corrosion cracking and hydrogen embrittlement
JP4849473B2 (en) Abrasion resistant high Cr cast iron and method for producing the same
JPS6026825B2 (en) Nitrogen-containing carbon-based amorphous iron alloy with high strength, high hardness, high crystallization temperature, and high embrittlement resistance
JP2745646B2 (en) Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability
JPS6354773B2 (en)
JP6048072B2 (en) Hot rolled steel sheet for die quench, method for producing the same, and molded product using the same
JPH06145887A (en) Composite high-speed steel sleeve roll and its production
US4415529A (en) Mn-Based alloy of nonequilibrium austenite phase
JP2746884B2 (en) Corrosion-resistant and wear-resistant screw for high-temperature molding
JP2506517B2 (en) Stainless steel fiber for concrete reinforcement
JP2745647B2 (en) Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability