JPS6354773B2 - - Google Patents

Info

Publication number
JPS6354773B2
JPS6354773B2 JP61074350A JP7435086A JPS6354773B2 JP S6354773 B2 JPS6354773 B2 JP S6354773B2 JP 61074350 A JP61074350 A JP 61074350A JP 7435086 A JP7435086 A JP 7435086A JP S6354773 B2 JPS6354773 B2 JP S6354773B2
Authority
JP
Japan
Prior art keywords
alloy
amorphous
present
strength
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61074350A
Other languages
Japanese (ja)
Other versions
JPS61235538A (en
Inventor
Takeshi Masumoto
Akihisa Inoe
Shunsuke Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Original Assignee
TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO filed Critical TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Priority to JP7435086A priority Critical patent/JPS61235538A/en
Publication of JPS61235538A publication Critical patent/JPS61235538A/en
Publication of JPS6354773B2 publication Critical patent/JPS6354773B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高強度、高硬度、高結晶化温度を有
し、かつ脆化抵抗に優れた炭素系非晶質鉄合金に
関するものである。 通常、固体の金属・合金は結晶状態であるが、
液体より超急冷(冷却速度は合金の組成に依存す
るが、およそ104〜106℃/秒である)すれば液体
に類似した周期的原子配列を持たない非結晶構造
の固体が得られる。このような金属を非晶質金属
あるいはアモルフアス金属と呼ぶ。一般に、この
型の金属は2種以上の元素からなる合金であり、
通常、遷移金属元素と非金属元素の両者の組合せ
よりなり、半金属量は約15〜30原子%程度であ
る。 また本発明者等は先に高強度、耐疲労、耐全面
腐食、耐孔食、耐隙間腐食、耐応力腐食割れ、耐
水素脆性用アモルフアス鉄合金(特開昭51―4017
号)を発明し特許出願した。この合金は下記の成
分組成の合金である。 原子%として、Cr1〜40%と、P,CおよびB
のうち何れか1種または2種以上7〜35%を主成
分として含み、かつ副成分として、 (1) NiおよびCoの何れか1種または2種0.01〜
40%、 (2) Mo,Zr,Ti,Si,Al,Pt,MnおよびPdの
何れか1種または2種以上0.01〜20%、 (3) V,Nb,Ta,W,GeおよびBeの何れか1
種または2種以上0.01〜10%、 (4) Au,Cu,Zn,Cd,Sn,As,Sb,Biおよび
Sの何れか1種または2種以上0.01〜5%、 の群のうちから選ばれた何れか1群または2群以
上を合計量で0.01〜75%を含有し、残部は実質的
にFeの組成からなる高強度、耐疲労耐全面腐食、
耐孔食、耐隙間腐食、耐応力腐食割れ、耐水素脆
性用アモルフアス鉄合金。 上記特開昭51―4017号の非晶質合金はクロムの
添加により強度および耐熱性を向上させるととも
にすぐれた耐食性を賦与させた新規な合金であつ
た。また、特筆すべきは、これらの合金が耐食性
の新規な特性を有し、全面腐食に対して強いばか
りでなく、現用ステンレス鋼(304鋼、316鋼な
ど)では避けることができない孔食、隙間腐食、
応力腐食割れに対しても大きな抵抗を有するとい
う優れた特徴があつた。しかし、これらの合金に
おいて、その成分組成が広範に亘つているため、
実用的ならびに新規な用途に対して耐熱性が高
く、硬度ならびに強度が高く、かつ脆化温度が高
いという諸特性を保持する範囲内で製造が容易で
あり、かつ安価である成分組成範囲については従
来知られていなかつた。 本発明は、高強度、高硬度、高結晶化温度およ
び高脆化温度の諸特性を有しながら、製造が容易
でかつ安価な炭素系非晶質鉄合金を提供すること
を目的とするものである。すなわち本発明は実質
的に下記の式で示される成分組成よりなることを
特徴とする炭素系高強度、高硬度、高結晶化温度
および高脆化温度を有する非晶質鉄合金である。
FeaMcQd (式中FeaはFeがa原子%、McはMo,Wのう
ちから選ばれる何れか1種または2種がc原子
%、QdはCがd原子%含有されていることを示
し、aは48〜82、cは4〜26、dは15〜26の範囲
内にあり、a,c及びdの和は実質的に100であ
る。但しMがWのみよりなることはない。) 本発明者等は、非金属元素として炭素のみを含
む鉄合金が広い組成範囲で容易に非晶質化し、し
かも強度、硬度、耐食性、耐熱性の点で優れた特
性をもつことを新規に知見して、本発明を完成し
たのである。 次に本発明を詳細に説明する。 これまで良く知られている非晶質合金において
廉価な合金は鉄を主体としたものであり、例えば
Fe80P20,Fe80B20,Fe80P12B8,Fe75Si15B10
Fe75Si15P10,Fe80P13C7などのように鉄と非金属
元素のP,B,Si,Cとの組合せであつた。しか
るに、本発明者らは非晶質化するために必要な添
加材であるこれら半金属元素には各々―長―短が
あることを見出した。その効果を纒めて第1表に
示す。同表中には特性を◎(優)、〇(良)、×
(可)でもつて評価してある。
The present invention relates to a carbon-based amorphous iron alloy that has high strength, high hardness, high crystallization temperature, and excellent embrittlement resistance. Normally, solid metals and alloys are in a crystalline state,
If the liquid is cooled extremely rapidly (the cooling rate is approximately 10 4 to 10 6 °C/sec, depending on the composition of the alloy), a solid with an amorphous structure similar to that of a liquid without a periodic atomic arrangement can be obtained. Such metals are called amorphous metals or amorphous metals. Generally, this type of metal is an alloy consisting of two or more elements;
Usually, it consists of a combination of both transition metal elements and non-metal elements, and the semimetal content is about 15 to 30 atomic percent. In addition, the present inventors have previously developed an amorphous iron alloy for high strength, fatigue resistance, general corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance (Japanese Patent Application Laid-Open No. 51-4017
No.) and applied for a patent. This alloy has the following composition. As atomic %, Cr1~40%, P, C and B
Contains 7 to 35% of one or more of the following as a main component, and as subcomponents: (1) 0.01 to 35% of one or two of Ni and Co.
40%, (2) 0.01 to 20% of one or more of Mo, Zr, Ti, Si, Al, Pt, Mn and Pd, (3) V, Nb, Ta, W, Ge and Be. Any one
0.01-10% of one or more species; (4) 0.01-5% of one or more of Au, Cu, Zn, Cd, Sn, As, Sb, Bi, and S; High strength, fatigue resistant, general corrosion resistant,
Amorphous iron alloy for pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance. The amorphous alloy disclosed in JP-A-51-4017 was a new alloy that had improved strength and heat resistance through the addition of chromium, as well as excellent corrosion resistance. What is also noteworthy is that these alloys have novel corrosion-resistant properties, and are not only resistant to general corrosion, but also resistant to pitting and crevice corrosion that cannot be avoided with modern stainless steels (304 steel, 316 steel, etc.). corrosion,
It also has an excellent feature of high resistance to stress corrosion cracking. However, because these alloys have a wide range of compositions,
For practical and new uses, the composition range is easy to manufacture and inexpensive while maintaining various properties such as high heat resistance, high hardness and strength, and high embrittlement temperature. It was previously unknown. An object of the present invention is to provide a carbon-based amorphous iron alloy that is easy to manufacture and inexpensive while having various properties such as high strength, high hardness, high crystallization temperature, and high embrittlement temperature. It is. That is, the present invention is a carbon-based amorphous iron alloy having high strength, high hardness, high crystallization temperature, and high embrittlement temperature, which is characterized by having a composition substantially represented by the following formula.
Fe a M c Q d (In the formula, Fe a is a atomic % of Fe, M c is one or two selected from Mo and W containing d atomic %, and Q d is d atomic % of C. a is in the range of 48 to 82, c is in the range of 4 to 26, and d is in the range of 15 to 26, and the sum of a, c, and d is substantially 100.However, if M is only W ) The present inventors have discovered that an iron alloy containing only carbon as a nonmetallic element easily becomes amorphous over a wide composition range, and has excellent properties in terms of strength, hardness, corrosion resistance, and heat resistance. The present invention was completed based on the new finding that Next, the present invention will be explained in detail. Among the well-known amorphous alloys, inexpensive ones are mainly iron-based; for example,
Fe 80 P 20 , Fe 80 B 20 , Fe 80 P 12 B 8 , Fe 75 Si 15 B 10 ,
It was a combination of iron and nonmetallic elements P, B, Si, and C, such as Fe 75 Si 15 P 10 and Fe 80 P 13 C 7 . However, the present inventors have discovered that these metalloid elements, which are necessary additives for making the material amorphous, each have advantages and disadvantages. The effects are summarized in Table 1. In the same table, the characteristics are ◎ (excellent), 〇 (good), ×
(Acceptable) However, it has been evaluated.

【表】 同表より、Geは総ての点で好ましくなく、P
は原料費、非晶質形成能、耐食性等の性質は良い
が、それら以外の性質は好ましくない。特に溶解
中に有害ガスを発生し、また加熱中に材料の脆化
を促進するので問題の多い元素である。同表中Si
およびBは耐食性を低下させる作用を有する点で
好ましくなく、またBは原料費が高いという欠点
を有する。前記諸元素に対してCは同表より明ら
かな如く総ての点において好ましい性質を有する
元素であることが判つた。 かくして本発明者等は、非晶質化に寄与する前
記半金属中Cだけを含む非晶質鉄合金について詳
細に研究して本発明を完成したのである。 一般に非晶質合金は液体状態から急速に冷却す
ることによて得られるが、このために種々の冷却
方法が考えられている。例えば高速回転する1つ
の円板の外周面上(第1図a)または高速に互い
に逆回転する2つのロールの間(第1図b)に液
体金属を連続に噴出させて、回転円板または双ロ
ールの表面上で105〜106℃/秒程度の速度で急冷
凝固させる方法が公知である。また最近本発明者
等が発明した溶融金属から直接幅広帯板を製造す
る方法ならびにその製造装置(特開昭53―125228
号、同53―125229号)を用いることができる。 本発明の非晶質鉄合金も同様に液体状態から急
速に冷却することによつて得ることができ、上記
の諸方法によつて線または板状の本発明の非晶質
合金を製造することができる。また、高圧ガス
(窒素、アルゴンガスなど)により液体金属を吹
き飛ばし、対向する冷却用銅板上で微粉状に急冷
凝固させる例えばアトマイザーなどにより数μm
〜数10μm程度の非晶質合金粉末を製造すること
ができ、この合金は半金属としてCのみからな
り、したがつて従来の非晶質合金に較べて安価で
あるばかりでなく、製造が容易であるため本発明
の炭素系非晶質鉄合金よりなる粉末、線、あるい
は板を工業的規模で製造することができる点にお
いて極めて有利である。なお本発明合金にあつて
は通常の工業材料中に存在する程度の不純物、例
えばP,Si,As,S,Sb,Zn,Cu,Alなどが小
量含まれても本発明の目的を達成することができ
る。 本発明の非晶質鉄合金は成分組成上から下記の
諸グループに大別することができる。 (a) Fe―Mo―C (b) Fe―Mo―W―C 次は本発明において、成分組成を限定する理由
を説明する。 Feが48原子%より少ないか、あるいは82原子
%より多いと非晶質合金を容易に得ることが困難
であるのでFeは48〜82原子%の範囲内にする必
要がある。 QのCは15原子%より少ないか、あるいは26原
子%より多いと非晶質合金を容易に得ることが困
難であるのでQのCは15〜26原子%の範囲内にす
る必要がある。 Mcのcが4〜26の範囲外では非晶質合金を得
ることが困難であるので、Mcのcは4〜26の範
囲内にする必要がある。 またQのCの一部をNで置換する場合Nが4原
子%より多いと急冷凝固時にNが合金組織中に気
泡として析出し、合金の形状が悪化し、機械的強
度が低下するのでNは4原子%以下にすることが
必要である。 次に本発明の非晶質鉄合金の成分組成と結晶化
温度Tx(℃)、硬さHv(DPN)および破壊強度σf
(Kg/mm2)とを第2表に示す。なお供試の非晶質
合金は第1図aに示す片ロール法により厚さ0.05
mm、幅2mmのリボン状としたものである。但し結
晶化温度Txは5℃/分で加熱した示差熱量曲線
における最初の発熱ピーク開始温度であり、Hv
は50g荷重の微小ビツカース硬度計の測定値であ
る表中―は未測定である。
[Table] From the same table, Ge is unfavorable in all respects, and P
has good properties such as raw material cost, amorphous formation ability, and corrosion resistance, but other properties are unfavorable. In particular, it is a problematic element because it generates harmful gases during melting and promotes embrittlement of the material during heating. Si in the same table
and B are unfavorable since they have the effect of reducing corrosion resistance, and B also has the disadvantage of high raw material costs. As is clear from the table, C was found to be an element having preferable properties in all respects with respect to the above-mentioned elements. Thus, the present inventors completed the present invention by conducting detailed research on amorphous iron alloys containing only C in the semimetal, which contributes to amorphization. Generally, amorphous alloys are obtained by rapid cooling from a liquid state, and various cooling methods have been considered for this purpose. For example, liquid metal is continuously jetted onto the outer circumferential surface of one disc rotating at high speed (Fig. 1 a) or between two rolls rotating counter-rotating at high speed (Fig. 1 b). A method is known in which the material is rapidly solidified on the surface of twin rolls at a rate of about 10 5 to 10 6 ° C./sec. In addition, the present inventors have recently invented a method and apparatus for directly manufacturing wide strips from molten metal (Japanese Patent Laid-Open No. 53-125228
No. 53-125229) can be used. The amorphous iron alloy of the present invention can also be obtained by rapid cooling from a liquid state, and the amorphous alloy of the present invention in the form of a wire or plate can be produced by the above-mentioned methods. Can be done. In addition, the liquid metal is blown off with high pressure gas (nitrogen, argon gas, etc.) and rapidly solidified into a fine powder on an opposing copper plate for several μm using an atomizer.
It is possible to produce amorphous alloy powder with a size of ~ several tens of micrometers, and this alloy consists only of C as a semimetal, so it is not only cheaper but also easier to produce than conventional amorphous alloys. Therefore, it is extremely advantageous in that powders, wires, or plates made of the carbon-based amorphous iron alloy of the present invention can be manufactured on an industrial scale. In the case of the alloy of the present invention, the purpose of the present invention can be achieved even if small amounts of impurities such as P, Si, As, S, Sb, Zn, Cu, Al, etc., which are present in ordinary industrial materials, are contained. can do. The amorphous iron alloy of the present invention can be roughly classified into the following groups based on its composition. (a) Fe—Mo—C (b) Fe—Mo—W—C Next, the reason for limiting the component composition in the present invention will be explained. If Fe is less than 48 atomic % or more than 82 atomic %, it is difficult to easily obtain an amorphous alloy, so Fe needs to be in the range of 48 to 82 atomic %. If the C content of Q is less than 15 atom % or more than 26 atom %, it is difficult to easily obtain an amorphous alloy, so the C content of Q must be within the range of 15 to 26 atom %. Since it is difficult to obtain an amorphous alloy when the c of M c is outside the range of 4 to 26, the c of M c needs to be within the range of 4 to 26. In addition, when replacing a part of C in Q with N, if the N content exceeds 4 at %, N will precipitate as bubbles in the alloy structure during rapid solidification, deteriorating the shape of the alloy and reducing mechanical strength. It is necessary to keep it below 4 atomic %. Next, we will discuss the composition, crystallization temperature Tx (℃), hardness Hv (DPN), and fracture strength σ f of the amorphous iron alloy of the present invention.
(Kg/mm 2 ) are shown in Table 2. The sample amorphous alloy was rolled to a thickness of 0.05 mm by the single roll method shown in Figure 1a.
mm, in the form of a ribbon with a width of 2 mm. However, the crystallization temperature Tx is the temperature at which the first exothermic peak starts in the differential calorific value curve heated at 5°C/min, and Hv
The values in the table are measured using a micro-Vickers hardness meter with a load of 50 g.The values in the table have not been measured.

【表】 一般に非晶質合金は加熱することにより結晶化
し、非晶質合金の特徴である延性および靭性を失
うと共にその他の優れた特性も劣化するので、
Txが高い合金であることが実用上有利である。
本発明の非晶質合金のTxは第2表に見る如く大
部分大凡350〜650℃の範囲内であり、Mo,W,
の含有量の増加と共にTxが上昇する傾向にある
ことが判り、したがつて本発明合金は高いTxを
有し、熱に対して安定な合金であることがわか
る。また硬さ(Hv)および破壊強度(σf)はそ
れぞれ800〜1100DPNおよび280〜400Kg/mm2であ
り、Mo,Wの含有量の増加と共に何れも上昇す
るこれらの値は従来知られている最高値(Fe―
B系合金の場合Hv=1100DPN,σf=330Kg/mm2
と同等またはそれ以上であり、優れた硬さと強さ
を有することが判る。すなわち第2表中(a)Fe―
Mo―c系において硬さが1000DPN以上で、かつ
結晶化温度が600℃を越え、さらに破壊強度が400
Kg/mm2に達するものがある。 また一般に非結晶質鉄合金は結晶化温度より低
温域でも脆化してしまう欠点のあることが知られ
ている。本発明者等の研究によれば、前記非晶質
鉄合金の脆化減少はその合金中に含有される半金
属元素の含有量と種類に大きく依存することを知
見した。種々の半金属元素を含む非晶質鉄合金と
本発明のCを含む非晶質鉄合金との脆化温度を比
較した結果を第3表に示す。
[Table] In general, amorphous alloys crystallize when heated and lose their characteristic ductility and toughness, as well as deteriorating their other excellent properties.
It is practically advantageous to use an alloy with a high Tx.
As shown in Table 2, the Tx of the amorphous alloy of the present invention is mostly within the range of approximately 350 to 650°C, and Mo, W,
It can be seen that Tx tends to increase as the content of .sub.2 increases. Therefore, it can be seen that the alloy of the present invention has a high Tx and is a stable alloy against heat. In addition, the hardness (Hv) and fracture strength (σ f ) are 800 to 1100 DPN and 280 to 400 Kg/mm 2 , respectively, and these values, which increase with increasing Mo and W contents, are conventionally known. Highest value (Fe-
For B alloy, Hv = 1100DPN, σ f = 330Kg/mm 2 )
It is found that it has excellent hardness and strength. In other words, (a) Fe in Table 2
In Mo-c system, the hardness is over 1000DPN, the crystallization temperature is over 600℃, and the breaking strength is 400℃.
Some reach Kg/ mm2 . Furthermore, it is generally known that amorphous iron alloys have the drawback of becoming brittle even at temperatures lower than the crystallization temperature. According to research conducted by the present inventors, it has been found that the reduction in embrittlement of the amorphous iron alloy greatly depends on the content and type of metalloid elements contained in the alloy. Table 3 shows the results of comparing the embrittlement temperatures of amorphous iron alloys containing various metalloid elements and the C-containing amorphous iron alloy of the present invention.

【表】 同表に示す脆化温度は各温度で30分間加熱した
際に180゜曲げが可能な温度を示し、この温度が高
い程脆化傾向が小さいことを意味する。同表に見
るように本発明合金の大部分は、Fe80P20合金よ
りもより高い脆化温度を持ち、脆化し難く、従来
脆化し難い合金として知られているFe80B20合金
にほぼ匹敵する脆化温度を有する。このような性
質は本発明の合金を刃物や鋸などの工具材、タイ
ヤコードやワイヤーロープなどの硬線材、ビニー
ルやゴムなどの合成樹脂との複合材、アルミニウ
ムなどの低融点金属との複合材などに用いる場合
に不可避な熱処理や製造中の昇温によつても脆化
しないので有利である。 本発明の合金は上述したように、驚異的硬さと
強度を持つ高強度材料であり、従来知られている
高強度鋼の代表的なピアノ線の硬度700〜
800DPN、破壊強度250〜300Kg/mm2よりもさらに
優れている。また、一般に高強度鋼を線や板にす
ることは困難で、複雑な製造工程(溶解→鋳造→
均熱→鍛造、圧延→熱処理)を必要とする。本発
明の合金は溶解後直接に最終製品の線や板を製造
することが可能であるという大きな利点がある。
したがつて、本発明の非晶質鉄合金は刃物や鋸歯
などの工具材、タイヤコードやワイヤーロープな
どの硬線材、有機材・無機材との複合材料(ビニ
ール、プラスチツク、ゴム、アルミニウム、コン
クリートなどの強化材料)、混紡材(安全作業衣、
保護テント、極超短波保護衣、マイクロウエーブ
吸収板、シールドシーツ、導電テープ、手術衣、
制電靴下、カーペツト、ベルトなど)、公害防止
用フイルター・スクリーンなど多くの用途があ
る。 次に本発明の非晶質合金の用途例として物性試
験をした例を示す。 例 1 従来刃物、例えばカミソリ、ペーパーカツター
等に炭素鋼、硬質ステンレス鋼、低合金鋼製刃物
材が広く使用されており、刃物材に適する特性と
しては硬度が高く、耐食性があり、弾性が高く、
耐摩耗性のよいことが要求されている。本発明合
金は前記特性を十分に具え極めて優秀であること
が判つた。第4表に硬さと、エメリーペーパー
(#400)上で193g荷重を加えて10分間摩耗させ
た時の重量減少すなわち摩耗量を市販品と比較し
て示す。表中摩耗量は同一試料につき2回測定し
た結果を示す。
[Table] The embrittlement temperatures shown in the table indicate the temperatures at which bending is possible by 180° when heated at each temperature for 30 minutes, and the higher the temperature, the smaller the tendency to embrittle. As shown in the same table, most of the alloys of the present invention have a higher embrittlement temperature than the Fe 80 P 20 alloy and are less likely to become embrittled, and are approximately comparable to the Fe 80 B 20 alloy, which is conventionally known as an alloy that is less likely to become embrittled. have comparable embrittlement temperatures. These properties allow the alloy of the present invention to be used as tool materials such as knives and saws, hard wire materials such as tire cords and wire ropes, composite materials with synthetic resins such as vinyl and rubber, and composite materials with low melting point metals such as aluminum. It is advantageous because it does not become brittle even when subjected to inevitable heat treatment or temperature rise during manufacturing when used in other applications. As mentioned above, the alloy of the present invention is a high-strength material with amazing hardness and strength, and has a hardness of 700~
Even better than 800DPN, breaking strength 250-300Kg/ mm2 . In addition, it is generally difficult to make high-strength steel into wire or plate, and the manufacturing process is complicated (melting → casting →
Requires soaking → forging, rolling → heat treatment). The alloy of the present invention has the great advantage that it is possible to manufacture the final product wire or plate directly after melting.
Therefore, the amorphous iron alloy of the present invention can be used in tool materials such as knives and saw teeth, hard wire materials such as tire cords and wire ropes, and composite materials with organic and inorganic materials (vinyl, plastic, rubber, aluminum, concrete). reinforcement materials such as), blended materials (safety work clothing,
Protective tents, ultra-high frequency protective clothing, microwave absorbing plates, shield sheets, conductive tape, surgical gowns,
It has many uses, including antistatic socks, carpets, belts, etc.), and pollution prevention filters and screens. Next, as an example of the use of the amorphous alloy of the present invention, a physical property test will be shown. Example 1 Carbon steel, hard stainless steel, and low-alloy steel are widely used in conventional cutlery, such as razors and paper cutters.The properties suitable for cutlery materials include high hardness, corrosion resistance, and elasticity. high,
Good wear resistance is required. It has been found that the alloy of the present invention fully has the above-mentioned properties and is extremely excellent. Table 4 shows the hardness and the weight loss, i.e., the amount of wear when worn on emery paper (#400) for 10 minutes under a load of 193 g, in comparison with commercially available products. The amount of wear in the table shows the results of two measurements on the same sample.

【表】 同表から本合金材は市販カミソリ刃材に較べて
約100分の1以下の摩耗量であることが判る。 例 2 本発明合金(Fe62Mo12W8C18)の補強材とし
ての性質並びに使用した結果を現用補強材である
ピアノ鋼線、ガラスフアイバー、ナイロン線と比
較して第5表に示す。
[Table] From the same table, it can be seen that the amount of wear of this alloy material is approximately 1/100 or less compared to commercially available razor blade materials. Example 2 The properties of the alloy of the present invention (Fe 62 Mo 12 W 8 C 18 ) as a reinforcing material and the results of its use are shown in Table 5 in comparison with existing reinforcing materials such as piano steel wire, glass fiber, and nylon wire.

【表】 同表より補強材として要求される抗張力はピア
ノ線より50〜100Kg/mm2も高く、高温抗張力、曲
がり疲労限も優れている。さらにもう1つの重要
な性質として要求される接着性はゴム、プラスチ
ツクの補強材として使用した場合良好であつた。 従来補強材としてゴム構造物には鋼線、合成繊
維、ガラス繊維が用いられているが、現在鋼線で
得られている疲労強度をさらに上昇させることは
困難であり、また合成繊維およびガラス繊維も鋼
線以上の疲労強度を具備させることは不可能に近
いことは周知の如くである。また合成樹脂を補強
するには従来主としてガラス繊維を加工したマツ
ト状補強材が使用されており、この補強材は耐食
性は良好であるが、脆いため曲げ強度は十分でな
い。 コンクリート構造物には鋼線あるいは鋼索を補
強材として用いたPCコンクリート、鋼線を短く
切断したものをランダムに混合したコンクリート
などがあるが、何れも耐食性の点で欠点がある。
ところが、本発明合金を補強材とすれば、上記ゴ
ム、合成樹脂、コンクリート等の補強材として極
めて有利に使用することができる。以下その数例
について説明する。 (A) Fe62Mo20C28およびFe62Mo12W8C18非晶質合
金を第1図aの装置を用いて幅0.06mm、厚さ
0.04mmの線とし、これを鋼状にあんでタイヤ用
ゴム素材中に埋込んで試験片とした。 なお、網目の間隔は1mmで、試片は3×10×
100mm板であつた。ゴムを加硫する際に試片を
約150〜180℃に1時間程度昇温した。この試片
を用いて引張り型疲労試験機により長時間疲労
試験(振幅伸び1cm)を行つた。その結果、
106サイクルでも破断せず、しかもゴムと線と
の剥離が認められなかつた。この結果は、
Fe62Mo12W8C18合金が破壊強度(390Kg/mm2)、
結晶化温度(552℃)、疲労強度(78Kg/mm2)の
点で優れていることによる。また、ゴム用合金
は硫黄による腐食に耐えねばならない。そこ
で、上記合金線を過度に加硫したゴム中に埋込
み、約1年間30℃で放置後、合金線の表面と強
度を調べたがほとんど変化が無かつた。 (B) Fe62Mo20C18、Fe74Mo8C18
Fe62Mo12W8C18の3種の非晶質合金を第1図
aの装置を用いて約0.05mmφの線を作製し、こ
れを一定の長さに切断して一定量だけレジンコ
ンクリート中に混合した。試験片形状は15×15
×52cm角柱であり、試片支持距離は45cm、荷重
負荷点は各支点より15cmの2個所であつた。下
表は曲げ試験の結果を示す。
[Table] From the same table, the tensile strength required as a reinforcing material is 50 to 100 kg/ mm2 higher than that of piano wire, and the high temperature tensile strength and bending fatigue limit are also excellent. Adhesion, which is another important property, was good when used as a reinforcing material for rubber and plastic. Traditionally, steel wire, synthetic fibers, and glass fibers have been used as reinforcement materials for rubber structures, but it is difficult to further increase the fatigue strength currently obtained with steel wires, and synthetic fibers and glass fibers It is well known that it is almost impossible to provide a wire with a fatigue strength higher than that of steel wire. Furthermore, to reinforce synthetic resins, pine-shaped reinforcing materials mainly made of processed glass fibers have been conventionally used, and although this reinforcing material has good corrosion resistance, it is brittle and therefore does not have sufficient bending strength. Concrete structures include PC concrete that uses steel wires or cables as reinforcement materials, and concrete that is randomly mixed with shortened steel wires, but both have shortcomings in terms of corrosion resistance.
However, if the alloy of the present invention is used as a reinforcing material, it can be extremely advantageously used as a reinforcing material for the above-mentioned rubbers, synthetic resins, concrete, etc. A few examples will be explained below. (A) Fe 62 Mo 20 C 28 and Fe 62 Mo 12 W 8 C 18 amorphous alloys were prepared with a width of 0.06 mm and a thickness using the apparatus shown in Figure 1 a.
A 0.04 mm wire was formed into a steel shape and embedded in a tire rubber material to form a test piece. The mesh spacing is 1 mm, and the specimen size is 3 x 10 x
It was made of 100mm board. When vulcanizing the rubber, the temperature of the specimen was raised to about 150 to 180°C for about 1 hour. Using this specimen, a long-term fatigue test (amplitude elongation of 1 cm) was conducted using a tensile fatigue testing machine. the result,
It did not break even after 106 cycles, and no peeling between the rubber and the wire was observed. This result is
Fe 62 Mo 12 W 8 C 18 alloy has a fracture strength (390Kg/mm 2 ),
This is because it has excellent crystallization temperature (552°C) and fatigue strength (78Kg/mm 2 ). Rubber alloys must also resist corrosion by sulfur. Therefore, the above-mentioned alloy wire was embedded in excessively vulcanized rubber and left at 30°C for about one year, and then the surface and strength of the alloy wire were examined, but there was almost no change. (B) Fe 62 Mo 20 C 18 , Fe 74 Mo 8 C 18 ,
Three types of amorphous alloys, Fe 62 Mo 12 W 8 C 18, are made into wires with a diameter of approximately 0.05 mm using the equipment shown in Figure 1a, cut into a certain length, and a certain amount is poured into resin concrete. mixed inside. The specimen shape is 15×15
The specimen was a 52 cm x 52 cm square prism, the specimen support distance was 45 cm, and the load application points were at two locations 15 cm from each fulcrum. The table below shows the results of the bending test.

【表】 表に見るように、フアイバー補強材は無強化
材の約3〜4倍の最大荷重と約2倍のたわみを
持つことが判る。すなわち、フアイバー補強コ
ンクリートの強度およびたわみは1般の鉄筋補
強コンクリートより1.5〜2.0倍の強度を持つと
予想される。 以上本発明合金は、硬さおよび強さが大きく、
疲労限も優れ、耐食性に優れ、その上従来の非晶
質合金に比し、安価でかつ製造が容易である等の
数々の特徴を有し、多方面での使用が期待され
る。 本発明の合金は用途により粉末、線あるいは板
に製造することができる。
[Table] As seen in the table, it can be seen that the fiber reinforcement material has a maximum load about 3 to 4 times and a deflection about twice that of the non-reinforced material. In other words, the strength and deflection of fiber-reinforced concrete is expected to be 1.5 to 2.0 times greater than that of ordinary steel-reinforced concrete. As described above, the alloy of the present invention has high hardness and strength,
It has many features such as excellent fatigue limit, excellent corrosion resistance, and is cheaper and easier to manufacture than conventional amorphous alloys, so it is expected to be used in many fields. The alloy of the present invention can be manufactured into powder, wire or plate depending on the purpose.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bはそれぞれ溶融合金を急冷するこ
とによる非晶質合金の製造装置の原理図である。 1……溶融金属、2……急冷凝固した非晶質合
金の線あるいは板、3……冷却用円板、4……ロ
ール。
FIGS. 1a and 1b are diagrams showing the principle of an apparatus for producing an amorphous alloy by rapidly cooling a molten alloy. 1... Molten metal, 2... Rapidly solidified amorphous alloy wire or plate, 3... Cooling disk, 4... Roll.

Claims (1)

【特許請求の範囲】 1 下記の式で示される成分組成よりなる高強
度、高硬度、高結晶化温度、高脆化温度を有する
炭素系非晶質鉄合金。 Fea Mc Qd (式中FeaはFeがa原子%、McはMo,Wのう
ちから選ばれる何れか1種または2種がc原子
%、QdはCがd原子%含有されていることを示
し、aは48〜82、cは4〜26、dは15〜26の範囲
内にあり、a,c及びdの和は実質的に100であ
る。但しMがWのみよりなることはない。)
[Scope of Claims] 1. A carbon-based amorphous iron alloy having high strength, high hardness, high crystallization temperature, and high embrittlement temperature and having a composition represented by the following formula. Fe a Mc Qd (In the formula, Fe a means a atomic % of Fe, Mc contains c atomic % of one or two selected from Mo and W, and Qd means d atomic % of C. , a is in the range of 48 to 82, c is in the range of 4 to 26, and d is in the range of 15 to 26, and the sum of a, c, and d is substantially 100.However, if M consists only of W, do not have.)
JP7435086A 1986-04-02 1986-04-02 Carbonaceneous amorphous ferrous alloy having high strength, high hardness, high crystallization temperature and high brittle temperature Granted JPS61235538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7435086A JPS61235538A (en) 1986-04-02 1986-04-02 Carbonaceneous amorphous ferrous alloy having high strength, high hardness, high crystallization temperature and high brittle temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7435086A JPS61235538A (en) 1986-04-02 1986-04-02 Carbonaceneous amorphous ferrous alloy having high strength, high hardness, high crystallization temperature and high brittle temperature

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP53010397A Division JPS6026825B2 (en) 1978-02-03 1978-02-03 Nitrogen-containing carbon-based amorphous iron alloy with high strength, high hardness, high crystallization temperature, and high embrittlement resistance

Publications (2)

Publication Number Publication Date
JPS61235538A JPS61235538A (en) 1986-10-20
JPS6354773B2 true JPS6354773B2 (en) 1988-10-31

Family

ID=13544586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7435086A Granted JPS61235538A (en) 1986-04-02 1986-04-02 Carbonaceneous amorphous ferrous alloy having high strength, high hardness, high crystallization temperature and high brittle temperature

Country Status (1)

Country Link
JP (1) JPS61235538A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201805971SA (en) * 2018-07-11 2020-02-27 Attometal Tech Pte Ltd Iron-based amorphous alloy powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514017A (en) * 1974-07-01 1976-01-13 Tohoku Daigaku Kinzoku Zairyo Kokyodo taihiro taizenmenfushoku taikoshoku taisukimafushoku taioryokufushokuware taisuisozeiseiyo amorufuasutetsugokin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514017A (en) * 1974-07-01 1976-01-13 Tohoku Daigaku Kinzoku Zairyo Kokyodo taihiro taizenmenfushoku taikoshoku taisukimafushoku taioryokufushokuware taisuisozeiseiyo amorufuasutetsugokin

Also Published As

Publication number Publication date
JPS61235538A (en) 1986-10-20

Similar Documents

Publication Publication Date Title
EP0010545A1 (en) Amorphous carbon alloys and articles manufactured therefrom
US4473401A (en) Amorphous iron-based alloy excelling in fatigue property
KR920004680B1 (en) High strength heat-resistant alluminum-based alloy
Carlson et al. The effect of austenitizing temperature upon the microstructure and mechanical properties of experimental Fe/Cr/C steels
EP0147937B1 (en) Iron-base amorphous alloys having improved fatigue and toughness characteristics
JPS5940900B2 (en) Amorphous iron alloy for high strength, fatigue resistance, general corrosion resistance, pitting corrosion resistance, crevice corrosion resistance, stress corrosion cracking resistance, and hydrogen embrittlement resistance
JPS60501550A (en) Wear-resistant amorphous materials and articles and methods of preparation thereof
JPS58153752A (en) Ni-cr alloy material
CA1231559A (en) Iron-base alloy materials having excellent workability
JP2911708B2 (en) High-strength, heat-resistant, rapidly solidified aluminum alloy, its solidified material, and its manufacturing method
US4255189A (en) Low metalloid containing amorphous metal alloys
JPS5913056A (en) Amorphous iron alloy with high strength and resistance to fatigue, general corrosion, pitting corrosion, crevice corrosion, stress corrosion cracking and hydrogen embrittlement
JPS6354773B2 (en)
US4473402A (en) Fine grained cobalt-chromium alloys containing carbides made by consolidation of amorphous powders
JPS6026825B2 (en) Nitrogen-containing carbon-based amorphous iron alloy with high strength, high hardness, high crystallization temperature, and high embrittlement resistance
JPS6337177B2 (en)
JPS58126964A (en) Amorphous iron alloy containing carbon with high strength, high hardness, high crystallization temperature and high embrittlement temperature
JPH0549739B2 (en)
US4415529A (en) Mn-Based alloy of nonequilibrium austenite phase
EP0026237B1 (en) Amorphous metal containing iron family element and zirconium, and articles obtained therefrom
US4400212A (en) Cobalt-chromium alloys which contain carbon and have been processed by rapid solidification process and method
JPS58126960A (en) Amorphous iron alloy containing carbon with high corrosion resistance
JPS61235536A (en) Amorphous high-carbon iron alloy having high corrosion resistance
JP2506517B2 (en) Stainless steel fiber for concrete reinforcement
EP0077611B1 (en) Mn based alloy of nonequilibrium austenite phase

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370