JPS58126923A - Production of unnormalized high tensile and high toughness steel plate by continuous casting - Google Patents

Production of unnormalized high tensile and high toughness steel plate by continuous casting

Info

Publication number
JPS58126923A
JPS58126923A JP680682A JP680682A JPS58126923A JP S58126923 A JPS58126923 A JP S58126923A JP 680682 A JP680682 A JP 680682A JP 680682 A JP680682 A JP 680682A JP S58126923 A JPS58126923 A JP S58126923A
Authority
JP
Japan
Prior art keywords
steel
less
amount
low
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP680682A
Other languages
Japanese (ja)
Other versions
JPH0248606B2 (en
Inventor
Sadahiro Yamamoto
山本 定弘
Masakazu Niikura
新倉 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP680682A priority Critical patent/JPH0248606B2/en
Publication of JPS58126923A publication Critical patent/JPS58126923A/en
Publication of JPH0248606B2 publication Critical patent/JPH0248606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Abstract

PURPOSE:To obtain a unnormalized high tensile and high toughness steel plate having surface characteristics by casting high Nb steel of specific compsn. limited particulrly in the contents of T.N and Ti continuously and hot rolling the cast steel, then air cooling the same at a rate lower than air cooling. CONSTITUTION:The steel contg. 0.005-0.06% C, 0.02-0.50% Si, 1.5-2.5% Mn, <=0.005% S, 0.06-0.20% Nb, 0.005-0.10% SolAl, contg. <=0.006% T.N, and 0.005-0.030% Ti, and further contg. V, Cr, Cu, Mo, Ni, B, Ca, etc. according to need is cast continuously. After the slab is hot rolled, the slab is cooled at a cooling rate lower than air cooling. By such method, the degradation in the suitability to hot rolling, and the generation of surface flaws of the continuous casting ingot by the hot rolling are prevented, and the intended high Nb type unnormalized high tensile and high toughness steel plate is obtained easily.

Description

【発明の詳細な説明】 高靭性鋼板とシわけ高Nb臘非調質高張力高靭性鋼板を
表面性状の良好な連続鋳造片から製造する方法Kliす
るものである。
DETAILED DESCRIPTION OF THE INVENTION This is a method of manufacturing a high-toughness steel plate and a high-Nb heat-treated, high-strength, high-toughness steel plate from a continuously cast piece with good surface properties.

高張力鋼板に関し従来ではその特性として専ら強さのみ
が必要とされていたが、鋼構造物に溶接が採用されるの
に伴い、強さのみならず溶接性をも葦ね備えていること
が畳求され、これに対応して溶接性を害するCItを低
め強度と靭性を合金元素で高める傾向となっている。こ
とに最近では溶接性、切欠靭性、加工性などの要求が一
層厳しくなった九め、C量をさら(低くすなわち0゜0
691以下にしてNb、V、Ti等の微量添加元素を有
効活用することにょ少強度を確保しつつ靭性および鷺性
管改善する傾向となっている。このような低C1鋼(C
50,06チ)においては、高Nb化にょ夛、現用鋼(
C’:0.09〜o。
In the past, only strength was required as a characteristic for high-strength steel plates, but as welding has been adopted for steel structures, it has become necessary to have not only strength but also weldability. In response to this, there is a trend to lower CIt, which impairs weldability, and to increase strength and toughness with alloying elements. In particular, recently, requirements for weldability, notch toughness, workability, etc. have become even more stringent.
691 or less, and by effectively utilizing trace amounts of added elements such as Nb, V, and Ti, there is a tendency to improve toughness and toughness while ensuring a small amount of strength. Such low C1 steel (C
50,06 steel), high Nb nitrogen concentration and current steel (
C': 0.09~o.

16g6)  では見られないような高張力化が可能と
なる。すなわち第1図は低C鋼である・。
16g6) It is possible to achieve high tensions that cannot be achieved with 16g6). In other words, Figure 1 shows low C steel.

−02−〇−1.7チ鳩系でNb添加量を変化させた場
合の強度変化を、1100℃加熱900’C以下60−
の圧下を加え、790’Cで圧延を終了した場合につい
て示したものであp、o、1o@を超えるNb量まで強
度が連続的に増加している。これは低Cのため広範囲な
Nb添加量まで島が加熱時KI!溶し、その後の冷却過
程で析出するため、析出強化を利用できることによるも
のである。
-02-〇-1.7 The change in strength when changing the amount of Nb added in the 1100℃ heating 900'C or less 60-
The figure shows the case where the rolling was completed at 790'C, and the strength increased continuously until the amount of Nb exceeded p, o, and 1o@. This is because the island is heated up to a wide range of Nb addition amounts because of the low C! This is because precipitation strengthening can be used because it melts and precipitates during the subsequent cooling process.

上記のように低C鋼では広範囲なNb添加量まで高張力
化が可能であるため、木調は今11ますます活用される
と考えられるが、かような低C−高Nb鋼の製造にあた
ってひとつの問題がある。それは低C−高Nb鋼に連続
鋳造技術を適用した場合、従来のNb鋼(Nb量0.0
4qb)に比べ連続鋳造スラブ表面キズの発生が著しく
、圧延の前工程として煩雑な手入れを必要とするため、
連続鋳造化によるメリットが十分に得られないというこ
とである。
As mentioned above, it is possible to increase the tensile strength of low C steel over a wide range of Nb additions, so it is thought that wood texture will be increasingly used. There is one problem. When continuous casting technology is applied to low C-high Nb steel, conventional Nb steel (Nb content 0.0
Compared to 4qb), the occurrence of scratches on the surface of continuous casting slabs is significant and requires complicated maintenance as a pre-rolling process.
This means that the benefits of continuous casting cannot be fully obtained.

一般にスラブ表面キズの発生は凝固後冷却過程中の1低
温域での熱間延性の低下と密接に関連していることはよ
く知られているが、連続鋳造技術における熱間延性低下
防止のための具体的方策としてはせいぜい鋳込み温度、
鋳込み速度、冷却帯での冷却水量の制御等が行われてい
るに止まっている。しかし、これらの手法は高Nb鋼に
ついては十分な解決策とはなっておらず、そのため熱間
延性の低下は高Nb鋼の宿命として考えられ、表面キズ
の発   9生や圧延前工程としての手入れは不可避的
であるとされてい喪ものである。
It is well known that the occurrence of scratches on the slab surface is generally closely related to a decrease in hot ductility in the first low temperature range during the post-solidification cooling process. As a concrete measure, at most the casting temperature,
Controls such as the casting speed and the amount of cooling water in the cooling zone are still in place. However, these methods are not a sufficient solution for high Nb steels, and therefore, a decrease in hot ductility is considered to be the fate of high Nb steels, resulting in surface scratches and problems in the pre-rolling process. Care is considered to be inevitable and is a matter of mourning.

本発明は前記したような実情vCI!み\研究を重ねて
創案され良もので、その目的とするところは、連続鋳造
時にスラブ表面性状の嵐い高Nb型非調質高張力高靭性
鋼板の製造法を提供することKある。
The present invention is based on the above-mentioned actual situation vCI! This product was developed after repeated research, and its purpose is to provide a method for producing high-Nb type, non-tempered, high-strength, high-toughness steel sheets with excellent slab surface properties during continuous casting.

この目的を達成するため本発明者等はr低温域における
熱間延性低下現象ことにNb(C。
To achieve this objective, the present inventors focused on the phenomenon of hot ductility reduction in the low temperature range.

N)の析出による熱間延性低下現象を研究し、高Nb化
による熱間延性低下はAANの析出とNb(C、N)の
析出が相乗的に作用していることをつきとめた。そして
高Nb鋼である以上Nb添加量を低下させることはでき
ないが、扉の析出抑制法として微量Tit添加し九′と
ころ、大幅に熱間延性が向上すること、さらに特定のN
b添加量範囲中ではNb添加量を増し先方がむしろ熱間
延性が向上することを発見し、これらの知見に基づき連
続鋳造すべき鋼の化学成分のim*という手法によシ懺
面性状の棗好な高張力高靭性の連続鋳造スラブを得しめ
、このスラブを熱間延性し、必要に応じて加速冷却する
ことによシ高Nb型の非調質高張力高靭性鋼板が得られ
るようにしたものである。
We studied the phenomenon of hot ductility reduction due to the precipitation of N) and found that the reduction in hot ductility due to the increase in Nb content is due to the synergistic effect of the precipitation of AAN and the precipitation of Nb(C,N). Since it is a high Nb steel, it is not possible to reduce the amount of Nb added, but adding a small amount of Ti as a method of suppressing precipitation in the door significantly improves hot ductility, and furthermore,
We discovered that increasing the amount of Nb added within the range of b addition actually improves the hot ductility.Based on these findings, we determined the surface properties by using the method of im* of the chemical composition of steel to be continuously cast. By obtaining a continuous cast slab with high tensile strength and high toughness, and hot ductility of this slab, and if necessary accelerated cooling, it is possible to obtain a high Nb type non-temperature steel plate with high tensile strength and high toughness. This is what I did.

すなわち本発明の特徴とするところは、C: o、o 
o s 〜o、o s 嘔、Si : 0.02〜0.
50 %、 Mn:1.5〜2.5%、s:o、oos
*以下、Nb : 0.06〜0.20%、8otkL
 : 0.005〜0.10 %を基本成分として含有
する鋼を連続鋳造するに際し、T、N量(トータルN量
以下同じ)をo、ooso−以下としTiを0.005
〜0.03096含有させ、cttt連続鋳造し、得ら
れたスラブを熱間圧延し空冷以上の冷却速度で冷却する
ことにある。
That is, the characteristics of the present invention are that C: o, o
o s ~ o, os o, Si: 0.02 ~ 0.
50%, Mn: 1.5-2.5%, s: o, oos
*Hereinafter, Nb: 0.06-0.20%, 8otkL
: When continuously casting steel containing 0.005 to 0.10% as a basic component, the amounts of T and N (same below the total amount of N) are set to o, ooso- or less, and Ti is 0.005%.
~0.03096, continuous casting is performed, and the obtained slab is hot rolled and cooled at a cooling rate higher than air cooling.

また本発明の特徴とするところは、前記基本成分にV 
: 0.01〜0.2 %、 Cr : 0.5 %以
下、Cu:o、sl以下、Mo : 0.5−以下、N
i:2%以下、B:0.002−以下、Ca : 0.
002〜0.007チの1種又は2種以上金含有する鋼
を連続鋳造するに際し、T、N量を0.006−以下と
し、Ti:0.005〜0.030−含有させ、これt
連続鋳造し、得られたスラブ管熱間圧延し空冷以上の冷
却速度で冷却することにある。
Further, the present invention is characterized in that the basic components include V
: 0.01-0.2%, Cr: 0.5% or less, Cu: o, sl or less, Mo: 0.5- or less, N
i: 2% or less, B: 0.002- or less, Ca: 0.
When continuously casting steel containing one or more types of gold of 0.002 to 0.007, the amounts of T and N are set to 0.006 or less, and Ti: 0.005 to 0.030 is contained.
The method involves continuous casting, hot rolling of the obtained slab tube, and cooling at a cooling rate higher than air cooling.

以下不発明を添付図面に基づき詳細に説明する。The invention will now be described in detail with reference to the accompanying drawings.

さきに述べたようにスラブ表面キズの発生は凝固後冷却
過程中のγ低温域での熱間延性の低下と密接に関係して
お夛、表面キズ発生率が高いほど手入れ率も当然高くな
る。そこでまず本発明者等は連続鋳造した鋳片について
高温引張9試験を行い、熱間延性と鋳片手入れ率の関係
を検討し、低延性温度範囲(高車引張り試験での絞シが
50チ以下の温度範囲(幅)、以下同じ)と鋳片手入れ
率とのあいだに第2図のような関係のあることを見出し
た。
As mentioned earlier, the occurrence of slab surface scratches is closely related to the decrease in hot ductility in the γ low temperature range during the post-solidification cooling process, and naturally the higher the surface scratch occurrence rate, the higher the maintenance rate. . Therefore, the present inventors first conducted nine high-temperature tensile tests on continuously cast slabs, examined the relationship between hot ductility and cast hand strain, and found that It has been found that there is a relationship as shown in Figure 2 between the following temperature range (width) (the same applies hereinafter) and the casting hand penetration rate.

なお、前記高温引張シ試験で用いた熱履歴は、第3図に
示すように、凝固後表面が冷却されたままの状態の温度
で熱応力(鋳片断面温度が不均一であることによる熱応
力)又はロールによって応力を受ける場合をシュミレー
ションしたものである。
The thermal history used in the above-mentioned high-temperature tensile test is as shown in Figure 3. This is a simulation of the case in which stress is applied by rolls or rolls.

第2図によれば、低延性温度範囲が広い場合には手入れ
率が高くかつ重子入れを要するため使用不可能となる鋳
片もある。そして低延性温度範囲が減少するに伴い鋳片
の手入れ率が減少し、低延性温度範囲がほぼ100℃以
内の場合には手入れ率FiSSi下となり、かつ手入れ
のヤシ方も軽く済んでいる。
According to FIG. 2, when the low ductility temperature range is wide, some slabs become unusable due to the high maintenance rate and the need for weight insertion. As the low ductility temperature range decreases, the maintenance rate of the slab decreases, and when the low ductility temperature range is approximately within 100°C, the maintenance rate falls below FiSSi, and the maintenance process is also light.

そこで次に本発明者等は、従来のNb鋼(0゜094 
C−1,5% Mn−〇、 03 % Nb −0,0
05%へ一〇、 03 fi 5olAt)と低C−高
Nb鋼(0,02fbC−104Mn−0,10%Nb
−0.00a慢N−0.03 %5olAl)について
の熱間延性?ニア00℃から1000℃の温度範囲で検
討してみた。その結果管示すとwc4図のとおりであり
、前記角鋼を比較した場合、低C−高Nb鋼の絞り(R
A)がいずれの温度でも低く、また絞りが504以下の
低延性温度範囲が、0.03係Nb鋼の150℃に比べ
290℃と広いことがわかる。
Therefore, the present inventors next investigated conventional Nb steel (0°094
C-1,5% Mn-〇, 03% Nb-0,0
0,05% to 10,03 fi 5olAt) and low C-high Nb steel (0,02fbC-104Mn-0,10%Nb
Hot ductility for -0.00aN-0.03%5olAl)? We investigated the temperature range from near 00°C to 1000°C. The resulting tube is shown in Figure WC4, and when comparing the square steels mentioned above, the drawing (R) of the low C-high Nb steel
It can be seen that A) is low at all temperatures, and the low ductility temperature range where the reduction of area is 504 or less is wider at 290°C compared to 150°C for 0.03 modulus Nb steel.

この原因としては、低C−高Nb鋼(0,101Nb鋼
)では0.03チNb鋼に比べ加熱時に固浴し埠 ておシ、γ低温域で析出するNb量が多いことが考えら
れる。つ′1シr低温域において7粒界に析出するNb
(C,N)によシ粒界が脆弱になった状態において、あ
る限界を超えた引張り応力が表面近傍に負荷された時に
、Nb(C,N)t−と如囲むかたちでディトの被生成
が生じ、これらのボイドが凝集一連結して最終的な割れ
に至るものである。しかもこれに、跡の析出が相乗的に
作用している。そのためこれらによfi ill&Nb
鋼の場合に絞りが低くなるもので、連続鋳造においては
、冷却ゾーン゛におけるロール間での応力あるいは冷却
−復熱の繰返しに伴う熱応力が前記限界値奮起え友引供
応力に相当することにな)、表向キズが多発するのであ
る。
The reason for this is thought to be that in the low C-high Nb steel (0.101Nb steel), the amount of Nb precipitated in the solid bath during heating and in the γ low temperature range is greater than in the 0.03Nb steel. . Nb precipitated at grain boundaries in the low temperature range
When the tensile stress exceeding a certain limit is applied near the surface in a state where the grain boundaries have become brittle due to (C,N), the detonation occurs in the form of Nb(C,N)t-. These voids coagulate and form a series of agglomerates, leading to final cracking. Moreover, the precipitation of traces acts synergistically with this. Therefore, these will fill & Nb
In the case of steel, the reduction of area is lower, and in continuous casting, the stress between the rolls in the cooling zone or the thermal stress caused by repeated cooling and reheating corresponds to the above-mentioned limit value and strain supply stress. ), scratches on the surface frequently occur.

以上の点から高Nb化による熱間延性の低下は跡の析出
とNb(C,N)の析出の相乗作用によることが明らか
であるが、その対策としてNb添加量を低下させること
はできない。そこで本発明は熱間延性低下の一因をなす
諺の析出上抑制することとし、その具体的手法として微
量のTi添添加性行ことにしたもので。
From the above points, it is clear that the decrease in hot ductility caused by increasing the Nb content is due to the synergistic effect of the precipitation of traces and the precipitation of Nb(C,N), but the amount of Nb added cannot be reduced as a countermeasure. Therefore, the present invention aims to suppress the precipitation, which is one of the causes of a decrease in hot ductility, and as a specific method, we have decided to add a small amount of Ti.

これによfi Nb添加量を低下させることなく大幅な
熱間延性向上が得られた。すなわち第5図1i 0.0
2 tlrc−2,04Mn −Nb−0,0044T
、N鋼(Ti無添加鋼)と、0.02−C−2,Oチ鳩
−Nb−0,015嘔Ti−0,004チT、N鋼(T
i添加鋼)において、Nb添加量を変化させた場合の熱
間延性の変化tPsoo℃と1000℃において示した
ものである。
This resulted in a significant improvement in hot ductility without reducing the amount of fi Nb added. That is, Fig. 5 1i 0.0
2 tlrc-2,04Mn-Nb-0,0044T
, N steel (Ti-free steel) and 0.02-C-2, O-Nb-0,015-Ti-0,004-T, N steel (T
This figure shows the change in hot ductility at tPsoo°C and 1000°C when the amount of Nb added is changed in the case of (i-added steel).

この第5図から明らかなように、1000℃の場合、T
i無添加鋼でliO,03%Nbを境として高Nb@で
は急激に熱間延性(RA値)が低下し、50チ前後とな
る。これに対しTi添加鋼では、Nb添加量にかかわら
ず絞り値はほぼ100−である。また800℃の場合、
Ti無添加鋼ではいずれのNb添加量においても絞りは
20チ以下と極めて低い値を示しているのに対し、Ti
添加鋼では絞)が50−前後であplかつNbs加量が
0.06%以上では逆に延性が向上している。このよう
に熱間延性で差異が生ずるのは Ir 1でNを固着し
、γ低温域におけるAtNの析出を抑制すること、およ
びTiNによる細粒化によυ熱間延性が太きく改善され
たことによるのは明らかであシ、800℃において0.
60%Nb以上で高Nb化するほど熱間延性が向上する
のは主に析出したNb(C。
As is clear from Fig. 5, at 1000°C, T
With i-free steel, the hot ductility (RA value) rapidly decreases at high Nb @ after reaching liO and 03%Nb, and becomes around 50 inches. On the other hand, in Ti-added steel, the reduction of area is approximately 100- regardless of the amount of Nb added. Also, in the case of 800℃,
In Ti-free steel, the reduction of area is extremely low at 20 inches or less regardless of the amount of Nb added;
In the case of additive steel, when the reduction of area is around 50 pl and the Nbs addition is 0.06% or more, the ductility improves. This difference in hot ductility is caused by the fact that Ir 1 fixes N and suppresses the precipitation of AtN in the γ low temperature range, and the grain refinement with TiN greatly improves υ hot ductility. It is obvious that this is due to the fact that at 800°C, 0.
At 60%Nb or more, the hot ductility improves as the Nb increases, mainly due to precipitated Nb(C).

N)の粗大化過程に差が生ずるためと考えられる。This is thought to be due to differences in the coarsening process of N).

これらのことから、本発明は高Nb鋼を連続鋳造するに
際してTi添加によυNを固着し、゛かつ熱間延性が向
上するNb2O,06%の領域を利用するものであるが
、こうした構成は強度や靭性の面でも大きな効果が得ら
れる。すなわち、第6図は、上記した0、02−〇−2
.0チ鳩−Nb−0.015チTi −0,004チT
、N鋼を1100℃に加熱後900℃以下で70%の累
積圧下を加え、770℃で20wmに圧延し友場合の強
If%靭性の変化を示すものでおる。
Based on these facts, the present invention fixes υN by adding Ti when continuously casting high Nb steel, and utilizes the Nb2O, 06% range where hot ductility improves. Great effects can also be obtained in terms of strength and toughness. That is, FIG. 6 shows the above-mentioned 0, 02-〇-2
.. 0 Chi pigeon - Nb - 0.015 Chi Ti - 0,004 Chi T
, N steel is heated to 1100°C, subjected to a cumulative reduction of 70% below 900°C, and rolled to 20wm at 770°C to show the change in toughness if %.

この第6図から、強度FiNb添加量と共に連続的に増
加しているが、靭性は0.06チを境として改善されは
じめ、vTs =−100℃以下の高靭性が得られてい
る。また、Nb添加量が0゜10−を超えるとさらに靭
性が大きく改善され、Nb)0.10%の領域でvTs
=−120〜−140℃というきわめて優れた靭性が得
られている。従ってNb添加量を0.06%以上とする
ことはさきのように熱間延性面のみならず靭性面からも
望ましく、特に高靭性が必要とされる時はo、 t o
 1以上の添加、含有が望ましいといえる。
As shown in FIG. 6, the strength increases continuously with the amount of FiNb added, but the toughness begins to improve after 0.06 inch, and a high toughness of vTs = -100°C or less is obtained. Furthermore, when the amount of Nb added exceeds 0°10-, the toughness is further improved, and in the region of 0.10% Nb, vTs
An extremely excellent toughness of =-120 to -140°C was obtained. Therefore, it is desirable to add Nb to 0.06% or more, not only from the viewpoint of hot ductility but also from the viewpoint of toughness, especially when high toughness is required.
It can be said that addition or inclusion of one or more is desirable.

しかして、本発明による上記の%aを十分に発揮させる
ための具体的な成分組成は以下のとおりである。
Therefore, the specific component composition for fully exhibiting the above %a according to the present invention is as follows.

(I)C: 0.005〜0.06 m、 Si : 
0.02〜0.50 %、Mn : 1.5〜2.5 
%、s:o、ooss以下、Nb:0.06〜0.2 
Q %、8oIAL : 0.00 S 〜0.10 
%残部鉄及び不可避的不純物からなる鋼、または上記成
分にV : 0.01〜0.2%、Cr:o、s%以下
、Cu:0.5%以下、Mo : 0.5%以下、N1
=2−以下、B:0.002%以下、Ca : O,0
02〜0.007チの1種又Fi2種以上を含Mした鋼
を用い、 Ql)コ(r)鋼t/C>Vj)bT、N量i0.00
6%以下とし、Ti l O,005〜0.030% 
ノ範囲で含wさせる。
(I)C: 0.005-0.06 m, Si:
0.02-0.50%, Mn: 1.5-2.5
%, s: o, ooss or less, Nb: 0.06-0.2
Q%, 8oIAL: 0.00S ~ 0.10
% balance iron and unavoidable impurities, or the above components include V: 0.01 to 0.2%, Cr: o, s% or less, Cu: 0.5% or less, Mo: 0.5% or less, N1
= 2- or less, B: 0.002% or less, Ca: O, 0
Using a steel containing one type of 02 to 0.007 or two or more types of Fi, Ql) co(r) steel t/C>Vj) bT, N amount i0.00
6% or less, Ti l O, 005 to 0.030%
Contain w within the range of .

上記の成分限定理由は以下のとおりである。The reasons for limiting the above ingredients are as follows.

Cは強度確保の点から0.005%以上は必要でおる。C is required to be at least 0.005% from the viewpoint of ensuring strength.

しかし0.06チ以上では、本発明のような高Nb添加
系においては加熱時に添加Nbの大部分が未固溶となっ
てしまい、高Nb添加量まで高張力化ができない。それ
故c 1 o、o。
However, if the amount is 0.06 or more, in a high Nb addition system like the present invention, most of the added Nb becomes undissolved during heating, and the tensile strength cannot be increased to a high Nb addition amount. Therefore c 1 o, o.

5〜0.06チとした。なお実用的な面からは、通常の
加熱範囲である1050〜1200℃加熱を前提としく
 Ct N )の溶解度積を考慮した場曾、0.109
G以上のNbを有効に活用するには、Ct0.04チ以
下にする譬とが特に望ましいといえる。
It was set to 5 to 0.06 inches. From a practical point of view, assuming heating in the normal heating range of 1,050 to 1,200°C, and considering the solubility product of CtN, the value is 0.109.
In order to effectively utilize Nb of G or more, it is particularly desirable to make Ct 0.04 or less.

Siは脱酸元素として0.02−以上必要であり、0.
5096’i超えると溶接性が悪くなる。
Si is required as a deoxidizing element in an amount of 0.02 or more.
If it exceeds 5096'i, weldability deteriorates.

鳩は低C系で高張力化を図るには最少限1,5チ以上必
要であるが2.5チを超えると溶接性が愚くなる。
Pigeon is a low C type steel and requires at least 1.5 inches to achieve high tension, but if it exceeds 2.5 inches, weldability becomes poor.

SはMn8による熱間延性低下防止の観点から0.00
5チ以下が望ましい。
S is 0.00 from the viewpoint of preventing deterioration of hot ductility due to Mn8.
5 inches or less is desirable.

Nbは第5図で示したように0.06%以上添加すると
むしろ熱間延性が向上し連鋳スラブ表面キズ防止に有効
であると共に、第5図に示したように高靭性を得るため
にも0.06−以上が必要である。従ってNb添加量の
下限を0.06%トt、7’c。−1qNb添加量がo
、zo%を超えると溶接性が損われる。そのため上限は
0.20優とした。
As shown in Figure 5, when Nb is added in an amount of 0.06% or more, the hot ductility is improved and it is effective in preventing scratches on the surface of the continuously cast slab. Also, 0.06- or more is required. Therefore, the lower limit of the amount of Nb added is 0.06%, 7'c. -1qNb addition amount is o
, zo%, weldability is impaired. Therefore, the upper limit was set at 0.20.

5otALは脱酸元素として0.005−以上必要であ
るが、0.10チ以上では溶接性が悪くなる。
5otAL is required as a deoxidizing element in an amount of 0.005 or more, but if it is 0.10 or more, weldability deteriorates.

■は析出強化の観点から0.01%以上必要であり、0
.2 d l超えると溶接性が損われる。
■ is required to be 0.01% or more from the viewpoint of precipitation strengthening, and 0.
.. If it exceeds 2 dl, weldability will be impaired.

Cu、Cr、Mo1Cツいては0,5s以下を必要に応
じて添加すると為張力化、靭性、S接柱の向上が計られ
る。
If Cu, Cr, Mo1C is added in an amount of 0.5 s or less as necessary, it is possible to improve tension, toughness, and S contact.

Niについては強度、靭性の両面から有効であり、経済
性からzl以下が過当量である。
Ni is effective in terms of both strength and toughness, and from the economic point of view, an amount of zl or less is considered an excessive amount.

Bは焼入れ性を高め高張力化を達成するためには、0.
0005チ以上必要であり、0.002−を超えると溶
接部靭性を損う。
In order to improve hardenability and achieve high tensile strength, B must be 0.
0.0005 mm or more is required, and if it exceeds 0.002 mm, the weld toughness will be impaired.

Ca1j介在物の形状制御から0.00296以上必要
であるが、0.007%を超えると鋼の清浄性が急くな
多材質を害する。
Ca1j is required to be 0.00296 or more in order to control the shape of inclusions, but if it exceeds 0.007%, it will harm the multi-material properties of steel where the cleanliness is rapid.

次にT’、N量の上限を0.006チとしたのは、これ
含超えると溶接性が損われると共に、熱間延性も悪化す
るためであシ、従ってT、N量i0.006チ以下とす
るのは本発明で必須条件である。
Next, the reason why the upper limit of T' and N amount is set to 0.006 inch is that if the content exceeds this, weldability will be impaired and hot ductility will also deteriorate. The following conditions are essential for the present invention.

Tiはさきに述べ念ように本発明においてきわめて重要
な成分である。その添加量が低きにすき゛九場合にはN
を十分に固着できず、γ低温域においてγ粒界にAaが
析出し延性を低下させる。Nを十分に固着し熱間延性を
改害し表1キズ防止を図るには少なくとも0.005−
以上必要であシ、従ってこれを下限とするものである。
As previously mentioned, Ti is an extremely important component in the present invention. If the amount added is low, N
cannot be sufficiently fixed, and Aa precipitates at the γ grain boundaries in the γ low temperature range, reducing ductility. To sufficiently fix N, improve hot ductility, and prevent scratches in Table 1, at least 0.005-
The above is necessary, so this is set as the lower limit.

一方Ti添加量が多すぎた場合には過剰のTiがTiC
としてγ低温域で析出し、かえって熱間延性を低下させ
る。従って添加量の上限は0.030 %であり、0゜
005〜0.030%の範囲であれば所期する効果が十
分達成される。
On the other hand, if the amount of Ti added is too large, the excess Ti becomes TiC.
As γ, it precipitates in the low-temperature range, which actually reduces hot ductility. Therefore, the upper limit of the amount added is 0.030%, and the desired effect can be sufficiently achieved within the range of 0.005 to 0.030%.

そして、あとは上記のように成分調整した高Nb@4f
連続鋳造するものであって、その連続鋳造に際しては特
別な条件の制限(@込み条件、冷却条件等)は何も必要
とせず、常法に従って操業を行えばよい。そして以上の
手法で得られた表面性状の良好な連続鋳造スラブを用い
、これを熱間圧延し、その後空冷または必要に応じ加速
冷却を行って冷却することにより目的の高Nb型非調質
高張力高靭性鋼板が得られる。
Then, the rest is high Nb@4f with the components adjusted as above.
Continuous casting is carried out, and no special conditions are required for the continuous casting (containing conditions, cooling conditions, etc.), and the operation can be carried out according to conventional methods. Then, using the continuous casting slab with good surface quality obtained by the above method, it is hot rolled, and then cooled by air cooling or accelerated cooling if necessary, to achieve the desired high Nb type non-thermal treatment. A steel plate with high tensile strength and toughness is obtained.

次に本発明の具体的な実施例を示す。Next, specific examples of the present invention will be shown.

実施例 l。Example l.

本発明におけるTi添加量の適性範囲を見るためNb添
加量を同量とした第1表に示すごとき組成を有する低C
高Nb鋼の700〜1000℃呼 における熱間延性を第7図に示す。
In order to see the appropriate range of the amount of Ti added in the present invention, a low C
Figure 7 shows the hot ductility of high Nb steel at 700 to 1000°C.

第1表 第7因から明らかなように、Ti絵加量がo、604チ
の場合(鋼人)では1000℃においても赦)が50−
と低く、低延性温度範囲が310℃ときわめて広い。こ
れは、Ti添加量が低いためNを十分に固着できず、r
低温域において1粒界に先山が析出し、延性が低下した
ものである。
As is clear from the 7th factor in Table 1, when the amount of Ti is o, 604 (Hagane), even at 1000°C, the tolerance is 50-
The low ductility temperature range is extremely wide at 310°C. This is because the amount of Ti added is low, so N cannot be fixed sufficiently, and r
In the low temperature range, a precipitate precipitates at one grain boundary, resulting in a decrease in ductility.

また、Ti添加量が0.035%の場合(鋼B)は90
0℃の熱間延性が35%と低く、低延性温度範囲が24
0℃と大きい値を示している。これは鋼Aの場合と逆に
Ti添加量が多すき゛たため過剰のTiがTiCとして
γ低温域で析出し、延性の低下をもたらしたものである
In addition, when the Ti addition amount is 0.035% (steel B), 90
The hot ductility at 0°C is as low as 35%, and the low ductility temperature range is 24%.
It shows a large value of 0°C. This is because, contrary to the case of Steel A, since the amount of Ti added was large, excess Ti precipitated as TiC in the γ low temperature range, resulting in a decrease in ductility.

これに対し、Ti添加量が本発明範囲内である0、01
7チの場合(鋼C)には、熱間延性がきわめて高く、低
延性温度範囲が80℃ときわめて狭い。このような点か
らTi添加量は既述のように0.005〜0.030−
の範囲とすべきである。
On the other hand, the amount of Ti added is within the range of the present invention, 0, 01
In the case of 7-inch steel (Steel C), hot ductility is extremely high, and the low ductility temperature range is extremely narrow at 80°C. From this point of view, the amount of Ti added should be 0.005 to 0.030-
should be within the range of

実施例 λ 前記した各成分の限定効果をみるため供試鋼D−Hを連
続鋳造によシ製造し、1100℃加熱900℃以下70
チの累積圧下を加え750℃で圧延を終了した場合の化
学成分と強度、靭性、熱間延性のデータを第2表に示す
Example λ In order to examine the limiting effects of each of the above-mentioned components, test steel D-H was manufactured by continuous casting, heated at 1100°C, and heated to 900°C or less at 70°C.
Table 2 shows the chemical composition, strength, toughness, and hot ductility data when the rolling was completed at 750° C. with a cumulative reduction of 1.

この第2表から明らかなように、供試鋼りの場合には、
T、N量およびTi添加量は適当であるが、Nb添加量
が0,04チと本発明範囲外であるため、本発明法であ
る鋼E、Fに比べ強度が6切讐程度低く、靭性も本発明
法に比べ20〜30℃程度損われている。
As is clear from Table 2, in the case of the sample steel,
The amounts of T, N, and Ti added are appropriate, but the amount of Nb added is 0.04 mm, which is outside the range of the present invention, so the strength is about 6 mm lower than steels E and F, which are the methods of the present invention. The toughness is also impaired by about 20 to 30°C compared to the method of the present invention.

これに対し、本発明鋼のE、Fは高強度、高靭性を有し
てお)、かつ低延性温度範囲も80℃以内ときわめて狭
く、従って鋳片手入゛れ率Fi:l1%以下で#魯とん
ど手入れが不要であったC また、供試鋼GFiNb添
加量、Ti添加量は適当であるがTN量が0.0070
チと高く、供試鋼HでtiNb添加量およびTN量が適
性であるがTi添加量が0.002−と低い。そのため
いずれの場合もフリーのNの存在によ多熱間延性を低下
させておシ、低延性温度範囲が280〜300℃と広い
。従って鋳片手入れ率も30〜33%ときわめて高く、
1手入れのため使用不可能な状態に近くなった。
On the other hand, the steels E and F of the present invention have high strength and high toughness) and have a very narrow low ductility temperature range of 80°C or less, and therefore have a casting hand change rate Fi of 1% or less. # C that did not require much maintenance In addition, although the amount of GFiNb and Ti added to the test steel was appropriate, the amount of TN was 0.0070.
In sample steel H, the amount of TiNb added and the amount of TN are appropriate, but the amount of Ti added is as low as 0.002-. Therefore, in both cases, the presence of free N reduces hot ductility, and the low ductility temperature range is as wide as 280 to 300°C. Therefore, the casting rate is extremely high at 30-33%.
1. Due to maintenance, it is almost unusable.

実施例 3゜ 第3表は基本成分に更にV 、Cr 、Cu 、Mo 
Example 3゜Table 3 shows that in addition to the basic components, V, Cr, Cu, Mo
.

Ni、B、Caの1種又は2種以上を含有する供試鋼I
〜Nを用いて1100℃加熱900℃以下65チの累積
圧下を加え、72(ICで圧延を終了し以後空冷した場
合、およびl100C加熱900℃以下の温度域で累積
圧下65チの圧下を加え750℃で圧延を終了し、圧風
終了後600℃までを10℃/s ecで加速冷却をし
た場合の化学成分と、強度、靭性、熱関蝿性並びに連@
−片手入れ率を示すものである。
Test steel I containing one or more of Ni, B, and Ca
- Applying a cumulative reduction of 65 inches under heating at 1100°C using N, and applying a cumulative reduction of 65 inches in the temperature range of 1100°C heating and below 900°C, and applying a cumulative reduction of 65 inches in the temperature range of 72 Chemical composition, strength, toughness, thermal relationship, and relationship when rolling is finished at 750°C and accelerated cooling is performed at 10°C/sec to 600°C after finishing air blowing.
- It shows the one-handed insertion rate.

この第3衣から明らかなように、高Nb系でii1添加
した鋼(1、J ) 、Moを添加した鋼(K)および
Cu 、Ni 、Cr 、Ca f添加した鋼(L)の
いずれにおいても、本発明要件を満しているため、隔間
圧延後空冷した場合および加速冷却を施した場合のいず
れにおいても高強度高靭性を有している。また、これら
の鋼における熱間延性が50チ以下の低延性温度領域も
80℃以内と狭く、連続鋳造スラブも良好゛な表面性状
な有している。
As is clear from this third layer, in any of the high Nb steel with ii1 addition (1, J), the steel with Mo addition (K), and the steel with Cu, Ni, Cr, and Ca f additions (L), Since the steel sheet also satisfies the requirements of the present invention, it has high strength and high toughness both when air cooling is performed after interval rolling and when accelerated cooling is performed. In addition, the low ductility temperature range in which these steels have hot ductility of 50°C or less is as narrow as 80°C or less, and the continuously cast slabs also have good surface properties.

これに対し、低Nb系の鋼(Mt N)では熱間延性、
−片手入れ率では本発明とあま如差はないものの、上記
本発明に係るilj、Nb系の場合に比し、熱間圧延後
空冷又は加速冷却し良いずれの場合についても大幅に強
度、靭性が劣化している。
On the other hand, low Nb steel (MtN) has low hot ductility,
-Although there is not much difference in one-handed rolling rate from the present invention, the strength and toughness are significantly improved when air cooling or accelerated cooling is performed after hot rolling, compared to the above-mentioned ilj and Nb based cases according to the present invention. is deteriorating.

以上説明した本発明法によれは、微量Ti添加により跡
の析出抑制効果が得られると共に、 Nb添加量の増加
による熱間延性向上領域の効果的な利用が図られ、さら
に、Ti添加による組織の細粒化とMn8の形状制御効
果によシ熱間延性の向上を図ることが可能になる。この
ことから、本発明によれば低C−高Nb鋼の連!鋳造に
おいて問題となっていた熱間延性の低下とこれKよる連
続鋳造片表面キズの発生を的確に防止でき、表面性状が
良好でしかも高張力高靭性の高Nb![E’を容易に製
造で亀るというすぐれた効果が得られる。
According to the method of the present invention described above, the effect of suppressing the precipitation of traces can be obtained by adding a small amount of Ti, the effective use of the hot ductility improvement region by increasing the amount of Nb added, and the improvement of the structure by adding Ti. It becomes possible to improve the hot ductility by the grain refinement of Mn8 and the shape control effect of Mn8. From this, according to the present invention, a series of low C-high Nb steels! It can accurately prevent the decrease in hot ductility that has been a problem in casting and the occurrence of scratches on the surface of continuously cast pieces due to K, and has a high Nb with good surface quality and high tensile strength and high toughness! [An excellent effect can be obtained in that E' can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図d O,02%C−1,74Mn系の低C鋼にお
いてNb添加量を変化させた場合の強度変化を示すグラ
フ、jI2Eは低C−高Nb鋼について高温引張シ試験
を行ったときの低延性温度範囲と鋳片手入れ率との関係
を示すグラフ、IIa図拡第2図の高温引張シ試験で用
いた熱履歴の説明図、第4図は従来のNb鋼と低C−高
Nb鋼の熱間延性t700〜1000℃温度範囲で検討
した場合の変形温度の変化に伴う絞シの変化を示すグラ
フ、第5図は0.02チC−2,0チ庵−Nb −0,
004%N鋼およびo、o21cm2.0チ鳩−Nb 
−0,015%Ti −0,004%N鋼ニオイテNb
添加量を変化させた場合の熱間延性の変化を800℃と
1ooo℃の夫々について示すグラフ、W、6図は第5
図におけるTi添加鋼について累積圧下、圧延を加えた
場合のNb添加量に伴う強度、靭性の変化を、示すグラ
フ、第7図はTi添加量を異にする低C−高Nb鋼3種
の700〜1ooo℃における熱間延性の変化を示すグ
ラフである。 特許出願人 日本鋼管株式会社 見 明 者   山   本   定   仏間   
      新   倉   正   和代理人弁理士
   吉   原   省   三”、+” ”; ’
(1・7−リ′ (zLLILLI/l)M)   SJ−’ S入味 (olo)  ヤ)jY+市竹 第4図 炎引焦’C)   宅 巳 く 第  5  図 Nbj私加((%) 第6m 0  0.05  0.10  0.15  0.2O
Nb添加+  (%) 第7図 史刑遥/l (0C) 手続補正書とω誉) 特許庁長官 島 l」 春 樹  殿 (特許庁審査官                殿)
゛  事件との関係       出願人(41!l’
り日本鋼管株式会社 4代理人 5 補正命令の日付 昭和 年 月 日 補   正   内   容 1本願明細書中葉5頁19行目中r高張力高靭性」とあ
る次に「鋼板製造用jと加入する。 二同書第11頁4行目中ro、ao*NbJ  とある
をro、osチNb Jと訂正する・よ同瞥第13頁1
2行目冒11Krを前提とし」とある次にr Nb J
  と加入する。
Figure 1 d A graph showing the strength change when changing the amount of Nb added in O,02%C-1,74Mn-based low C steel, jI2E is a high temperature tensile test conducted on low C-high Nb steel. A graph showing the relationship between the low ductility temperature range and the casting hand penetration rate, an explanatory diagram of the thermal history used in the high-temperature tensile strength test in Figure IIa enlarged in Figure 2, and Figure 4 shows the relationship between the conventional Nb steel and the low C- Hot ductility of high Nb steel t A graph showing the change in drawing strength with changes in deformation temperature when examined in the temperature range of 700 to 1000°C. 0,
004%N steel and o, o21cm2.0chihato-Nb
-0,015%Ti -0,004%N steel nioite Nb
Graph W, 6 shows the change in hot ductility when the addition amount is changed at 800°C and 100°C, respectively.
Figure 7 is a graph showing changes in strength and toughness with the amount of Nb added when cumulative reduction and rolling are applied to the Ti-added steel. It is a graph showing a change in hot ductility at 700 to 1ooo°C. Patent applicant Nippon Steel Tube Co., Ltd. Viewer Sada Yamamoto Butsuma
Tadashi Shinkura Japanese Patent Attorney Shozo Yoshihara”, +” ”; '
(1.7-li' (zLLILLI/l)M) SJ-'S flavor (olo) ya)jY+Ichitake 4th flame scorching 'C) Takamiku 5th figure Nbj private addition ((%) No. 6m 0 0.05 0.10 0.15 0.2O
Nb addition + (%) Figure 7 Shi Keiyo/l (0C) Procedural amendment and ω Homare) Commissioner of the Patent Office Shima l” Mr. Haruki (Examiner of the Patent Office)
゛ Relationship to the case Applicant (41!l'
Nippon Steel Tube Co., Ltd. 4 Agent 5 Date of amendment order Showa Year, month, day Amendment Contents 1 In the middle page of the specification of the present application, page 5, line 19, it says "high tensile strength and high toughness", and then it says "j for steel sheet manufacturing". .2 Ibid., page 11, line 4, ro, ao*NbJ Correct ``to'' to ro, oschi Nb J, yo Dobetsu, page 13, 1
The second line says "Assuming 11Kr", then r Nb J
and join.

Claims (1)

【特許請求の範囲】 1、  C:Q、005〜G、061jl、8i : 
0.02〜0.50 qb 、 Mn : 1.5〜2
.5 %、8:0.005%以下、Nb : 0.06
〜0.20−1So!At:o、oo5〜0.10%を
含有する鋼を連続鋳造するに際し、T、N量をo、oo
al以下とし、’l’i:0.005〜o、oaoチを
含有させこれを連続鋳造し、得られたスラブ含熱間圧蔦
し空冷以上の冷却速度で冷却することを脣黴とする連続
鋳造による非調質高張力高靭性鋼板の製造法。 2、  C: 0.005〜0.069G、8i : 
0.02〜0.50−lMn : 1.5〜L5 %、
 8 : 0.005 %以下、Nb : o、o s
 〜0.20 嗟、8ojAA : 0.00 S 〜
0.10%’i含有し、さら[V:0.01〜G。2%
。 Cr : 0.5 %以下、Cu : 0.5チ以下、
MO:0.5s以下、Ni : 2 %以下、B:0−
002%以下、Ca : 0.002〜0.007 %
の1樵又は2種以上を含有する鋼を連#R#Ii造する
に際し、T、Ntt−0,0(lチ以下とし、Ti:o
、oos〜o、oaol’l含有させこれを連続鋳造し
、得られ九スラブを熱間圧鷺し空冷以上の冷却速度で冷
却すること管特徴とする連続鋳造による非調質高張力高
靭性鋼板の製造法。
[Claims] 1. C:Q, 005-G, 061jl, 8i:
0.02-0.50 qb, Mn: 1.5-2
.. 5%, 8: 0.005% or less, Nb: 0.06
~0.20-1So! When continuously casting steel containing 5 to 0.10% of At: o, oo, the amounts of T and N are o, oo
al or less, 'l'i: 0.005 to o, oao is continuously cast, and the obtained slab is hot-rolled and cooled at a cooling rate higher than air cooling. A method for manufacturing non-temperature high-tensile and high-toughness steel sheets by continuous casting. 2, C: 0.005-0.069G, 8i:
0.02-0.50-lMn: 1.5-L5%,
8: 0.005% or less, Nb: o, o s
〜0.20 嗟、8ojAA: 0.00 S〜
Contains 0.10%'i and further [V: 0.01~G. 2%
. Cr: 0.5% or less, Cu: 0.5% or less,
MO: 0.5s or less, Ni: 2% or less, B: 0-
002% or less, Ca: 0.002-0.007%
When manufacturing steel containing one or more of the following, T, Ntt-0,0 (less than l, Ti:
, oos~o, oaol'l is continuously cast, and the obtained slab is hot-pressed and cooled at a cooling rate higher than air cooling. manufacturing method.
JP680682A 1982-01-21 1982-01-21 HICHOSHITSUKOCHORYOKUKOJINSEIKOHANNOSEIZOHO Expired - Lifetime JPH0248606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP680682A JPH0248606B2 (en) 1982-01-21 1982-01-21 HICHOSHITSUKOCHORYOKUKOJINSEIKOHANNOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP680682A JPH0248606B2 (en) 1982-01-21 1982-01-21 HICHOSHITSUKOCHORYOKUKOJINSEIKOHANNOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS58126923A true JPS58126923A (en) 1983-07-28
JPH0248606B2 JPH0248606B2 (en) 1990-10-25

Family

ID=11648429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP680682A Expired - Lifetime JPH0248606B2 (en) 1982-01-21 1982-01-21 HICHOSHITSUKOCHORYOKUKOJINSEIKOHANNOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0248606B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199011A (en) * 1999-01-05 2000-07-18 Kawasaki Steel Corp Production of steel small in variation of material and excellent in low temperature toughness of weld zone
JP2017133076A (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 High strength steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199011A (en) * 1999-01-05 2000-07-18 Kawasaki Steel Corp Production of steel small in variation of material and excellent in low temperature toughness of weld zone
JP2017133076A (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 High strength steel sheet

Also Published As

Publication number Publication date
JPH0248606B2 (en) 1990-10-25

Similar Documents

Publication Publication Date Title
US9683275B2 (en) Steel plate with low yield-tensile ratio and high toughness and method of manufacturing the same
JP6700400B2 (en) Steel plate for low temperature pressure vessel having excellent PWHT resistance and method for producing the same
US20170369958A1 (en) Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
JP6886519B2 (en) Sour-resistant thick plate steel with excellent low-temperature toughness and post-heat treatment characteristics and its manufacturing method
JP7047517B2 (en) Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.
US9493864B2 (en) Line pipe steels and process of manufacturing
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
JPH0448848B2 (en)
JPS6033310A (en) Manufacture of steel plate efficient in hydrogen induced crack resistance and sulfide stress corrosion crack resistance
JP3873540B2 (en) Manufacturing method of high productivity and high strength rolled H-section steel
JPS58126923A (en) Production of unnormalized high tensile and high toughness steel plate by continuous casting
JPS625216B2 (en)
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2655901B2 (en) Manufacturing method of direct quenching type high strength steel sheet with excellent toughness
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
KR100605719B1 (en) Method for Manufacturing Soft Steel Strip for Deep Drawing and Soft Steel Strip Manufactured by the Method
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JPS583012B2 (en) Manufacturing method of high toughness high tensile strength steel plate
JP3325146B2 (en) Manufacturing method for high yield strength steel sheet with low yield ratio
JPS63277721A (en) Manufacture of rail combining high strength with high toughness
JPS63179020A (en) Production of steel sheet having excellent strength and toughness and small difference in sectional hardness in thickness direction of sheet
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPH0230712A (en) Production of clad steel sheet