KR100605719B1 - Method for Manufacturing Soft Steel Strip for Deep Drawing and Soft Steel Strip Manufactured by the Method - Google Patents
Method for Manufacturing Soft Steel Strip for Deep Drawing and Soft Steel Strip Manufactured by the Method Download PDFInfo
- Publication number
- KR100605719B1 KR100605719B1 KR1020040077812A KR20040077812A KR100605719B1 KR 100605719 B1 KR100605719 B1 KR 100605719B1 KR 1020040077812 A KR1020040077812 A KR 1020040077812A KR 20040077812 A KR20040077812 A KR 20040077812A KR 100605719 B1 KR100605719 B1 KR 100605719B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- rolling
- thin steel
- temperature
- steel sheet
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
본 발명은 자동차 내.외판용으로 사용되는 심가공용 연질 박강판의 제조방법 및 이 방법에 의하여 제조된 박강판에 관한 것으로써, 세미 극저탄소강으로 열간직송압연을 실시함으로써, 심가공성이 우수할 뿐 만 아니라 내2차가공취성, 용접부 피로특성 및 도금특성이 우수한 연질 박강판을 보다 경제적으로 제조할 수 있는 방법 및 이 방법에 의하여 제조된 박강판을 제공하고자 하는데, 그 목적이 있는 것이다.The present invention relates to a method for manufacturing a soft thin steel sheet for deep processing used for automobile interior and exterior, and to a thin steel sheet produced by the method, by performing hot direct rolling with semi-ultra low carbon steel, thereby providing excellent deep workability. In addition, to provide a method for more economically manufacturing a flexible thin steel sheet excellent in secondary processing brittleness, weld fatigue properties and plating characteristics, and a thin steel sheet produced by the method, and its purpose is to provide.
본 발명은 중량%로, C:0.005~0.015%, Si:0.02%이하, Mn: 0.4%이하, S:0.015%이하, P:0.02%이하, 산가용Al:0.03~0.4%, N:0.008%이하, 총 트램프 원소(Cu+Ni+Cr+Mo+Sn):0.15%이하, Ti 및 Nb의 단독 또는 복합: 0.005-0.040%, 기타 불가피한 불순물 및 잔부 Fe로 조성되는 강을 연속주조하여 슬라브를 제조한 다음, 열연 재가열공정을 거치지 않고 고온 상태의 슬라브를 직접 열간압연공정에 투입하여 950~1150℃에서 조압연을 실시한 후, 텐덤형식의 압연기를 사용하여 Ar3-30℃ ∼ Ar3의 온도구간을 제외한 700~940℃의 마무리압연온도조건으로 열간마무리압연을 실시한 다음, 600~750℃온도 범위에서 권취한 후, 산세 및 냉간압연한 다음, 760℃~860℃의 온도에서 연속소둔하는 것을 특징으로 하는 심가공용 연질 박강판의 제조방법 및 이 방법에 의하여 제조된 박강판을 그 요지로 한다.In the present invention, by weight%, C: 0.005 to 0.015%, Si: 0.02% or less, Mn: 0.4% or less, S: 0.015% or less, P: 0.02% or less, acid value Al: 0.03 to 0.4%, N: 0.008 % Or less, total tramp element (Cu + Ni + Cr + Mo + Sn): 0.15% or less, alone or in combination of Ti and Nb: 0.005-0.040%, other steels made of continuous casting of unavoidable impurities and balance Fe After the preparation, the slab in the high temperature state was directly put into the hot rolling process without undergoing a hot rolling reheating process and subjected to rough rolling at 950-1150 ° C., followed by Ar 3 -30 ° C. to Ar 3 using a tandem rolling mill. After hot finishing rolling under the conditions of finishing rolling temperature of 700 ~ 940 ℃ excluding temperature range, winding in 600 ~ 750 ℃ temperature, pickling and cold rolling, and continuous annealing at the temperature of 760 ℃ ~ 860 ℃ The manufacturing method of the deep thin steel plate for deep processing, and the thin steel plate manufactured by this method are made into the summary.
심가공, 열간직송압연, 세미 극저탄소강, 내2차취성, 용접특성, 박강판Deep processing, hot direct rolling, semi ultra low carbon steel, secondary brittle resistance, welding characteristics, thin steel sheet
Description
본 발명은 주로 자동차 내.외판용으로 사용되는 심가공용 연질 박강판의 제조방법 및 이 방법에 의하여 제조된 박강판에 관한 것으로써, 보다 상세하게는 강중 탄소함유량이 50~150ppm 첨가된 극저탄소강(이하, "세미 극저탄소강"이라고도 창함)을 소재로 열간직송압연을 실시함으로써 심가공성이 우수할 뿐 만 아니라 내2차가공취성 및 용접부 피로특성이 우수한 연질 박강판을 제조하는 방법 및 이 방법에 의하여 제조된 박강판에 관한 것이다.The present invention relates to a method for producing a flexible thin steel sheet for deep processing mainly used for automotive interior and exterior panels, and a thin steel sheet produced by the method, more specifically, ultra-low carbon steel with 50 to 150ppm carbon content in steel Method of manufacturing soft thin steel sheet having excellent deep workability as well as excellent secondary work embrittlement resistance and weld fatigue characteristics by performing hot direct rolling on the material (hereinafter also referred to as “semi-ultra low carbon steel”). It relates to a thin steel sheet produced by.
심가공용 박강판을 제조하는 기술로는 제강공정에서 C,N과 같은 침입형 고용원소의 양을 50ppm이하로 극도로 낮추는 기술을 들수 있다.As a technique for manufacturing a deep steel sheet, a technique of extremely reducing the amount of invasive employment elements such as C and N in the steelmaking process to less than 50 ppm.
그러나, 단순히 강중 침입형 고용원소의 양을 낮추는 것 만으로는 DDQ(Deep Drawing Quality)급의 심가공성을 갖는 박강판을 제조하는 것은 매우 어렵기 때문에 심가공용 박강판은 별도로 탄질화물 형성원소인 Ti,Nb등을 단독 또는 복합첨가한 소위 극저탄소 IF(Interstitial Free)강을 이용하여 제조하는 것이 보통이다. However, it is very difficult to manufacture DDQ (Deep Drawing Quality) grade deep workability by simply lowering the amount of invasive solid elements in the steel, so that the deep work steel sheets are separately formed of the carbonitride forming elements Ti, Nb. It is common to manufacture using so-called ultra-low carbon IF (Interstitial Free) steel which is added alone or in combination.
상기 IF강을 이용하여 심가공용 박강판을 제조하는 모 기술로는 일본 특허번호 제564385호에 개시되어 있는 Ti첨가강을 이용하는 기술, 미국 Armco사의 Nb첨가강을 이용하는 기술, 일본 특허번호 제1278670호에 개시되어 있는 개량 Ti첨가강을 이용하는 기술 및 일본 가와사끼 제철소(KSC)의 Ti-Nb복합첨가강을 이용하는 기술등을 들수 있고, 또한 이들 모 기술들을 개량한 기술들이 다수 있으며, 계속 개량되고 있다.As a parent technology for manufacturing a thin steel sheet for deep processing using the IF steel, a technology using Ti-added steel disclosed in Japanese Patent No. 56385, a technology using Nb-added steel from Armco of USA, and Japanese Patent No. 1278670 The technique using the improved Ti additive steel disclosed in the above, and the technique using the Ti-Nb composite additive steel of the Japanese Kawasaki Steel Mill (KSC), etc. are mentioned, and the technique which improved these mother technologies is many and continues to improve.
상기 모 기술 및 개량기술들은 통상적으로 가공성 확보를 위하여 극저탄소강에 Ti 또는 Nb등의 탄질화물 형성원소를 0.03~0.07% 정도 첨가한다.The parent technology and improved technology typically add about 0.03% to 0.07% of carbonitride-forming elements such as Ti or Nb to ultra-low carbon steel to secure workability.
상기와 같이, 가공성을 향상시키기 위하여 극저탄소강에 Ti 또는 Nb등의 탄질화물 형성원소를 첨가하는 경우에는 극저탄소강의 제조 및 Ti,Nb첨가에 의해 비용이 상승하게 될 뿐만 아니라 강판특성에 있어서도 2차가공취성 발생 및 도금특성 저하를 초래하게 되는 문제점이 있다.As described above, when carbonitride-forming elements such as Ti or Nb are added to the ultra low carbon steel to improve the workability, the cost increases due to the production of the ultra low carbon steel and the addition of Ti and Nb. There is a problem that leads to the generation of differential brittleness and deterioration of plating characteristics.
상기한 2차가공취성 문제를 개선하기 위하여 B등의 입계강화원소를 첨가(관련특허 일본공개특허 제1993-268314, 1993-247540, 1994-256899호)하기도 하지만, 이 경우에는 B첨가에 의한 가공성 하락은 물론 강중 B첨가량 제어를 위한 조업상의 어려움을 가져오는 문제점이 잇다.In order to improve the secondary brittleness problem described above, grain boundary strengthening elements such as B are added (related to Japanese Patent Laid-Open Publication Nos. 193-268314, 1993-247540, 1994-256899), but in this case, workability by addition of B Of course, there is a problem that the operation is difficult to control the amount of B addition to the fall.
본 발명자들은 상기한 종래기술의 제반 문제점을 해결하기 위하여 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 세미 극저탄소강으로 열간직송압연을 실시함으로써, 심가공성이 우수할 뿐 만 아니라 내2 차가공취성, 용접부 피로특성 및 도금특성이 우수한 연질 박강판을 보다 경제적으로 제조할 수 있는 방법 및 이 방법에 의하여 제조된 박강판을 제공하고자 하는데, 그 목적이 있는 것이다.MEANS TO SOLVE THE PROBLEM The present inventors carried out research and experiment in order to solve the above-mentioned all the problems of the prior art, and based on the result, the present invention proposes the present invention. In addition to the excellent and excellent secondary secondary embrittlement resistance, weld fatigue properties and plating properties to provide a method for more economically manufacturing a flexible thin steel sheet and a thin steel sheet produced by this method, will be.
이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.
본 발명은 중량%로, C:0.005~0.015%, Si:0.02%이하, Mn: 0.4%이하, S:0.015%이하, P:0.02%이하, 산가용Al:0.03~0.4%, N:0.008%이하, 총 트램프 원소(Cu+Ni+Cr+Mo+Sn):0.15%이하, Ti 및 Nb의 단독 또는 복합: 0.005-0.040%, 기타 불가피한 불순물 및 잔부 Fe로 조성되는 강을 연속주조하여 슬라브를 제조한 다음, 열연 재가열공정을 거치지 않고 고온 상태의 슬라브를 직접 열간압연공정에 투입하여 950~1150℃에서 조압연을 실시한 후, 텐덤형식의 압연기를 사용하여 Ar3-30℃ ∼ Ar3의 온도구간을 제외한 700~940℃의 마무리압연온도조건으로 열간마무리압연을 실시한 다음, 600~750℃온도 범위에서 권취한 후, 산세 및 냉간압연한 다음, 760℃~860℃의 온도에서 연속소둔하는 것을 특징으로 하는 심가공용 연질 박강판의 제조방법에 관한 것이다. In the present invention, by weight%, C: 0.005 to 0.015%, Si: 0.02% or less, Mn: 0.4% or less, S: 0.015% or less, P: 0.02% or less, acid value Al: 0.03 to 0.4%, N: 0.008 % Or less, total tramp element (Cu + Ni + Cr + Mo + Sn): 0.15% or less, alone or in combination of Ti and Nb: 0.005-0.040%, other steels made of continuous casting of unavoidable impurities and balance Fe After the preparation, the slab in the high temperature state was directly put into the hot rolling process without undergoing a hot rolling reheating process and subjected to rough rolling at 950-1150 ° C., followed by Ar 3 -30 ° C. to Ar 3 using a tandem rolling mill. After hot finishing rolling under the conditions of finishing rolling temperature of 700 ~ 940 ℃ excluding temperature range, winding in 600 ~ 750 ℃ temperature, pickling and cold rolling, and continuous annealing at the temperature of 760 ℃ ~ 860 ℃ It relates to a method for producing a soft thin steel sheet for deep processing.
또한, 본 발명은 상기 본 발명의 방법에 따라 제조된 심가공용 연질 박강판에 관한 것이다.The present invention also relates to a soft thin steel sheet for deep working according to the method of the present invention.
즉, 본 발명은 중량%로, C:0.005~0.015%, Si:0.02%이하, Mn: 0.4%이하, S:0.015%이하, P:0.02%이하, 산가용 Al:0.03~0.4%, N:0.008%이하, 총 트램프원소 (Cu+Ni+Cr+Mo+Sn):0.15%이하, Ti 및 Nb의 단독 또는 복합: 0.005-0.040%, 기타 불가피한 불순물 및 잔부 Fe로 조성되고, 그리고 석출물들을 포함하고 이 석출물들은 5∼100㎚의 크기를 갖는 석출물의 갯수가 총 석출물 갯수의 80%이상이 되는 크기를 갖는 것을 특징으로 하는 심가공용 연질 박강판에 관한 것이다.That is, the present invention is in the weight%, C: 0.005 ~ 0.015%, Si: 0.02% or less, Mn: 0.4% or less, S: 0.015% or less, P: 0.02% or less, acid value Al: 0.03 ~ 0.4%, N : 0.008% or less, total tramp element (Cu + Ni + Cr + Mo + Sn): 0.15% or less, Ti or Nb alone or in combination: 0.005-0.040%, composed of other unavoidable impurities and residual Fe, and precipitates These precipitates are related to a soft steel sheet for deep processing, characterized in that the number of precipitates having a size of 5 to 100nm is more than 80% of the total number of precipitates.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
Ti 및 Nb등을 강중에 첨가하여 박강판을 제조하는 경우, 그렇지 않은 경우에 비하여 압연방향에 평행한 {111}집합조직이 발달하여 딥 드로잉성이 크게 개선되는 현상이 나타나는데, 이에 대한 메커니즘은 아직 이론적으로 명확하게 밝혀져 있지 않다.In the case of manufacturing a thin steel sheet by adding Ti and Nb into steel, the {111} aggregate structure parallel to the rolling direction is developed compared to the case where it is not, and the deep drawing property is greatly improved. Theoretically it is not clear.
상기 현상에 대하여 몇가지 이론이 제시되어 있는데, 그 예로는 강중에 형성된 탄질화물 자체가 집합조직을 발달시킨다는 석출물설(일본 철강협회 공동연구회 철강부회편, 1982, 73등), Ti,Nb가 고용원소로 존재하여 성형성이 개선된다는 고용원소설(철과강,82,p.35, 철과강,81,p.185등) 및 강중 고용탄소 저감설(제140회 니시야마기술강좌, 1991,p.35등)을 들수 있다.Several theories have been suggested for the above phenomena, for example, precipitation theory that carbonitrides formed in steel itself develop aggregates (Steel Subsection of Japan Research Association, 1982, 73, etc.), and Ti, Nb are the employment elements. Employment novels (steel, 82, p.35, iron and steel, 81, p.185, etc.) and reduced employment carbon in steel (140th Nishiyama Technical Course, 1991, p) .35 etc.)
이러한 이론들은 현재의 주요 열간압연방식인 냉편장입압연(연주후 냉각된 슬라브를 재가열로에 장입한 후, 추출하여 압연하는 방식; Cold Charge Rolling; CCR)에서 나타나는 현상에 대한 메커니즘으로서 제시된 이론들로써, 그 어느 것도 현재 IF강의 제조시 나타나는 현상을 모두 설명해 주고 있지는 못하다.These theories are presented as a mechanism for the phenomenon that occurs in the current main hot rolling method, cold slab rolling (charging the slab cooled after casting into a reheater, extracting and rolling; Cold Charge Rolling (CCR)). None of these accounts for all of the phenomena present in the manufacture of IF steel.
그러나, 강중에 미량 존재하는 침입형 고용원소(특히 고용탄소)의 석출 및 고용현상과 집합조직의 형성과의 사이에는 밀접한 관계가 있다는 점은 상기 이론들에서 공통적으로 인식되고 있다.However, it is commonly recognized in the theories that there is a close relationship between precipitation of invasive employment elements (especially employed carbon) and the phenomenon of formation of aggregates and formation of aggregates in the river.
한편, 최근, 연주후, 고온상태의 슬라브를 직접 열간압연공정에 투입하여 압연하는 방식인 열간직송압연(Hot Direct Rolling; HDR)이 개발되었으며, 미니밀 공정은 기본적으로 이 열간직송압연방식으로 압연을 하고 있다.On the other hand, Hot Direct Rolling (HDR), which is a method in which a slab in a high temperature state is directly put into a hot rolling process and rolled after a performance, has been developed, and a mini mill process basically uses a hot direct rolling method for rolling. Doing.
상기 열간직송압연방식을 사용하여 극저탄소강을 열간압연하는 경우에는 슬라브가 받는 열이력이 기존의 냉편장입압연공정에서 와는 전혀 다르기 때문에 강중 고용원소의 석출 및 고용거동에 있어서도 기존의 냉편장입압연공정의 것과는 큰 차이가 있게 된다.In the case of hot rolling of ultra low carbon steel by using the hot direct rolling method, the heat history received by the slab is very different from that of the conventional cold-loading rolling process. There is a big difference from that of.
본 발명자들은 상기 열간직송압연방식을 사용함으로써 나타나는 강중 고용원소의 석출 및 고용거동등에 대하여 연구를 행하고, 그 결과에 근거하여 본 발명을 완성하게 된 것이다.MEANS TO SOLVE THE PROBLEM The present inventors study the precipitation, the employment behavior, etc. of the solid-solution element in steel by using the said hot direct rolling method, and completed this invention based on the result.
즉, 본 발명은 종래의 극저탄소강이 아닌 C 함량 0.005~0.015%정도의 세미 극저탄소강(B 미첨가강)으로 심가공용 연질 박강판의 제조를 가능하게 하는 것이다.That is, the present invention is to enable the production of soft thin steel sheet for deep processing in semi-low carbon steel (B not added steel) of about 0.005 ~ 0.015% C content, not the conventional ultra low carbon steel.
본 발명은 세미 극저탄소강(B 미첨가강)으로 심가공용 연질 박강판를 제조하기 위하여 열간직송압연방식을 이용하고, 강 성분 및 열간압연조건 및 냉연강판소둔조건등을 적절히 제어하는 것이다.The present invention uses a hot direct rolling method to produce a soft thin steel sheet for deep processing of semi-ultra low carbon steel (B not added steel), and appropriately controls the steel components, hot rolling conditions and cold rolled steel annealing conditions.
상기 C는 침입형 고용원소로 작용하여 냉연 및 소둔시 강판의 집합조직 형성과정에서 가공성에 유리한 {111} 집합조직의 형성을 저해하여 심가공성을 저하시키는 성분으로서, 그 함량은 낮을수록 유리하다.The C is a component that acts as an invasive solid solution and inhibits the formation of {111} texture structure, which is advantageous for processability during cold rolling and annealing, to lower the deep workability.
따라서, 통상 그 함량은 0.005%이하로 제한하고 있다.Therefore, the content is usually limited to 0.005% or less.
그러나, 본 발명의 경우에는 열간직송압연에 의해 석출물의 효과적인 제어가 가능하여 그 함량이 0.005%이상인 경우에도 심가공성을 확보할 수 있다.However, in the case of the present invention, it is possible to effectively control the precipitates by hot direct rolling, so that deep workability can be secured even when the content is 0.005% or more.
그러나, C 함량이 0.015%를 초과하는 경우에는 가공성이 급격히 저하하게 되므로, C 함량은 그 상한을 0.015%로 선정하는 것이 바람직하다.However, when the C content exceeds 0.015%, the workability is sharply lowered, so the upper limit of the C content is preferably set at 0.015%.
한편, C의 함량이 0.005%미만인 경우에는 입계취화현상이 일어나므로, C 함량의 하한은 0.005%로 선정하는 것이 바람직하다.On the other hand, when the C content is less than 0.005%, grain boundary embrittlement occurs, so the lower limit of the C content is preferably set to 0.005%.
이와 같이, 본 발명의 경우에는 강중의 C 함량이 0.005 ∼ 0.015%인 경우에도 심가공성을 확보할 수 있으므로, 종래방법에서와 같이 극저탄소강의 취성을 방지하기 위하여 입계강화원소인 B을 첨가한다거나 하는 성분설계는 필요가 없게 되는 이점이 있는 것이다.As described above, in the case of the present invention, even when the C content in the steel is 0.005 to 0.015%, deep workability can be ensured, so that B, which is a grain boundary strengthening element, is added to prevent brittleness of the ultra low carbon steel as in the conventional method. Component design has the advantage of not being necessary.
상기 Si는 적 스케일을 유발시킬 뿐만 아니라 도금성을 저하시키므로, 그 함량은 0.02%이하로 제한하는 것이 바람직하다.Since the Si not only causes red scale but also lowers the plating property, the content thereof is preferably limited to 0.02% or less.
상기 Mn은 MnS를 형성하여 S에 의한 크랙발생을 방지하기 위하여 첨가되는 성분이지만, 그 첨가량이 0.4%를 초과하는 경우에는 가공성의 하락과 함께 경제적으로도 불리하므로, 그 함량은 0.4%이하로 제한하는 것이 바람직하다.The Mn is a component that is added to form MnS to prevent cracking caused by S, but when the amount exceeds 0.4%, it is economically disadvantageous with a decrease in processability, so the content is limited to 0.4% or less. It is desirable to.
상기 S은 FeS를 형성하여 슬라브의 에지크랙을 유발시키는 원소로서 강중에 많이 함유되는 경우에는 압연시 에지크랙을 발생시킬 위험이 있으므로, 그 함량은 0.015%이하로 제한하는 것이 바람직하다.S is an element that forms FeS to cause the edge cracks of the slab, if it is contained in a lot of steel, there is a risk of generating edge cracks during rolling, the content is preferably limited to 0.015% or less.
상기 P가 강중에 많이 함유되는 경우에는 입계취성이 일어나고 피로특성이 저하되므로 상기 결함을 피하기 위하여 그 함량은 0.02%이하로 제한하는 것이 바람직하 다.When the P is contained in a large amount of steel, the grain boundary brittleness occurs and the fatigue property is lowered, so that the content is preferably limited to 0.02% or less in order to avoid the defect.
상기 Sol.Al은 탈산제로서의 역활을 하는 성분으로서, 강중 용존 산소량을 충분히 낮은 상태로 유지하는 측면과 경제적인 측면을 고려하여 냉연제품의 경우, 그 함유량을 0.02∼0.07%정도로 관리하여 생산하는 것이 일반적이다. Sol.Al is a component that acts as a deoxidizer, and in consideration of the aspect of maintaining the dissolved oxygen level in steel sufficiently and economically, in the case of cold-rolled products, the content is generally controlled to produce 0.02 to 0.07%. to be.
한편, 본 발명에 있어서 Sol.Al은 탈산제 역활을 수행할 뿐만 아니라 탄소함량이 비교적 높은 경우에도 심가공성을 안정적으로 확보할 수 있게 해주는 역활을 한다. On the other hand, in the present invention, Sol.Al not only serves as a deoxidizer, but also plays a role of stably securing deep workability even when the carbon content is relatively high.
즉, 본 발명에 있어서 Sol.Al은 탈산제 역활을 수행할 뿐만 아니라 강중 고용C의 재결정억제 작용을 방해하는 효과를 뚜렷하게 나타내고, 재결정을 촉진시킬 뿐 만 아니라 {111}계열의 집합조직을 발달시키는 역할을 한다.That is, in the present invention, Sol.Al not only plays a role of deoxidizer but also clearly shows the effect of inhibiting the recrystallization inhibitory action of solid solution C in the steel, not only promotes recrystallization but also develops the {111} series aggregates. Do it.
상기 Sol.Al 첨가량이 너무 적은 경우에는 그 첨가효과가 미약하고, 그 첨가량이 0.40%를 초과하는 경우에는 비용 상승 및 연주조업성을 해치므로, 그 첨가량은 0.03∼0.40%로 제한하는 것이 바람직하다.If the amount of Sol.Al added is too small, the effect of addition is insignificant. If the amount of addition of Sol.Al exceeds 0.40%, the increase in cost and performance of playability are impaired. Therefore, the amount of addition of Sol.Al is preferably limited to 0.03 to 0.40%. .
상기 N는 고용상태로 존재하는 경우, 연신율 및 드로잉성을 해치기 때문에 그 함량은 0.008%이하로 제한하는 것이 바람직하다.When N is in a solid solution state, the content thereof is deteriorated in elongation and drawability, so the content thereof is preferably limited to 0.008% or less.
트램프원소는 주요 성분이 Cu, Ni, Cr, Mo, Sn 등으로써, 통상 스크랩등으로부터 혼입되게 되는데, 그 양이 0.15%를 초과하면 연신율 및 드로잉성의 하락이 커서 심가공용의 재질을 확보하기 어려울 뿐 만 아니라 표면품질을 저하시키므로 그 함량은 0.15%이하로 제한하는 것이 바람직하다.The main components of the tramp element are Cu, Ni, Cr, Mo, Sn, etc., and are usually mixed from scraps, etc. If the amount exceeds 0.15%, the elongation and drawability are large, so it is difficult to secure a material for deep processing. As well as lowering the surface quality, the content is preferably limited to 0.15% or less.
상기 Ti 및 Nb은 탄질화물을 형성하여 가공성을 향상시키기 위하여 첨가되는 성분들로서, Ti 및 Nb의 단독 또는 복합의 첨가량이 0.005%미만인 경우에는 그 첨가량 이 너무 적어 첨가효과가 적고, 그 첨가량이 0.040%를 초과하는 경우에는 비경제적이므로, Ti 및 Nb의 단독 또는 복합의 첨가량은 0.005-0.040%로 제한하는 것이 바람직하다.The Ti and Nb are components added to improve the processability by forming carbonitrides, when the addition amount of Ti and Nb alone or in combination is less than 0.005%, the addition amount is too small, the addition effect is small, the addition amount is 0.040% Since it is uneconomical when exceeding, it is preferable to limit the addition amount of Ti and Nb alone or in combination to 0.005-0.040%.
이와 같이, 본 발명에서는 통상적으로 Ti 및 Nb의 단독 또는 복합 첨가량이 0.03~0.07%인 종래기술에서 보다 Ti 및 Nb을 훨신 적게 첨가하더라도 양호한 드로잉성(r값)의 확보가 가능하게 되는데, 그 이유는 본 발명에서 채택하고 있는 열간직송압연법이 C 이나 N등과 같은 침입형 고용원소들을 석출물로 안정화시키는데 훨씬 유리하기 때문이며, 이를 보다 효과적으로 달성하기 위해서는 조압연 및 마무리압연시 압연온도를 함께 제어하는 것이 보다 효과적이다.As described above, in the present invention, even if Ti and Nb are added in much smaller amounts than Ti and Nb in the conventional art of 0.03% to 0.07%, it is possible to secure good drawing property (r value). Since the hot direct rolling method adopted in the present invention is much more advantageous in stabilizing invasive employment elements such as C or N as precipitates, in order to achieve this more effectively, it is necessary to control the rolling temperature at the time of rough rolling and finishing rolling together. More effective.
상기와 같이, Ti 및 Nb의 첨가량을 저감시킬 수 있으므로, 우수한 도금특성을 확보할 수 있다.As mentioned above, since the addition amount of Ti and Nb can be reduced, the outstanding plating characteristic can be ensured.
이하, 본 발명에 따라 박강판을 제조하는 방법에 대하여 설명한다.Hereinafter, a method for producing a thin steel sheet according to the present invention will be described.
본 발명에서는 연주 슬라브를 냉각한 후, 재가열로로 통과시키는 종래의 제조방법과 달리 연주 후 곧바로 열간압연을 실시하는 열간직송압연공정을 채택하고 있으며, 이로 인하여 강중 고용 C 및 N이 과포화 고용상태로 존재하게 된다,.The present invention adopts a hot direct rolling process that performs hot rolling immediately after playing, unlike the conventional manufacturing method of cooling the playing slab and passing it through a reheating furnace. It exists.
따라서, 본 발명에서는 상기와 같이 과포화 고용상태로 존재하는 고용 C 및 N의 석출을 조장하기 위하여 Ti,Nb계 고온 석출물(주로 질화물,유화물 및 복합 석출물)의 석출이 활발하게 일어나는 950~1150℃의 온도에서 조압연을 실시한다.Therefore, in the present invention, the precipitation of Ti, Nb-based high-temperature precipitates (mainly nitrides, emulsions and complex precipitates) is actively performed in order to promote the precipitation of solid solution C and N in the supersaturated solid solution state as described above. Rough rolling is carried out at temperature.
본 발명에서는 상기와 같이 조압연한 후, 텐덤형식의 압연기로 열간마무리압연을 실시한다.In the present invention, after rough rolling as described above, hot finishing rolling is performed by a tandem type rolling mill.
상기 열간마무리압연시 마무리압연온도는 700∼Ar3-30℃ 또는 Ar3∼940℃의 온도로 설정하는 것이 바람직하다.The hot finish rolling during the finish rolling temperature is preferably set to a temperature of 700~Ar 3 -30 ℃ or Ar 3 ~940 ℃.
즉, 마무리압연온도는 700∼940℃의 온도구간중 Ar3-30℃ ∼Ar3온도구간이 제외된 온도영역으로 한정하는 것이 바람직한데, 그 이유는 다음과 같다. That is, the finish rolling temperature is preferably limited to a temperature range in which the Ar 3 -30 ° C. to the Ar 3 temperature range is excluded from the temperature range of 700 to 940 ° C., for the following reason.
즉, 상기 마무리압연온도가 700℃이하인 경우에는 압연변형저항이 크게 증가하는 문제가 발생하고, 940℃이상인 경우에는 열연판에 거대립이 형성되어 가공성이 저하되는 현상이 발생하기 때문에 일차적으로 그 온도범위를 700∼940℃가 되도록 선정한다.That is, when the finishing rolling temperature is 700 ° C. or less, a problem in which the rolling deformation resistance increases greatly occurs, and when the finish rolling temperature is 940 ° C. or more, large grains are formed on the hot rolled sheet, resulting in a decrease in workability. The range is selected to be 700 to 940 ° C.
그러나, Ar3-30℃ ∼ Ar3 온도구간은 금속학적으로 페라이트와 오오스테나이트 조직이 공존하는 구간이므로 조업의 불안정과 함께 최종 제품에서의 가공성 열화가 문제될 소지가 있기 때문에 700∼940℃구간중에서 Ar3-30℃ ∼ Ar3 온도구간에서의 열간마무리압연은 피하도록 한정한 것이다.However, the temperature range of Ar 3 -30 ℃ ~ Ar 3 is a metallurgical zone where ferrite and austenite structure coexist, which may cause instability of operation and deterioration of workability in the final product. from Ar 3 -30 ℃ ~ Ar 3 hot finish rolling in the temperature range is a limitation to blood.
또한, 상기 권취온도가 600℃미만인 경우에는 권취시 형상불량의 위험성과 함께 심가공성이 저하되고, 750℃를 초과하는 경우에는 스케일 결함이 발생할 가능성이 크므로 권취온도는 600~750℃로 선정하는 것이 바람직하다.In addition, if the coiling temperature is less than 600 ℃, deep workability is lowered with the risk of shape defects during winding, and if it exceeds 750 ℃ scale defects are likely to occur, so the winding temperature is selected to 600 ~ 750 ℃ It is preferable.
상기와 같이 제조한 열연강판을 산세 및 냉간압연한 후 연속소둔을 행하여 심가공용 연질 박강판을 제조한다.The hot rolled steel sheet produced as described above is pickled and cold rolled, followed by continuous annealing to produce a soft thin steel sheet for deep processing.
이 때, 산세 및 냉간압연방법은 통상적으로 사용되는 방법이면 어느 것이나 적용가능하다.At this time, any of the pickling and cold rolling methods can be applied as long as it is a commonly used method.
상기 냉연강판의 연속소둔시 소둔온도는 760~860℃로 제한하는 것이 바람직한데, 그 이유는 소둔온도가 760℃이하인 경우에는 심가공성을 얻기 어렵고, 860℃이상인 경우에는 고온소둔으로 인하여 조업상 스트립의 통판성등에 문제가 발생할 위험성이 매우 높기 때문이다.The annealing temperature during continuous annealing of the cold rolled steel sheet is preferably limited to 760 ~ 860 ℃, the reason is that when the annealing temperature is less than 760 ℃ difficult to obtain deep workability, in the case of more than 860 ℃ due to high temperature annealing strip This is because there is a high risk of problems with the mail order.
상기와 같이 본 발명에 따라 박강판을 제조하는 경우에는 박강판내에 석출물들이 형성되는데, 이 석출물들은 5∼100㎚의 크기를 갖는 석출물의 갯수가 총 석출물 갯수의 80%이상이 되는 크기를 갖는다.As described above, when the thin steel sheet is manufactured according to the present invention, precipitates are formed in the thin steel sheet, and the precipitates have a size such that the number of precipitates having a size of 5 to 100 nm is 80% or more of the total number of precipitates.
종래의 방법에 의하여 박강판을 제조하는 경우에는 박강판내에 대부분 5㎚이하의 크기를 갖는 석출물들이 형성된다.When the thin steel sheet is manufactured by the conventional method, precipitates having a size of 5 nm or less are formed in the thin steel sheet.
IF 강에서 석출물의 크기가 5㎚이하인 경우에는 가공성을 열화시키는 것으로 알려져 있다.In the case of precipitates of 5 nm or less in the IF steel, it is known to degrade workability.
또한, 본 발명에 따라 박강판을 제조하는 경우에는 강판내에 존재하는 석출물은 비평형 석출물로서 Ti,Nb등의 탄질화물, 유화물 형성원소가 원자당량을 만족하는 양 이상으로 첨가되지 않아도 양호한 심가공성을 얻을 수 있다.In addition, in the case of manufacturing the thin steel sheet according to the present invention, the precipitates present in the steel sheet are non-equilibrium precipitates, which have good deep workability even when carbonitrides and emulsion forming elements such as Ti and Nb are not added in an amount equal to or more than an atomic equivalent. You can get it.
또한, 상기와 같이, Ti,Nb등의 첨가량이 적으므로, 도금특성의 개선을 가져오게 된다.In addition, as described above, since the addition amount of Ti, Nb and the like is small, the plating characteristics are improved.
한편, 본 발명은 용융아연도금제품(GI, GA)으로의 생산 시에도 동일하게 적용될 수 있는 것이다.On the other hand, the present invention can be equally applied to the production of hot dip galvanized products (GI, GA).
이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.
(실시예)(Example)
하기 표 1의 조성을 갖는 강을 하기 표 2의 제조조건으로 박강판을 제조한 다음, 인장강도, 연신율, r값, 용접부 피로강도 및 연성취성천이온도를 측정하고, 그 결과를 하기 표 3에 나타내었다. To prepare a steel sheet with a steel composition having the composition of Table 1 below to the manufacturing conditions of Table 2, and then measured the tensile strength, elongation, r value, weld fatigue strength and ductile brittle transition temperature, the results are shown in Table 3 It was.
하기 표 3에서 용접부 피로강도는 최대하중 대 최소하중의 비율을 10으로 하여 1000만번 반복 하중을 주어도 파괴되지 않는 조건의 강도로 나타낸 것이고 그리고 연성취성 천이온도는 드로잉 비율을 1.9로 하여 컵을 성형한 후, 추를 자유낙하시키며 취성파괴가 일어나지 않는 최저온도를 구한 값이다. In Table 3 below, the weld fatigue strength is expressed as the strength of the condition that is not broken even after 10 million repeated loads with the maximum load-to-minimum load ratio as 10, and the ductile brittle transition temperature is formed by forming the cup with the drawing ratio as 1.9. After that, the weight is freely dropped and the minimum temperature at which brittle fracture does not occur is obtained.
상기 표 3에 나타난 바와 같이, 본 발명에 부합되는 발명예(1-4)의 경우에는 종래의 극저탄소강을 이용하여 제조하는 비교예(1-2)에 비하여 용접부 피로강도 및 내2차가공취성 특성(연성취성 천이온도)이 우수함을 알 수 있다.As shown in Table 3, in the case of Inventive Example (1-4) according to the present invention, compared to the comparative example (1-2) manufactured using the conventional ultra-low carbon steel, the weld fatigue strength and secondary processing It can be seen that the brittle characteristics (ductility brittle transition temperature) is excellent.
따라서, 본 발명에 의하면, 용접부 피로강도 및 내2차가공취성 특성(연성취성 천이온도)이 우수한 심가공용 고 강도강을 경제적으로 제조할 수 있음을 알 수 있다.Therefore, according to the present invention, it can be seen that it is possible to economically manufacture high-strength steel for deep processing, which is excellent in weld fatigue strength and secondary processing brittleness characteristic (ductile brittle transition temperature).
상술한 바와 같이, 본 발명에 따르면, 상기 세미 극저탄소강의 성분계를 이용하여 심가공용 연질 박강판강을 제조하는 경우, 극저탄소강 제조를 위한 설비투자비 및 조업비용의 상승을 피할 수 있을 뿐 만 아니라 2차가공취성, 용접부 피로특성 및 도금특성이 저하하는 문제점을 제거할 수 있는 효과가 있는 것이다.As described above, according to the present invention, in the case of manufacturing soft thin steel sheet for deep processing using the semi-low carbon steel component system, not only an increase in equipment investment and operating cost for manufacturing ultra-low carbon steel can be avoided. Secondary brittle brittleness, weld fatigue properties and plating properties are deteriorated to eliminate the problems.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040077812A KR100605719B1 (en) | 2004-09-30 | 2004-09-30 | Method for Manufacturing Soft Steel Strip for Deep Drawing and Soft Steel Strip Manufactured by the Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040077812A KR100605719B1 (en) | 2004-09-30 | 2004-09-30 | Method for Manufacturing Soft Steel Strip for Deep Drawing and Soft Steel Strip Manufactured by the Method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060028907A KR20060028907A (en) | 2006-04-04 |
KR100605719B1 true KR100605719B1 (en) | 2006-08-01 |
Family
ID=37139432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040077812A KR100605719B1 (en) | 2004-09-30 | 2004-09-30 | Method for Manufacturing Soft Steel Strip for Deep Drawing and Soft Steel Strip Manufactured by the Method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100605719B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100711360B1 (en) * | 2005-12-14 | 2007-04-27 | 주식회사 포스코 | A method for manufacturing high strength cold rolled steel sheet for deep drawing having excellent press formability |
KR100771452B1 (en) * | 2006-05-29 | 2007-10-30 | 주식회사 한국번디 | Extra low carbon steel tube with high workability |
KR100797238B1 (en) * | 2006-12-26 | 2008-01-23 | 주식회사 포스코 | The method for manufacturing thin steel sheet for deep drawing having excellent workability |
CN104959561B (en) * | 2015-07-09 | 2017-12-01 | 东北大学 | A kind of method for improving double roller continuous casting low-carbon micro steel-alloy acicular ferrite content |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08170148A (en) * | 1994-12-16 | 1996-07-02 | Nippon Steel Corp | Cold rolled steel sheet for deep drawing, excellent in uniformity of material in coil longitudinal direction and surface quality and having non-aging characteristic at ordinary temperature, and its production |
JPH09310149A (en) * | 1996-05-21 | 1997-12-02 | Kobe Steel Ltd | Cold rolled steel sheet excellent in deep drawability, spot weldability and punchability and its production |
KR20020033924A (en) * | 2000-10-31 | 2002-05-08 | 이구택 | A method for manufacturing soft cold rolled steel sheet by hot direct rolling method |
KR20020053295A (en) * | 2000-12-27 | 2002-07-05 | 이구택 | Producing method of cold rolled soft steel plate having deep drawing quality |
KR20050063983A (en) * | 2003-12-23 | 2005-06-29 | 주식회사 포스코 | Manufacturing method of steel sheet having high stength and deep drawability by minimill process |
-
2004
- 2004-09-30 KR KR1020040077812A patent/KR100605719B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08170148A (en) * | 1994-12-16 | 1996-07-02 | Nippon Steel Corp | Cold rolled steel sheet for deep drawing, excellent in uniformity of material in coil longitudinal direction and surface quality and having non-aging characteristic at ordinary temperature, and its production |
JPH09310149A (en) * | 1996-05-21 | 1997-12-02 | Kobe Steel Ltd | Cold rolled steel sheet excellent in deep drawability, spot weldability and punchability and its production |
KR20020033924A (en) * | 2000-10-31 | 2002-05-08 | 이구택 | A method for manufacturing soft cold rolled steel sheet by hot direct rolling method |
KR20020053295A (en) * | 2000-12-27 | 2002-07-05 | 이구택 | Producing method of cold rolled soft steel plate having deep drawing quality |
KR20050063983A (en) * | 2003-12-23 | 2005-06-29 | 주식회사 포스코 | Manufacturing method of steel sheet having high stength and deep drawability by minimill process |
Also Published As
Publication number | Publication date |
---|---|
KR20060028907A (en) | 2006-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101747034B1 (en) | Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same | |
CN111094612B (en) | Hot-rolled steel sheet and method for producing same | |
KR20240099374A (en) | High-strength steel with excellent weather resistance and its manufacturing method | |
KR101299896B1 (en) | METHOD FOR MANUFACTURING TENSILE STRENGTH 1.5GPa CLASS STEEL SHEET | |
EP3733905B1 (en) | High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor | |
KR101403076B1 (en) | High strength galvannealed steel sheet with excellent stretch flangeability and coating adhesion and method for manufacturing the same | |
JP4210010B2 (en) | Manufacturing method of high toughness and high strength steel | |
KR20110027496A (en) | Method for manufacturing of high strength and high formability dual phase steel and galvanized steel sheet | |
KR102031499B1 (en) | Steel plate for pressure vessel having excellent strength and impact toughness after post weld heat treatment and method for manufacturing thereof | |
KR101999000B1 (en) | High-manganese steel sheet having excellent welding strength and method for manufacturing thereof | |
KR100605719B1 (en) | Method for Manufacturing Soft Steel Strip for Deep Drawing and Soft Steel Strip Manufactured by the Method | |
KR101518588B1 (en) | Precipitation hardening steel sheet having excellent yield strength and yield ratio and method for manufacturing the same | |
JP5076480B2 (en) | High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same | |
KR20150073005A (en) | Austenitic galvanized steel sheet having excellent resistance crack of welding point and method for manufacturing the same | |
CN114134387A (en) | 1300 MPa-tensile-strength thick-specification ultrahigh-strength steel plate and manufacturing method thereof | |
KR20190020694A (en) | METHOD FOR MANUFACTURING COOLED ROLLED STEEL STRIP WITH TRIP CHARACTERISTICS CONTAINING HIGH-STRENGTH MANGEN-CONTAINING RIG | |
KR20150001469A (en) | High strength cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet | |
KR101180593B1 (en) | Method of manufacturing precipitative hardening galvannealed steel sheets with high strength | |
KR100573588B1 (en) | Manufacturing Method Of Steel Sheet Having High Stength And Deep Drawability By Minimill Process | |
CN113166896A (en) | Steel material for pressure vessel having excellent hydrogen-induced cracking resistance and method for producing same | |
JP4301045B2 (en) | High-strength steel plate, plated steel plate, and production method thereof | |
KR101400662B1 (en) | Steel for pressure vessel and method of manufacturing the same | |
KR101055818B1 (en) | Manufacturing method of high strength steel sheet for deep processing by mini mill process | |
JP3309396B2 (en) | High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same | |
KR20240027174A (en) | Cold rolled steel sheet for hot press forming and hot press forming part having excellent surface quality and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |