JPS58126440A - Starting method of air-fuel ratio feedback in electronically controlled engine - Google Patents

Starting method of air-fuel ratio feedback in electronically controlled engine

Info

Publication number
JPS58126440A
JPS58126440A JP915482A JP915482A JPS58126440A JP S58126440 A JPS58126440 A JP S58126440A JP 915482 A JP915482 A JP 915482A JP 915482 A JP915482 A JP 915482A JP S58126440 A JPS58126440 A JP S58126440A
Authority
JP
Japan
Prior art keywords
value
air
fuel ratio
engine
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP915482A
Other languages
Japanese (ja)
Other versions
JPH0515907B2 (en
Inventor
Takehisa Yaegashi
八重樫 武久
Toshimi Murai
村井 俊水
Hiroyuki Domiyo
道明 博之
Hiroki Matsuoka
松岡 広樹
Yukio Kinugasa
衣笠 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP915482A priority Critical patent/JPS58126440A/en
Publication of JPS58126440A publication Critical patent/JPS58126440A/en
Publication of JPH0515907B2 publication Critical patent/JPH0515907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve drivability, by setting an initial value of warming increase with engine temperature, reducing the value at a prescribed rate for every engine speed and starting feedback control of air-fuel ratio when the value is decreased below a preset value. CONSTITUTION:A CPU56 of an electronic control unit fetches water temperature at starting from a sensor 30 to obtain an initial value of increase from a map and store the value in a RAM56 as a warming increase value. Then interruption by a signal of every one turn of a crank angle sensor 32 subtracts a constant A in accordance with a load condition from a stored warming increase value FWL to compare the subtracted value FWLd with an air-fuel ratio feedback start value FWLf, if FWLd <=FWLf, air-fuel ratio feedback control on the basis of an output of an O2 sensor 31 is started. Accordingly, drivability is improved, and worsening of emission, caused at disorder of air-fuel ratio due to the O2 sensor under an insufficient condition of warming and at overrich due to a delay start of feedback control, can be improved.

Description

【発明の詳細な説明】 本発明はO!センサを用いた電子制御エンジンの空燃比
フィードバック開始を最適に行なうための電子制御エン
ジンの空燃比フィードバック開始方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides O! The present invention relates to a method for starting air-fuel ratio feedback of an electronically controlled engine for optimally starting air-fuel ratio feedback of the electronically controlled engine using a sensor.

電子制御エンジンにおける空燃比フィードバック制御は
、三元触媒による排気ガスの浄化率を最適に行なうため
に、触媒の転換効率が最も良い理論空燃比の附近の極め
て狭い範囲で制御するために用いられるものである。
Air-fuel ratio feedback control in electronically controlled engines is used to optimize the exhaust gas purification rate of the three-way catalyst by controlling it within an extremely narrow range around the stoichiometric air-fuel ratio where the conversion efficiency of the catalyst is highest. It is.

かかる窒燃比フィードバック制御は、通常、違転注を良
くするために暖機中等には用いられない。
Such nitrogen-fuel ratio feedback control is usually not used during warm-up or the like in order to avoid errors.

従来におゆる空燃比フィードバックの開始時点は、0!
センナの出力が成る値を越えるとき、あるいはO!セン
サの抵抗値が成る値以下になったときとしていた。
Conventionally, the starting point of air-fuel ratio feedback is 0!
When the output of Senna exceeds the value of O! It was assumed that the resistance value of the sensor was below the specified value.

しかしながら、かかる従来方法では、0!センサが十分
に機能を発揮できない状態でかつ慾焼室温厩が十分に上
昇していない状態下でフィードバック制御が開始される
ことがある。このような場合には、フィードバック開始
前よりも空燃比制御特性に乱れが生じたり、或いはエン
ジンの要求空燃比よりも過磯な混合気が供給されること
により、ハイドロカーボン等の増加を招(エミッション
の悪化、フィードバック制御の早期適用あるいは遅すぎ
による運転性の悪化等をまねいていた。
However, in this conventional method, 0! Feedback control may be started in a state where the sensor cannot fully function and the temperature level has not risen sufficiently. In such a case, the air-fuel ratio control characteristics become more disturbed than before the start of feedback, or an air-fuel mixture that is too rich than the engine's required air-fuel ratio is supplied, leading to an increase in hydrocarbons, etc. This led to deterioration in emissions and deterioration in drivability due to early or slow application of feedback control.

本発明の目的は、空燃比フィードバックの開始をエンジ
ンの状態に応じて最適に行なうことにより、上記した従
来の欠点を解消する電子制御エンジンの全燃比フィード
バック開始方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for starting full fuel ratio feedback for an electronically controlled engine that eliminates the above-described conventional drawbacks by optimally starting air fuel ratio feedback depending on the engine condition.

本発明は、暖機増量の値が予め定めた値以下になったと
きに空燃比フィードバック制御を開始するようにしたも
のである。この暖機増量の決定は、始動時のエンジン温
度により初期値を設定し、この初期匝に対しエンジン回
転ごとに所定の減算を行ない減算値が設足値に達した時
点をフィードバック制御を開始位置とする。
According to the present invention, air-fuel ratio feedback control is started when the warm-up increase value becomes equal to or less than a predetermined value. This warm-up increase is determined by setting an initial value based on the engine temperature at the time of startup, then subtracting a predetermined amount from this initial value at each engine rotation, and setting the point at which feedback control is started when the subtracted value reaches the set value. shall be.

図面を参照して本発明の詳細な説明する。The present invention will be described in detail with reference to the drawings.

第1図は本発明が通用される電子制御燃料噴射機関のシ
ステム図である。エアクリーナ1かも吸入された空気は
エアフロメータ2、絞り弁3、サージタンク4、吸気y
l?−トり、および吸気弁6を含む吸気通路12を介し
て機関本体7の燃焼¥8へ送られる。絞り弁6は運転室
の加速ペダル13に連動する。燃焼室8はシリンタヘッ
ド9、シリンダブロック10.およびピストン11によ
って区画され、混合気の燃焼によって生成された排気ガ
スは排気弁15、排気yj6− トi 6、排気多岐管
17、および排気管18を介して大気へ放出される。バ
イパス通路21は絞り弁3の上流とサージタンク4とを
接続し、バイパス流it′it¥IJ両弁22はバイパ
ス通路21の流通断面積なff1lJ御してアイドリン
ク時の機関回転速度を一定に維持する。窒素酸化物の発
生を抑制するために排気ガスを吸気系へ導く排気ガス再
循環(EGR)通路23は、排気多岐管17とサージタ
ンク4とを接続し、オンオフ弁形式の排気ガス再循環(
E G R> tv+を両弁24は短気パルスに応動し
てE G R通路23を開閉する。吸気温センサ28は
エア70メータ2内に設けられて吸気温を検出し、スロ
ットル位置センサ29は、絞り弁3の開度な検出する。
FIG. 1 is a system diagram of an electronically controlled fuel injection engine to which the present invention is applicable. The air sucked into air cleaner 1 is passed through air flow meter 2, throttle valve 3, surge tank 4, and intake y.
l? - It is sent to the combustion engine body 7 via the intake passage 12 including the intake valve 6 and the intake valve 6. The throttle valve 6 is linked to an accelerator pedal 13 in the driver's cab. The combustion chamber 8 includes a cylinder head 9, a cylinder block 10. and a piston 11, and the exhaust gas produced by the combustion of the air-fuel mixture is discharged to the atmosphere through an exhaust valve 15, an exhaust manifold 17, and an exhaust pipe 18. The bypass passage 21 connects the upstream of the throttle valve 3 and the surge tank 4, and the bypass flow it'it\IJ valves 22 control the flow cross-sectional area of the bypass passage 21, ff1lJ, to keep the engine speed constant during idle link. to be maintained. An exhaust gas recirculation (EGR) passage 23 that guides exhaust gas to the intake system in order to suppress the generation of nitrogen oxides connects the exhaust manifold 17 and the surge tank 4, and has an on-off valve type exhaust gas recirculation (EGR) passage.
If EGR>tv+, both valves 24 open and close the EGR passage 23 in response to the short pulse. The intake air temperature sensor 28 is provided in the air 70 meter 2 to detect the air intake air temperature, and the throttle position sensor 29 detects the opening degree of the throttle valve 3.

水温センサ30はシリンダブロック10に取付けられて
冷却水温度、すなわち機関温度を恢出し、敗系姉度セ/
すとしての周昶の空燃比センサ31は排気多岐管17の
集合部分に取付けられて集合部分における酸素濃度を検
出し、クランク角センサ32は、機関本体7のクランク
軸(図示せず)に結合する配電器330軸340回転か
らクランク軸のクランク角を検出し、車速センサ35は
自動変速機36の出力軸の回転速度を検出する。これら
のセンサ2.28.29.30.31.32.35の出
力、および蓄電池37の電圧は電子制御部40へ送られ
る。燃料噴射弁41は各気筒に対応して谷吸気ポート5
の近傍にそれぞれ設けられ、ポンプ42は燃料タンク4
3からの燃料通wr44を介して燃料噴射弁41へ送る
。電子制御部40は各センサからの入力信号をパラメー
タとして燃料噴射量を計算し、計算した燃料噴射量に対
応したパルス幅の電気パルスを燃料噴射弁41へ送る。
The water temperature sensor 30 is attached to the cylinder block 10 and calculates the cooling water temperature, that is, the engine temperature, and detects the failure system temperature sensor/
Shusho's air-fuel ratio sensor 31 is attached to the collecting part of the exhaust manifold 17 and detects the oxygen concentration in the collecting part, and the crank angle sensor 32 is connected to the crankshaft (not shown) of the engine body 7. The crank angle of the crankshaft is detected from the 340 rotations of the power distributor 330 shaft, and the vehicle speed sensor 35 detects the rotation speed of the output shaft of the automatic transmission 36. The outputs of these sensors 2, 28, 29, 30, 31, 32, 35 and the voltage of the storage battery 37 are sent to the electronic control unit 40. The fuel injection valve 41 is connected to the valley intake port 5 corresponding to each cylinder.
The pump 42 is provided near the fuel tank 4.
The fuel is sent to the fuel injection valve 41 via the fuel conduit wr 44 from No. 3. The electronic control unit 40 calculates the fuel injection amount using input signals from each sensor as parameters, and sends an electric pulse having a pulse width corresponding to the calculated fuel injection amount to the fuel injection valve 41.

電子制御部40はまた、バイパスKt、f制御チP22
、EGR制御弁24、自動変速機の油圧制御回路のソレ
ノイド弁45(第2図)、および点火コイル46を制御
する。点火コイル46の二次側は配電器33へ接続され
ている。チャコールキャニスタ48は、吸着剤としての
活性炭49を収容し、通路50を介して人口側のボート
を燃料タンク43の上部空間へ接続され、通路51を介
して出口側のボートをバージボート52へ接続されてい
る。パージボート52は、絞りfP3が所定開度より小
さい開度にあるとき、絞り弁3より上流に位置し、他方
、絞り弁3が所定開度以上にあるとぎ、絞り一1Ff1
3より下流に位置して吸気管負圧を受ける。開閉弁53
は、バイメタル円板を有し、機関が所定温度より低い低
温状態にあるとき、通路49を閉じて吸気系への燃料蒸
発ガスの放出を中止する。
The electronic control unit 40 also controls the bypass Kt, f control chip P22.
, the EGR control valve 24, the solenoid valve 45 (FIG. 2) of the hydraulic control circuit of the automatic transmission, and the ignition coil 46. The secondary side of the ignition coil 46 is connected to the power distributor 33. The charcoal canister 48 accommodates activated carbon 49 as an adsorbent, and connects the artificial side boat to the upper space of the fuel tank 43 via a passage 50, and connects the outlet side boat to a barge boat 52 via a passage 51. has been done. The purge boat 52 is located upstream of the throttle valve 3 when the throttle fP3 is at an opening smaller than a predetermined opening, and on the other hand, the purge boat 52 is located upstream of the throttle valve 3 when the throttle fP3 is at a predetermined opening or higher.
It is located downstream of No. 3 and receives negative pressure in the intake pipe. Open/close valve 53
has a bimetallic disk, and when the engine is at a low temperature below a predetermined temperature, it closes the passage 49 and stops releasing fuel evaporative gas into the intake system.

第2図は電子制御部40の詳細を示すブロック図である
。電子制御部40は、マイクロプロセッサから成り演算
ならびに制@な行なうCPU(中央処哩装ぼ)56、後
述するフィードバック開始処理プログラムおよびその他
のEGR制御処理等を行な5ためのプログラムが格納さ
れるaOM(リードオンリメモリ)57、データを一時
的に記1意する1tAM(ランダムアクセスメモリ)5
8、(fi関停止時にも補助′It121Xより給電を
受け、必須のデ−タの記憶を保持する不揮発性記1意素
子としての第2のRAM59、マルチブレフサ付きA/
D (アナログ/デジタル)変換器60、およびバッフ
ァ付きl10(入力/出力)器61はバス62を介して
互いに接続されている。エアフロメータ2、吸気温セン
サ28、水温センサ30、空燃比センサ31、および蓄
電池37の出力はA/Dコンバータ60へ送られる。ま
た、スロットル位置センサ29およびクランク角センサ
32の出力はI10器61へ送られ、バイパス流量制御
弁22、EGR割婢弁24、燃料噴射弁41、ソレノイ
ド弁45゜および点火コイル46はl10i61を介し
てCPU55から入力を受ける。
FIG. 2 is a block diagram showing details of the electronic control section 40. The electronic control unit 40 is composed of a microprocessor, and stores therein a CPU (central processing unit) 56 that performs calculations and control, a feedback start processing program to be described later, and programs for performing other EGR control processing, etc. aOM (read only memory) 57, 1tAM (random access memory) 5 for temporarily storing data;
8. (Second RAM 59 as a non-volatile memory element that receives power from the auxiliary 'It121X and retains the memory of essential data even when the fi function is stopped, A/
A D (analog/digital) converter 60 and a buffered l10 (input/output) device 61 are connected to each other via a bus 62. The outputs of the air flow meter 2, intake temperature sensor 28, water temperature sensor 30, air-fuel ratio sensor 31, and storage battery 37 are sent to the A/D converter 60. Further, the outputs of the throttle position sensor 29 and crank angle sensor 32 are sent to the I10 device 61, and the bypass flow control valve 22, EGR split valve 24, fuel injection valve 41, solenoid valve 45° and ignition coil 46 are sent to the I10 device 61. and receives input from the CPU 55.

以上の構成を用いて暖機増量値の決定および空燃比フィ
ードバック開始の処理を行なう例を図を示し、次に説明
する。かかる処理のためのプログラムはROM57に格
納されている。
An example of determining a warm-up increase value and starting air-fuel ratio feedback using the above configuration will be described below with reference to a diagram. A program for such processing is stored in the ROM 57.

第3図は始動時ルーチンを示すフローチャートであり、
暖機増量の177期値なセットするための処理である。
FIG. 3 is a flowchart showing the startup routine,
This is a process to set the 177th period value for warm-up increase.

ステップ301でエンジン始動時の水温゛rHWOya
−水温センナ30より取込み、ステップ302で増量初
期値WLoを求める。この増分初期値WLoはエンジン
が遭遇する最低温(例えば−30℃)かも暖機完了温度
(例えば80℃)までの温度域における増量割合いを予
めマツプとして求めておき、これを補間することにより
求める。つ〜・でステップ303において、ステップ3
02で求めた増量初期値W L oを暖機増量値FWL
としてRAM59に格納する。以後、この暖俵増蓋値F
WLが後述する処理の比較基準値として用いられる。
In step 301, the water temperature at engine start ゛rHWOya
- The water temperature is taken in from the water temperature sensor 30, and the initial increase value WLo is determined in step 302. This initial increment value WLo is obtained by calculating the increase rate in the temperature range from the lowest temperature that the engine encounters (e.g. -30°C) to the warm-up completion temperature (e.g. 80°C) in advance as a map, and interpolating this. demand. In step 303, step 3
The initial fuel increase value W L o obtained in step 02 is set as the warm-up fuel increase value FWL.
It is stored in the RAM 59 as . From now on, this warm bale increase value F
WL is used as a reference value for comparison in processing described later.

第4図は回転毎の割込ルーチンを示すフローチャートで
あり、クランクシャフトの1回転ごとに割込みをかげ、
暖機増量の減衰(減算処理)と空燃比フィードバック制
御許可のフラグを立てる処理を行なっている。ステップ
401でメモリに格納されていた暖機増fiFWLから
Aを減算する。
FIG. 4 is a flowchart showing an interrupt routine for each rotation, and an interrupt is executed for each revolution of the crankshaft.
Attenuation (subtraction processing) of the warm-up increase and processing to set a flag to permit air-fuel ratio feedback control are performed. In step 401, A is subtracted from the warm-up increase fiFWL stored in the memory.

この人は定数またはエンジンの負荷状態に応じた値とす
る。減算により求められた暖機増量F” W L dを
ステップ402でフィードバック開始値FWLfと比較
(FWLd≦FWL()する。判別の結果がFWLa>
FWLrであればステップ403に進んでフィードバッ
ク開始フラグビットf CF/B )をOとし割込ルー
チンプログラムを終了し、一方、FWLd≦FWLtが
満足されれば、ステップ404に進んで7ラグf (F
/B )を1とする。この場合のフィードバック開始値
PWLfは、理論空燃比値に近い値、例えば1.05が
選定される。フラグf(F/B)の内容が1である場合
には、更にステップ405に進んで暖機増−zpt、w
aが(FLWd≧1)の関係を満足するか否かを判定す
る。ここで1が比較の対象となるのは、暖機の増量のみ
を問題としており、減量はあり得ないことによるもので
ある。(FWL≧1)であれば以後の処理は終了し、(
FWL<1)であればステップ406に進んでFWLの
内容を1とし、処理を終了する。
This person may be a constant or a value depending on the engine load condition. In step 402, the warm-up increase amount F''WLd obtained by subtraction is compared with the feedback start value FWLf (FWLd≦FWL().The result of the determination is FWLa>
If FWLr, the process proceeds to step 403, where the feedback start flag bit f CF/B ) is set to O, and the interrupt routine program ends; on the other hand, if FWLd≦FWLt, the process proceeds to step 404, where the 7 lag f (F
/B) is set to 1. In this case, the feedback start value PWLf is selected to be a value close to the stoichiometric air-fuel ratio value, for example 1.05. If the content of the flag f (F/B) is 1, the process further advances to step 405 and warm-up increase -zpt,w
It is determined whether a satisfies the relationship (FLWd≧1). The reason why 1 is compared here is that only the increase in warm-up amount is considered as a problem, and the reduction in amount is not possible. If (FWL≧1), the subsequent processing ends, and (
If FWL<1), the process proceeds to step 406, sets the content of FWL to 1, and ends the process.

第5図は空燃比制御ルーチンを示すフローチャートであ
り、M4図に示した処理結果を用いてオープン制御(フ
ィードバックによらない制御)またはフィードバック制
御のいずれかを選択する処理を示している。ステップ5
01によって第4図のステップ404が成立したか否か
を判定し、フラグf (F/B )が1であればステッ
プ502に進んで空燃比フィードバック制御を開始する
。また、フラグf CF/B )がOであればオープン
制御を継続する。
FIG. 5 is a flowchart showing the air-fuel ratio control routine, and shows the process of selecting either open control (control not based on feedback) or feedback control using the processing results shown in FIG. M4. Step 5
01, it is determined whether or not step 404 in FIG. 4 is established. If the flag f (F/B ) is 1, the process proceeds to step 502 and air-fuel ratio feedback control is started. Further, if the flag f CF/B ) is O, open control is continued.

第6図および第7図はエンジン回転状態に応じた暖機増
量FWLの変化を示したものである。第6図(a)の如
(にエンジン(E/G)回転速度が一定の場合(オート
チョークで暖機中の場合#)には、第6図(b)のよう
に−足の波設率でフィードバック開始が成され、−万、
第7図(a)の如(にエンジン回転速度が高い側で変化
した場合には、第7図(b)の如くにFWLの波設特性
に変化が生じ、フィードバック開始の時点が早くなる。
FIGS. 6 and 7 show changes in the warm-up increase FWL depending on the engine rotational state. When the engine (E/G) rotational speed is constant (when the engine is warmed up with auto choke) as shown in Figure 6 (a), the leg wave pattern is as shown in Figure 6 (b). Feedback initiation is performed at a rate of −10,000,
When the engine rotational speed changes on the high side as shown in FIG. 7(a), the FWL wave setting characteristics change as shown in FIG. 7(b), and the feedback start time becomes earlier.

なお、本発明の実施例においては、暖機増量の初期値を
設定するにあたり、始動時の冷却水温を取り込んだが、
他に、シリンダヘッドの温度、シリンダブロックの温度
等を用いることができる。
In addition, in the embodiment of the present invention, when setting the initial value of the warm-up increase, the cooling water temperature at the time of startup was taken in.
In addition, the temperature of the cylinder head, the temperature of the cylinder block, etc. can be used.

また、水温THWに対し最小FWLを設定し、該最小F
WLより減衰しないようにしたFWL値に基づいて空燃
比フィードバックを開始するようにしても良い。
In addition, the minimum FWL is set for the water temperature THW, and the minimum FWL is set for the water temperature THW.
Air-fuel ratio feedback may be started based on a FWL value that is not attenuated more than WL.

本発明によれば、空燃比フィードバックの開始を最適に
することができるので、運転性を改善し、暖機不充分の
状態での0!セ/すによる空燃比荒れ及びフィードバッ
ク開始遅れによってオーバリッチになった際に生じるエ
ミッション悪化を改善することができる。
According to the present invention, since the start of air-fuel ratio feedback can be optimized, drivability is improved and 0! It is possible to improve the deterioration in emissions that occurs when the engine becomes overrich due to air-fuel ratio roughness and feedback start delay caused by the fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される電子制御燃料噴射機関のシ
ステム図、第2図は電子制御部40の詳細を示すブロッ
ク図、第3図は始動時ルーチンを示すフローチャート、
第4図は回転毎の割込ルーチンを示すフローチャート、
第5図は窒燃比制御ルーチンを示すフローチャート、第
6図(a)、(b)はエンジン回転速度が一足時の暖機
増量変化図、第7図(a)、(b)はエンジン回転数変
速時の暖機増量変化図である。 2.28.29.30,31.32.35・・・センサ
、(1υ 40・・・電子制御部、41・・・燃料噴射弁、45・
・・ソレノイド弁、46・・・点火コイル、56・・・
CPU、57・・・ROIす、58.59・・・RA 
M 。 60・・・A/D変換器、61・・・i10器、62・
・・バス。 代理人  鵜 沼 辰 之 (ほか2名) (12)
FIG. 1 is a system diagram of an electronically controlled fuel injection engine to which the present invention is applied, FIG. 2 is a block diagram showing details of the electronic control unit 40, and FIG. 3 is a flowchart showing a startup routine.
FIG. 4 is a flowchart showing the interrupt routine for each rotation.
Figure 5 is a flowchart showing the nitrous fuel ratio control routine, Figures 6 (a) and (b) are diagrams of warm-up increase changes when the engine rotation speed is one foot, and Figures 7 (a) and (b) are engine rotation speeds. FIG. 6 is a diagram showing a change in warm-up amount during gear shifting. 2.28.29.30, 31.32.35...Sensor, (1υ 40...Electronic control unit, 41...Fuel injection valve, 45...
...Solenoid valve, 46...Ignition coil, 56...
CPU, 57...ROI, 58.59...RA
M. 60... A/D converter, 61... i10 device, 62.
··bus. Agent Tatsuyuki Unuma (and 2 others) (12)

Claims (1)

【特許請求の範囲】[Claims] (1)  オープン制御モードと、0!センサの出力に
基づいて空燃比フィードバック制御を行なうフィードバ
ック制御との切換えをエンジンの運転状態に応じて実行
し燃料噴射を最適に行なう電子制御エンジンにおいて、
エンジン温度に基づいて暖機増量の初期値を設定し、こ
の初期値をエンジンの回転ごとに所定の割合いで減衰さ
せ、その値が予め定めた設定値以下になったとぎに前記
フィードバック制御を開始することを特徴とする電子制
御卸エンジンの窒燃比フィードバック開始方法。
(1) Open control mode and 0! In an electronically controlled engine that performs optimal fuel injection by switching between feedback control and air-fuel ratio feedback control based on the output of a sensor, depending on the operating state of the engine,
An initial value for the warm-up increase is set based on the engine temperature, this initial value is attenuated at a predetermined rate for each engine rotation, and the feedback control is started when the value becomes equal to or less than a predetermined set value. A method for starting nitrous fuel ratio feedback in an electronically controlled wholesale engine, characterized in that:
JP915482A 1982-01-22 1982-01-22 Starting method of air-fuel ratio feedback in electronically controlled engine Granted JPS58126440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP915482A JPS58126440A (en) 1982-01-22 1982-01-22 Starting method of air-fuel ratio feedback in electronically controlled engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP915482A JPS58126440A (en) 1982-01-22 1982-01-22 Starting method of air-fuel ratio feedback in electronically controlled engine

Publications (2)

Publication Number Publication Date
JPS58126440A true JPS58126440A (en) 1983-07-27
JPH0515907B2 JPH0515907B2 (en) 1993-03-02

Family

ID=11712694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP915482A Granted JPS58126440A (en) 1982-01-22 1982-01-22 Starting method of air-fuel ratio feedback in electronically controlled engine

Country Status (1)

Country Link
JP (1) JPS58126440A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453034A (en) * 1987-08-17 1989-03-01 Mazda Motor Electronic fuel injection device for engine
JPH02163433A (en) * 1988-12-15 1990-06-22 Mazda Motor Corp Air-fuel ratio controller for engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218534A (en) * 1975-08-05 1977-02-12 Nissan Motor Co Ltd Air fuel ration control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218534A (en) * 1975-08-05 1977-02-12 Nissan Motor Co Ltd Air fuel ration control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453034A (en) * 1987-08-17 1989-03-01 Mazda Motor Electronic fuel injection device for engine
JPH02163433A (en) * 1988-12-15 1990-06-22 Mazda Motor Corp Air-fuel ratio controller for engine

Also Published As

Publication number Publication date
JPH0515907B2 (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JPH0442533B2 (en)
JPH0251052B2 (en)
JPH03199660A (en) Exhaust gas recirculation device of internal combustion engine
JPH0557420B2 (en)
JP2503474B2 (en) Air-fuel ratio control device
JPS58126440A (en) Starting method of air-fuel ratio feedback in electronically controlled engine
US6390083B2 (en) Control apparatus for internal combustion engine
JPS593135A (en) Control of idle revolution number of internal- combustion engine
JPH0536622B2 (en)
JPS59203849A (en) Method of controlling idling speed
JPS58144633A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH0573907B2 (en)
JP2557806B2 (en) Fuel vapor page control method
JP2019049219A (en) Engine system
JPS6231180B2 (en)
WO2023181224A1 (en) Method and device for controlling stopping of engine
JPH057546B2 (en)
JPS593134A (en) Control of idle revolution number of internal- combustion engine
JPS6027757A (en) Fuel cut controlling method for electronically controlled fuel injection type internal- combustion engine for vehicle
JPS58195030A (en) Fuel cutting-off method of automotive electronic control fuel injection internal-combustion engine
JP3862934B2 (en) Evaporative fuel processing device for internal combustion engine
JPH0559258B2 (en)
JPH059620B2 (en)
JPS60164652A (en) Method of purging fuel vapor
JPS59229022A (en) Fuel injection control method for engine