JPS58126003A - Diamond tool and manufacture thereof - Google Patents

Diamond tool and manufacture thereof

Info

Publication number
JPS58126003A
JPS58126003A JP937482A JP937482A JPS58126003A JP S58126003 A JPS58126003 A JP S58126003A JP 937482 A JP937482 A JP 937482A JP 937482 A JP937482 A JP 937482A JP S58126003 A JPS58126003 A JP S58126003A
Authority
JP
Japan
Prior art keywords
diamond
conductive
single crystal
resistivity
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP937482A
Other languages
Japanese (ja)
Other versions
JPH0317601B2 (en
Inventor
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP937482A priority Critical patent/JPS58126003A/en
Publication of JPS58126003A publication Critical patent/JPS58126003A/en
Publication of JPH0317601B2 publication Critical patent/JPH0317601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P5/00Setting gems or the like on metal parts, e.g. diamonds on tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

PURPOSE:To accurately and efficiently machine a material into a specified form by electrospark machining by using an artificial diamond grain having conductivity. CONSTITUTION:A conductive diamond having resistance below 10<3>OMEGA.cm is usable. A machining tool is obtained by bonding one or a plurality of said diamond (s) 1 to a conductive holder 3, using a conductive bonding material 2. Using an electrospark machine on the market, for instance, voltage is applied to the diamond itself of said tool and an electrode of the electrospark machine. A material is machined into a specified form by spark erosion of diamond which is produced by transient arc discharge, which occurs repeatedly between the electrode and the surface of a diamond.

Description

【発明の詳細な説明】 本発明は導電性を有する合成ダイヤモンド粒を用いて放
電加工により所定の形状を正確に且つ高能率で加工し得
るダイヤモンド工具を提供する。ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a diamond tool that can accurately and efficiently machine a predetermined shape by electrical discharge machining using synthetic diamond grains having electrical conductivity. It is something.

ダイヤモンド工具は使用するダイヤモンドの大きさによ
り大別される。一般にダイヤモンド粒(ポーラ)と呼ば
れる大型の単結晶を使用する工具と微細なダイヤモンド
粉末(パウダー)を使用する工具とがあるtポーラは一
般的には約1/180カラツト以上で直径約0.7jL
l 以上の天然に産出する原石を使用するものである。
Diamond tools are broadly classified depending on the size of the diamond used. Generally, there are tools that use large single crystals called diamond grains (Polar) and tools that use fine diamond powder (powder).Polar is generally about 1/180 carat or more and about 0.7JL in diameter.
This product uses naturally occurring rough stones of more than 100,000 ml.

これに対して粉末は天然原石を粉砕したものと、人工的
に合成された粉末がある。近年では超高圧・高温下での
ダイヤモンド合成技術が進み、工業用に使用される直径
0.7B以下の粉末の大部分が合成ダイヤモンドに置換
されている。しかし乍ら0.7B以上の大型単結晶ダイ
ヤモンドを工業的に合成することは困難であって、実験
室的には金縛に成功しているが末だ工業化はされていな
い段階である。
Powders, on the other hand, include crushed natural stones and artificially synthesized powders. In recent years, diamond synthesis technology under ultra-high pressure and high temperature has progressed, and most of the industrially used powder with a diameter of 0.7 B or less has been replaced with synthetic diamond. However, it is difficult to industrially synthesize large single-crystal diamonds with a size of 0.7 B or more, and although success has been achieved in the laboratory, industrialization has not yet been achieved.

発明者等はこの従来天然原石のみであったダイヤモンド
ポーツの工業的合成技術の開発に取り組み発明者等の先
願(特願昭54−141918.54−153186、
 55−2818. 55−26651.55−444
29)に開示した様な合成技術を開発し、工業化の見通
しを得た。本発明はこの大型単結晶の合成技術により始
めて可能になったものである。
The inventors worked on developing an industrial synthesis technology for Diamondports, which had previously been made only from natural rough stones, and published their earlier application (Japanese Patent Application No. 54-141918.54-153186,
55-2818. 55-26651.55-444
29), and obtained prospects for industrialization. The present invention was first made possible by this large single crystal synthesis technology.

ダイヤモンドは現存する物質中最高の硬度を有している
。また殆んどのものは1Q16Ω・傷の抵抗率を有する
電気絶縁体である。天然原石中にも極く希に1040・
m以下の抵抗率を有する半導体ダイヤモンドが存在する
ことが知られている。しかし産出量が極めて少ない為に
これを工業的用途、特にダイヤモンド工具に応用した例
は無いようである。
Diamond has the highest hardness of all existing materials. Also, most of them are electrical insulators with a resistivity of 1Q16Ω/flaw. 1040 is extremely rare among natural gemstones.
It is known that semiconductor diamonds exist that have a resistivity of less than m. However, since the production amount is extremely small, there seems to be no example of its application for industrial purposes, especially for diamond tools.

前記した如く、ダイヤモンドは最高の硬度を有する物質
であり、これを利用して機械加工用のバイト、ドレッサ
ー、伸線ダイス、掘削ビット等の多方面にダイヤモンド
工具が利用さ、れている。ボーンを使用する工具では例
えばサーフエース・セットのビットや一部のドレッサー
等の如く原石を鋼等の支持体に接合するのみで使用する
ものもあるが、ダイヤモンドバイト、ダイス、大部分の
ドレッサご、ガラス切や等は一個又は複数個のダイヤモ
ンド粒を支持体に固定すると共にこれを成型加工して所
定形状を付与して使用するものである。
As mentioned above, diamond is a substance with the highest hardness, and diamond tools are used in a wide variety of applications, such as cutting tools for machining, dressers, wire drawing dies, and drilling bits. Some tools that use bones, such as Surf Ace set bits and some dressers, are used only to join the rough stone to a support such as steel, but diamond bits, dies, and most dressers use bones. , a glass cutter, etc. are used by fixing one or more diamond grains to a support and molding them to give them a predetermined shape.

ダイヤモンドを加工する方法は目下のところダイヤモン
ドの粉末を用いて研摩するか、もしくはダイヤモンド砥
石を用いて研削する方法が主体である。ダイヤモンド・
より高硬度の物質が存在しないために、一般の材料の加
工の如く、より高硬度の工具材を用いて加工することは
不可能である。ダイヤモンドをダイヤモンドで加工する
方法は極めて非能率的で、長時間を必要とする。このた
め近年例えばダイヤモンドダイスの穴明は加工にレーザ
ー加工が適用され、加工時間が大巾に短縮された。しか
し乍らレーザー加工は一定径以上の穴明は加工には有効
であるが、例えば直径0.1B以下の微細穴の加工は困
難であり、又ある所定の曲面を付与するような加工には
適用できない。
Currently, the main methods for processing diamonds are polishing them using diamond powder or grinding them using a diamond grindstone. diamond·
Since there is no substance with higher hardness, it is impossible to process using a tool material with higher hardness, as in the case of machining ordinary materials. Diamond-on-diamond processing is extremely inefficient and takes a long time. For this reason, in recent years, for example, laser processing has been applied to the drilling of diamond dies, and the processing time has been greatly shortened. However, although laser processing is effective for drilling holes with a certain diameter or more, it is difficult to process micro holes with a diameter of 0.1B or less, and it is difficult to process holes with a certain predetermined curved surface. Not applicable.

本発明はダイヤモンドそのものの特性を変えることによ
ってあらゆるダイヤモンド工具の加工法を画期的に高能
率化することを目的とし、従来加工が困難であった形状
をも付与することを可能とするものである。
The purpose of the present invention is to dramatically improve the efficiency of all diamond tool processing methods by changing the characteristics of diamond itself, and to make it possible to create shapes that were previously difficult to process. be.

本発明に使用するダイヤモンドは108Ω・m以下の抵
抗率を有する導電性を有するダイヤモンドである。この
ダイヤモンドを1ケ又は複数個導電性を有する結合材を
使用して導電性を有する支持体に接合して工具とする。
The diamond used in the present invention is a conductive diamond with a resistivity of 10 8 Ω·m or less. One or more of these diamonds are bonded to a conductive support using a conductive bonding material to form a tool.

これを例えば市販の放電加工機を用いてダイヤモンドそ
のものと電極の間に電圧を加え電極とダイヤモンドの表
面に繰返し過渡アーク放電を発生させることにより生ず
るダイヤモンドのスパークエロージョンによって所定の
形状に加工するものである。
For example, using a commercially available electric discharge machine, a voltage is applied between the diamond itself and an electrode to repeatedly generate a transient arc discharge on the surface of the electrode and the diamond, which causes spark erosion of the diamond to be machined into a predetermined shape. be.

本発明に使用するダイヤモンドは合成時に硼素を含有さ
せることによって得られる。硼素はダイヤモンドの導電
性を決定する添加物の一つであるが、その添加量と抵抗
率の正確な関係は目下のところよく分っていない。
The diamond used in the present invention is obtained by incorporating boron during synthesis. Boron is one of the additives that determines the conductivity of diamond, but the exact relationship between the amount added and resistivity is currently not well understood.

実験によると101’Ω・m以下の抵抗率を有する合成
ダイヤモンドは少くともl原子ppmの硼素を含有する
ものであった。
Experiments have shown that synthetic diamond with a resistivity of less than 101' Ω·m contains at least 1 ppm of boron.

抵抗率の上限は実際に放電加工を行なってみて決定され
た。10’Ω・個 を越える抵抗率を示すダイヤモンド
は実質的な速度で放電加工することは不可能であった。
The upper limit of resistivity was determined by actually performing electrical discharge machining. Diamond, which exhibits a resistivity exceeding 10' ohms, cannot be electrically discharged at a substantial speed.

本発明によるとダイヤモンドそのものを導電性にするこ
とにより、放電加工することが可能となり、従来の研摩
に、よる機械的加工方法に比較して飛躍的に加工能率を
向上せしめることが可能であり、更に複雑な形状や凹曲
面を有する工具など従来の方法では製作できなかった工
具が容易に得られる。
According to the present invention, by making diamond itself conductive, electrical discharge machining becomes possible, and machining efficiency can be dramatically improved compared to conventional mechanical machining methods that rely on polishing. Furthermore, tools that cannot be produced using conventional methods, such as tools with complex shapes or concave curved surfaces, can be easily obtained.

実施例1゜ 0.8 カララドの直径約5鵡の合成ダイヤモンド単結
晶を用いてフォームドドレッサーを製作した。
Example 1 A foamed dresser was manufactured using a synthetic diamond single crystal of Colorad with a diameter of about 5 mm.

このダイヤモンドは超高圧・高温装置を用いて合成され
たもので約5原子ppmの硼素を含有しており、その抵
抗率は約10jΩ・国 である。この単結晶をCut 
APt Fe  の混合粉末結合材を用いてホッドブレ
スにより鋼製の支持体に固定した。ワイヤーカット放電
加工機を用いて第1図に示した如き凹曲面を有するフォ
ームドドレッサーに加工した。
This diamond was synthesized using ultra-high pressure and high temperature equipment, contains approximately 5 atomic ppm of boron, and has a resistivity of approximately 10 jΩ·mm. Cut this single crystal
It was fixed to a steel support with a hod brace using a mixed powder binder of APt Fe. A formed dresser having a concave curved surface as shown in FIG. 1 was machined using a wire-cut electrical discharge machine.

従来このような形状のダイヤモンド重石ドレッサーは製
造が困難であったものである。
Conventionally, it has been difficult to manufacture a diamond weight dresser with such a shape.

実施例2゜ 1カラツトの直径約6n抵抗率約800・儂の合成ダイ
ヤモンド単結晶を用いてダイヤモンドバイトを製作した
。刃先形状は第2図に示した。ダイヤモンドの鋼シャン
クへの固定は実施例1と同様に行ない刃先Rに合せた形
状を有するkp−W電極を用いて放電加工により刃先を
形成した。従来のダイヤモンド粉末による刃先研摩・成
型には約50時間を要したが、本発明のバイトは5時間
で加工出来た。
Example 2 A diamond cutting tool was manufactured using a synthetic diamond single crystal with a diameter of about 6 mm and a resistivity of about 800 mm. The shape of the cutting edge is shown in Figure 2. The diamond was fixed to the steel shank in the same manner as in Example 1, and the cutting edge was formed by electric discharge machining using a kp-W electrode having a shape matching the cutting edge R. Conventional cutting edge polishing and shaping using diamond powder took about 50 hours, but the cutting tool of the present invention could be processed in 5 hours.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の応用例の1つで凹曲面を有する重石フ
ォームドドレッサー、第2図は他の例でダイヤモンドバ
イトである。いずれも図中1は導電性を有するダイヤモ
ンドで所定形状に放電加工されたもの。2はダイヤモン
ドを支持体に固定する導電性の結合材、8は鋼等の支持
体である。
FIG. 1 shows one application example of the present invention, which is a weight-formed dresser having a concave curved surface, and FIG. 2 shows another example, which is a diamond cutting tool. In each figure, numeral 1 is a conductive diamond that has been electrically discharge-machined into a predetermined shape. 2 is a conductive bonding material for fixing the diamond to a support, and 8 is a support such as steel.

Claims (3)

【特許請求の範囲】[Claims] (1)抵抗率が1080・a 以下の導電性を有するダ
イヤモンド単結晶の1ケ又は複数個を導電性の接合材を
用いて導電性の支持体に固定してなり、放電加工により
ダイヤモンド単結晶を所定形状に加工してなることを特
徴とするダイヤモンド工具。
(1) One or more conductive diamond single crystals with a resistivity of 1080·a or less are fixed to a conductive support using a conductive bonding material, and the diamond single crystal is formed by electrical discharge machining. A diamond tool characterized by being processed into a predetermined shape.
(2)硼素を1原子PPM以上含有する人工合成された
抵抗率が1080・1以下のダイヤモンド単結晶を用い
る特許請求の範囲(1)項記載のダイヤモンド工具。
(2) The diamond tool according to claim (1), which uses an artificially synthesized diamond single crystal containing 1 atomic ppm or more of boron and having a resistivity of 1080·1 or less.
(3)抵抗率が1080・1以下のダイヤモンド単結晶
を導電性の支持体に導電性の接合材を用いて接合固定し
、電極とダイヤモンド単結晶間に過渡アーク放電を繰返
し発生させることによりダイヤモンド単結晶の表面を加
工除去することを特徴とする所定形状を有するダイヤモ
ンド工具の製造方法。
(3) A diamond single crystal with a resistivity of 1080·1 or less is bonded and fixed to a conductive support using a conductive bonding material, and a transient arc discharge is repeatedly generated between the electrode and the diamond single crystal. A method for manufacturing a diamond tool having a predetermined shape, which comprises machining and removing the surface of a single crystal.
JP937482A 1982-01-22 1982-01-22 Diamond tool and manufacture thereof Granted JPS58126003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP937482A JPS58126003A (en) 1982-01-22 1982-01-22 Diamond tool and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP937482A JPS58126003A (en) 1982-01-22 1982-01-22 Diamond tool and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58126003A true JPS58126003A (en) 1983-07-27
JPH0317601B2 JPH0317601B2 (en) 1991-03-08

Family

ID=11718682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP937482A Granted JPS58126003A (en) 1982-01-22 1982-01-22 Diamond tool and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58126003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207334A (en) * 2008-06-09 2008-09-11 Allied Material Corp Single crystal diamond cutting tool and its manufacturing method
JP2017047506A (en) * 2015-09-02 2017-03-09 株式会社ノリタケカンパニーリミテド Diamond dresser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207334A (en) * 2008-06-09 2008-09-11 Allied Material Corp Single crystal diamond cutting tool and its manufacturing method
JP4688110B2 (en) * 2008-06-09 2011-05-25 株式会社アライドマテリアル Single crystal diamond tool and method for manufacturing the same
JP2017047506A (en) * 2015-09-02 2017-03-09 株式会社ノリタケカンパニーリミテド Diamond dresser

Also Published As

Publication number Publication date
JPH0317601B2 (en) 1991-03-08

Similar Documents

Publication Publication Date Title
EP0114497B1 (en) Abrasive compacts and method of making them
EP0389800B1 (en) Method for producing polycrystalline compact tool blanks with flat carbide support/diamond or CBN interfaces
US3767371A (en) Cubic boron nitride/sintered carbide abrasive bodies
US5026960A (en) Chip breaker for polycrystalline CBN and diamond compacts
CN109822102B (en) Preparation method of fine-grained diamond saw blade
US4448656A (en) Electrolytic/electric discharge machining of a non-conductive workpiece
CN108177030A (en) A kind of mirror grinding method of brait grinding wheel
US3078559A (en) Method for preparing semiconductor elements
JPH09254042A (en) Grinding wheel for cutting groove and manufacture thereof
JPS58126003A (en) Diamond tool and manufacture thereof
US4694710A (en) Method of making a blank of a drill bit
US5193311A (en) Tools for working non-metallic hard materials
US2412644A (en) Method of manufacturing coated articles
JPS61173851A (en) Method of grinding internal surface
JPS61265207A (en) Electrodeposited milling tool
WO2006123353A1 (en) A metal punch used in the manufacture of artificial stones, the method and apparatus for making such punch
JP3601953B2 (en) Core drill with seamer
EP0257899B1 (en) Cubic boron nitride abrasive body
EP0405640B1 (en) Tools for working non-metallic hard materials
CN211331681U (en) Electric spark grinding combined machining tool
SU1178548A1 (en) Method of manufacturing diamond-containing articles of complicated shape
JPS63501800A (en) Compression sintering method for producing metal-bonded diamond tools and apparatus for carrying out this method
JPS58202718A (en) Mold machining method of wire
UA73808C2 (en) Method for regeneration of diamond tool
JPH058127A (en) Method for manufacturing surface finishing tool