JP3601953B2 - Core drill with seamer - Google Patents

Core drill with seamer Download PDF

Info

Publication number
JP3601953B2
JP3601953B2 JP26452297A JP26452297A JP3601953B2 JP 3601953 B2 JP3601953 B2 JP 3601953B2 JP 26452297 A JP26452297 A JP 26452297A JP 26452297 A JP26452297 A JP 26452297A JP 3601953 B2 JP3601953 B2 JP 3601953B2
Authority
JP
Japan
Prior art keywords
seamer
drill
abrasive grains
base metal
core drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26452297A
Other languages
Japanese (ja)
Other versions
JPH1199516A (en
Inventor
珠美 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Noritake Super Abrasive Co Ltd
Original Assignee
Noritake Co Ltd
Noritake Super Abrasive Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Noritake Super Abrasive Co Ltd filed Critical Noritake Co Ltd
Priority to JP26452297A priority Critical patent/JP3601953B2/en
Publication of JPH1199516A publication Critical patent/JPH1199516A/en
Application granted granted Critical
Publication of JP3601953B2 publication Critical patent/JP3601953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/04Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs
    • B28D1/041Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs with cylinder saws, e.g. trepanning; saw cylinders, e.g. having their cutting rim equipped with abrasive particles

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス板などの硬脆材料に穴をあける際に、穴をあけると同時に穴のエッジ部分の面取り加工を行うことのできるシーマ付コアドリルに関する。
【0002】
【従来の技術】
ガラス板に穴あけ加工を行った場合、穴のエッジ部分にチッピングが発生するため、その対策として、シーマと呼ばれる面取り工具を備えたコアドリルを使用して、穴あけ加工と同時にエッジ部分の面取り加工を行っている。
【0003】
従来より、一般的に使用されているシーマ付コアドリルとして、例えば、図3(a)に示すようなものがある。図3(a)に示すシーマ付コアドリル30は、シーマ部31とドリル部32とを別々に製造した後、組み合わせて構成したものである。ところが、このシーマ付コアドリル30の場合、穴あけ加工を繰り返すうちにコアドリル部32の側面が磨耗して、シーマ部31との隙間33が大きくなり、この隙間33に加工中に発生した切屑のガラス粉末などが詰まりやすくなるため、チッピングが発生する原因となっている。
【0004】
このようなチッピングの発生を防止するため、図3(b)に示すようなシーマ付コアドリル34が開発されている。シーマ付コアドリル34もドリル部35とシーマ部36とを別々に製造して組み合わせるものであるが、図3(b)に示すような構造の場合、ドリル部35とシーマ部36との嵌合が難しいため、加工に長時間を要するだけでなく、歩留りも悪い。
【0005】
また、ドリル部とシーマ部との隙間発生を防止することのできるダイヤモンドシーマが実開昭63−12875号公報などに開示されているが、このシーマにおいても、ドリル部の側面が磨耗した場合、隙間が生じやすく、取付けに時間がかかるという問題がある。
【0006】
そこで、このような問題を解決するため、図3(c)に示すように、ドリル部38とシーマ部39とを一体成形方法によって製作したシーマ付コアドリル40が開発されている。ここで、一体成形方法とは、ドリル部とシーマ部を保持する台金37を一つにし、ドリル部38およびシーマ部39を構成する砥石を同時に成形する方法である
【0007】
【発明が解決しようとする課題】
ところが、図3(c)に示すようなシーマ付コアドリル40の場合、ドリル部38の外周側にシーマ部39を形成するために台金37の先端部分が階段状となっている。したがって、製造工程においてドリル部38とシーマ部39とを一体成形するためには複雑な形状をした金型が必要となり、金型製造などに多くの労力を要している。
【0008】
また、ドリル部38とシーマ部39とは、それぞれの部分による加工目的が相違するので、それぞれの部分を構成する砥粒の粒度が異なっているが、シーマ付コアドリル40の場合、先端部分が階段状をした一つの台金に対して、シーマ部およびドリル部を形成する粒度の異なる砥粒を含有したボンドを横並びに充填して同時成形するため境界がつきにくく、細かい砥粒で構成されたシーマ部39に、ドリル部38を構成する粗い砥粒が混入することがある。このように、ドリル部38を構成する粗い砥粒がシーマ部39に混入したシーマ付コアドリルでガラス板の穴あけ加工を行った場合、面取り部にスクラッチや大きなチッピングが発生し、加工不良となる。
【0009】
そこで、本発明が解決しようとする課題は、複雑な金型を必要とせず、砥粒の混入がなく、穴あけ加工中のチッピング防止機能に優れたシーマ付コアドリルを提供することにある。
【0010】
【課題を解決するための手段】
前記課題を解決するため、本発明のシーマ付コアドリルは、先端部分が円筒形状をした台金と、台金の先端面に台金の軸方向に積層状態に形成されたシーマ部およびドリル部とを備え、シーマ部にドリル部の外径より拡径した斜面部を設けたことを特徴とする。このような構成により、台金の先端面にその軸方向に積層状態にシーマ部およびドリル部が形成され、シーマ部にはドリル部の外径より拡径した斜面部を備えた構造となるため、ドリル部によって穴あけ加工を行い、それと並行して、斜面部による面取り加工を行うことができる。
【0011】
また、本発明のシーマ付コアドリルでは、シーマ部およびドリル部が、台金のの軸方向に積層して形成されているので、その境界面は、その軸方向を横切る位置関係にある。したがって、穴あけ加工の繰り返しによってドリル部の外周面が磨耗して外径が減少した場合でも、ドリル部とシーマ部との境界面に隙間が発生することがなく、ガラスの切屑などが隙間に詰まってチッピングなどを発生させることがない。
【0012】
さらに、シーマ部およびドリル部は台金の先端面に積層状態に形成された構造であるため、図3(c)に示すシーマ付コアドリル40のように台金37の先端部分を階段状などにする必要がなく、製造工程においては、複雑な金型を必要としない。また、本発明のシーマ付コアドリルの場合、製造工程において、金型内に保持された台金の先端面にシーマ部用砥粒を含有するボンドを充填、加圧してシーマ原形部を形成した後、シーマ原形部と密着するようにドリル部用砥粒を含有するボンドを充填、加圧してドリル原形部を形成し、その後、焼結を行うことができるので、ドリル原形部とシーマ原形部との境界が明瞭となり、両者間で砥粒の混入が発生しない。
【0013】
なお、図3(c)に示すシーマ付コアドリル40の場合は、先端が階段状をした一つの台金に対して、シーマ部およびドリル部を構成する粒度の異なる砥粒を含有したボンドを横並びに充填して同時成形しなければならないため砥粒の混入が発生することがあるが、本発明の場合は、先端が平坦な形状の台金の上にシーマ部を構成する砥粒を含有するボンドを充填した後、加圧することで明瞭な境界が形成されるため、このあと、ドリル部を構成する砥粒を含有するボンドを充填して加圧を行っても砥粒の混入が発生しない。
【0014】
一方、本発明のシーマ付コアドリルでは、シーマ部にドリル部の外径より拡径した斜面部を設けた構造であるが、これは、焼結が完了して形成されたドリル原形部、シーマ原形部に、放電加工や研磨加工などの機械加工を施すことによって形成することができる。このように、焼結後、機械加工を施すことにより所定形状のシーマ付コアドリルを形成するので、成形工程において、最終製品形状に近い複雑な金型を必要とせず、金型も1種類ですむ。また、焼結後にシーマ原形部、ドリル原形部に研磨加工、放電加工などを施すことにより、寸法精度や砥石の目立ち状態などが優れたシーマ付コアドリルを形成することができる。
【0015】
なお、放電加工の場合は被加工物に圧力がかからず、ボンドの物性を変えることなく広範囲に渡る形状出しを容易に行うことができ、研磨加工の場合は形状出しを比較的短時間で行うことができる。ここで、形状出しとは、シーマ原形部、ドリル原形部をシーマ付コアドリルとしての最終形状に整えるための加工工程をいう。
【0016】
さらに、本発明のシーマ付コアドリルでは、ドリル部を構成する砥粒の粒度を#80〜#120、シーマ部を構成する砥粒の粒度を#140〜#200とすることができる。シーマ付コアドリルにおいては、ドリル部とシーマ部とは加工目的が違うので、ドリル部とシーマ部を構成する砥粒の粒度をそれぞれ異なったものとする必要がある。すなわち、ドリル部の磨耗速度とシーマ部の磨耗速度とが一致するように、ドリル部およびシーマ部を構成する砥粒の粒度を調整する必要があるが、各部の粒度をこのような範囲とすることにより、ガラス板などの穴あけ加工を繰返し行った場合、ドリル部およびシーマ部が同等に磨耗していくため、いわゆる片減りがなくなり、寿命が均一化する。
【0017】
なお、ドリル部を構成する砥粒の粒度が#80以粗である場合は加工速度は速くなるがシーマ部では除去できないカケが発生する。また、#120以細の場合は加工速度が遅くなり、磨耗も大となるためシーマ部とのバランスが崩れるなどの問題が発生しやすい。また、シーマ部を構成する砥粒の粒度が#140以粗である場合は面取り部の品位が低下し、#200以細である場合は加工品位は向上するが磨耗が大となりドリル部とのバランスが崩れるなどの問題が発生する傾向がある。
【0018】
また、本発明のシーマ付コアドリルでは、ドリル部の集中度を、シーマ部の集中度より大としたことを特徴とする。ここで、集中度とは、砥粒層部の体積1cm当たりに占めるダイヤモンドまたはCBNの含有量が4.4ct(=0.2g)であるときを100として比率で表したものである。ドリル部およびシーマ部の集中度が同一である場合、加工作業中、シーマ部よりドリル部の磨耗速度の方が大となり片減りが生じるが、ドリル部の集中度をシーマ部の集中度より大とすることにより、ドリル部およびシーマ部の磨耗速度が同等となるため、片減りがなくなり、寿命を均一化することができる。
【0019】
この場合、ドリル部の集中度をシーマ部の集中度より10〜50程度大とすることが望ましく、これによって、加工作業を繰り返し行った場合でも、ドリル部およびシーマ部は同等に磨耗し片減りが発生しなくなり、寿命が均一化する。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1はシーマ付コアドリルの実施の形態を示す一部切欠側面図、図2は図1に示すシーマ付コアドリルの製造工程を示す説明図である。
【0021】
図1に示すように、本実施形態のシーマ付コアドリル10は、先端部分が円筒形状をした台金13と、台金13の先端面13fに台金13の軸方向13aに積層状態に形成されたシーマ部11およびドリル部12とを備え、シーマ部11にドリル部12の外径より拡径した斜面部11aを設けている。
【0022】
このような構成により、台金13の先端面13fに、軸方向13aに積層状態にシーマ部11およびドリル部12が形成され、シーマ部11にはドリル部12の外径より拡径した斜面部11aを備えた構造となるため、ドリル部12によって穴あけ加工を行い、それと並行して斜面部11aによる面取り加工を行うことができる。
【0023】
また、シーマ付コアドリル10では、シーマ部11およびドリル部12が、台金13の軸方向13aに積層して形成されているので、その境界面20はその軸方向13aを横切るような位置関係にある。したがって、穴あけ加工の繰り返しによってドリル部12の外周面が磨耗して外径が小さくなった場合でも、ドリル部12とシーマ部13との境界面20に隙間が発生することがなく、ガラスの切屑などが隙間に詰まってチッピングなどを発生させることがない。
【0024】
さらに、シーマ部11およびドリル部12は台金13の先端面13fに積層状態に形成された構造であるため、図3(c)に示すシーマ付コアドリル40のように台金37の先端部分を階段状にする必要がなく、製造工程において、複雑な金型を必要としない。
【0025】
さらに、本実施形態のシーマ付コアドリル10では、ドリル部12を構成する砥粒の粒度を#80〜#120の範囲内である#120とするとともに集中度を75とし、シーマ部11を構成する砥粒の粒度を#140〜#200の範囲内である#170とするとともに集中度を50としたところ、ガラス板などの穴あけ加工を繰返し行った場合、ドリル部12およびシーマ部11が同等に磨耗し、片減りが発生しなくなり、両者の寿命を均一化することができた。
【0026】
次に、図2を参照して、図1に示すシーマ付コアドリル10の製造工程について説明する。
【0027】
まず、図2(a)に示すように、金型14内に保持された台金13の先端面13fにシーマ部用砥粒を含有するボンド11bを充填、加圧した後、ドリル部用砥粒を含有するボンド12bを充填、加圧する。そして、この後、ホットプレス法によって焼結すると、図2(b)に示すように、台金13の先端面13fに、軸方向13aに積層されたシーマ原形部11cおよびドリル原形部12cが形成される。
【0028】
このように、ボンド11bを充填して加圧した後、ボンド12bを充填、加圧し、その後、焼結を行うので、ドリル原形部12cとシーマ原形部11cとの境界が明瞭となり、両者間で砥粒の混入が発生しない。
【0029】
次に、図2(c)に示すように、シーマ原形部11cおよびドリル原形部12cに放電加工を施してX部分を除去することにより、図2(d)に示すように、シーマ部11に、ドリル部12の外径より拡径した斜面部11aが形成され、最終形状に整えられたシーマ付ドリル10が得られる。
【0030】
このように、本実施形態のシーマ付コアドリル10では、シーマ部11にドリル部12の外径より拡径した斜面部11aを設けた構造であるが、焼結が完了して形成されたドリル原形部12c、シーマ原形部11cに放電加工を施して形成しているため、成形工程において、最終製品形状に近い複雑な金型を必要とせず、金型も1種類ですむ。
【0031】
また、焼結後にシーマ原形部11c、ドリル原形部12cに放電加工を施すことにより、寸法精度や砥石の目立ち状態などが優れたシーマ付コアドリル10を形成することができる。放電加工の場合、シーマ原形部11c、ドリル原形部12cなどの被加工物に圧力がかからず、ボンドの物性を変えることなく広範囲に渡る形状出しを容易に行うことができる。
【0032】
なお、シーマ原形部11c、ドリル原形部12cに対し研磨加工を施してX部分を除去することにより、最終形状に整えられたシーマ付ドリル10を得ることもできる。研磨加工の場合、形状出しを比較的短時間で行うことができる。
【0033】
図2に示す実施形態は、図1に示すシーマ付ドリル10を製造するための一例であるため、成形工程、焼結工程あるいは焼結後の加工工程については、これ以外の工程を採用することができる。
【0034】
【発明の効果】
本発明により以下の効果を奏することができる。
【0035】
(1)先端部分が円筒形状をした台金と、台金の先端面に台金の軸方向に積層状態に形成されたシーマ部およびドリル部とを備え、シーマ部にドリル部の外径より拡径した斜面部を設けたことにより、ドリル部によって穴あけ加工を行い、それと並行して、斜面部による面取り加工を行うことができる。また、シーマ部およびドリル部が、台金の軸方向に積層して形成され、その境界面は軸方向を横切る位置関係にあるため、ドリル部の外周面が磨耗して外径が減少した場合でも、ドリル部とシーマ部との境界面に隙間が発生することがなく、ガラスの切屑などが隙間に詰まってチッピングなどを発生させることがない。
【0036】
(2)シーマ部およびドリル部は台金の先端面に積層状態に形成された構造であるため、台金の先端部分を階段状などにする必要がなく、製造工程において複雑な金型を必要としない。また、シーマ部およびドリル部を構成する粒度の異なる砥粒を含有したボンドを台金の軸方向に順次積層させて成形するためドリル部とシーマ部との境界が明瞭となり、両者間で砥粒の混入が発生しない。
【0037】
(3)シーマ部にドリル部の外径より拡径した斜面部を設けた構造は、焼結によって形成されたドリル原形部、シーマ原形部に、放電加工や研磨加工などの機械加工を施すことによって形成することができるため、成形工程において、最終製品形状に近い複雑な金型を必要とせず、金型も1種類ですむようになる。
【0038】
(4)ドリル部を構成する砥粒の粒度を#80〜#120の範囲、シーマ部を構成する砥粒の粒度を#140〜#200の範囲とすることにより、ガラス板などの穴あけ加工を繰返し行った場合、ドリル部およびシーマ部の磨耗速度が同等となるため、片減りが発生せず、寿命を均一化することができる。
【0039】
(5)ドリル部の集中度をシーマ部の集中度より大とすることにより、加工作業中のドリル部およびシーマ部の磨耗速度を同等にすることができるため、片減りが発生しなくなり、寿命を均一化することができる。
【図面の簡単な説明】
【図1】シーマ付コアドリルの実施の形態を示す一部切欠側面図である。
【図2】図1に示すシーマ付コアドリルの製造工程を示す説明図である。
【図3】従来のシーマ付コアドリルを示す断面図である。
【符号の説明】
10 シーマ付コアドリル
11 シーマ部
11a 斜面部
11b,12b ボンド
11c シーマ原形部
12 ドリル部
12c ドリル原形部
13 台金
13f 先端面
13a 軸方向
14 金型
20 境界面
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a core drill with a seamer capable of drilling a hole and chamfering an edge of the hole when drilling a hole in a hard brittle material such as a glass plate.
[0002]
[Prior art]
When drilling a hole in a glass plate, chipping occurs at the edge of the hole.As a countermeasure, use a core drill equipped with a chamfering tool called a seamer and chamfer the edge at the same time as drilling. ing.
[0003]
Conventionally, as a core drill with a seamer generally used, for example, there is a drill as shown in FIG. The core drill 30 with seamer shown in FIG. 3A is obtained by separately manufacturing the seamer portion 31 and the drill portion 32 and then combining them. However, in the case of the core drill 30 with a seamer, the side surface of the core drill portion 32 wears as the drilling process is repeated, and the gap 33 between the core drill portion 32 and the seamer portion 31 becomes large. Are likely to be clogged, causing chipping.
[0004]
In order to prevent the occurrence of such chipping, a core drill 34 with a seamer as shown in FIG. 3B has been developed. The core drill 34 with a seamer is also one in which the drill portion 35 and the seamer portion 36 are separately manufactured and combined. In the case of the structure as shown in FIG. 3B, the fitting between the drill portion 35 and the seamer portion 36 is not sufficient. Because it is difficult, not only processing takes a long time, but also the yield is poor.
[0005]
Further, a diamond seamer capable of preventing the occurrence of a gap between the drill portion and the seamer portion is disclosed in Japanese Utility Model Laid-Open Publication No. 63-12875, etc., but also in this seamer, when the side surface of the drill portion is worn, There is a problem that a gap is easily generated and it takes time to mount.
[0006]
Therefore, in order to solve such a problem, as shown in FIG. 3C, a core drill 40 provided with a seamer in which a drill portion 38 and a seamer portion 39 are manufactured by an integral molding method has been developed. Here, the integral molding method is a method in which the base metal 37 holding the drill portion and the seamer portion is made into one, and the grindstones forming the drill portion 38 and the seamer portion 39 are simultaneously molded.
[Problems to be solved by the invention]
However, in the case of the core drill 40 with a seamer as shown in FIG. 3C, the tip of the base metal 37 has a step-like shape in order to form the seamer portion 39 on the outer peripheral side of the drill portion 38. Therefore, in order to integrally form the drill portion 38 and the seamer portion 39 in the manufacturing process, a mold having a complicated shape is required, and much labor is required for manufacturing the mold.
[0008]
In addition, since the drill portion 38 and the seamer portion 39 have different processing purposes depending on the respective portions, the grain sizes of the abrasive grains constituting the respective portions are different. A single base metal was formed side-by-side and filled simultaneously with a bond containing abrasive grains of different grain sizes forming the seamer and drill parts, so it was difficult to form a boundary, and it was composed of fine abrasive grains Coarse abrasive grains forming the drill portion 38 may be mixed into the seamer portion 39. As described above, when the glass plate is drilled by a core drill with a seamer in which the coarse abrasive grains forming the drill portion 38 are mixed in the seamer portion 39, scratches and large chipping occur in the chamfered portion, resulting in processing failure.
[0009]
Therefore, an object of the present invention is to provide a core drill with a seamer that does not require a complicated mold, does not contain abrasive grains, and has an excellent chipping prevention function during drilling.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, a core drill with a seamer of the present invention includes a base metal having a cylindrical end portion, and a seamer portion and a drill portion formed on the front end surface of the base metal in an axially stacked state. And a slope portion having a diameter larger than the outer diameter of the drill portion is provided in the seamer portion. With such a configuration, a seamer portion and a drill portion are formed on the tip end surface of the base metal in a stacked state in the axial direction, and the seamer portion has a structure including a slope portion having a diameter larger than the outer diameter of the drill portion. Drilling is performed by a drill portion, and in parallel with this, chamfering by a slope portion can be performed.
[0011]
Moreover, in the core drill with a seamer of the present invention, since the seamer portion and the drill portion are formed by being laminated in the axial direction of the base metal, the boundary surface is in a positional relationship crossing the axial direction. Therefore, even when the outer peripheral surface of the drill portion is worn down due to repeated drilling and the outer diameter is reduced, no gap is generated at the boundary surface between the drill portion and the seamer portion, and glass chips are clogged in the gap. No chipping occurs.
[0012]
Further, since the seamer portion and the drill portion have a structure formed in a laminated state on the front end surface of the base metal, the front end portion of the base metal 37 is stepped or the like as in a core drill 40 with seamer shown in FIG. No complicated mold is required in the manufacturing process. Further, in the case of the core drill with a seamer of the present invention, in the manufacturing process, after filling the bond containing the abrasive grains for the seamer part on the tip end surface of the base metal held in the mold, forming the seamer original part by pressing. The bond containing the abrasive grains for the drill portion is filled so as to be in intimate contact with the Cima prototype portion, and the pressure is applied to form the drill prototype portion. Thereafter, sintering can be performed. Is clear, and no abrasive grains are mixed between the two.
[0013]
In the case of the core drill 40 with a seamer shown in FIG. 3C, a bond containing abrasive grains having different grain sizes constituting the seamer portion and the drill portion is arranged side by side with respect to one base metal having a stepped tip. Incorporation of abrasive grains may occur because they must be filled and simultaneously molded, but in the case of the present invention, the tip contains abrasive grains constituting a seamer portion on a base metal having a flat shape. After filling the bond, a clear boundary is formed by pressurizing, so that even after the bond containing the abrasive grains constituting the drill portion is filled and pressurized, the mixing of the abrasive grains does not occur .
[0014]
On the other hand, the core drill with a seamer of the present invention has a structure in which a slope portion having a diameter larger than the outer diameter of the drill portion is provided in the seamer portion. The part can be formed by subjecting the part to machining such as electric discharge machining or polishing. As described above, since a core drill with a seamer having a predetermined shape is formed by machining after sintering, a complicated mold close to the final product shape is not required in the molding process, and only one type of mold is required. . In addition, by subjecting the original seamer portion and the original drill portion to polishing and electrical discharge machining after sintering, it is possible to form a core drill with a seamer having excellent dimensional accuracy and a conspicuous state of the grindstone.
[0015]
In addition, in the case of electric discharge machining, pressure is not applied to the workpiece, and it is possible to easily perform shaping over a wide range without changing the physical properties of the bond.In the case of polishing, shaping can be performed in a relatively short time. It can be carried out. Here, “shaping” refers to a processing step for adjusting the Cima original part and the drill original part to the final shape as a core drill with a seamer.
[0016]
Further, in the core drill with a seamer of the present invention, the grain size of the abrasive grains forming the drill portion can be set to # 80 to # 120, and the grain size of the abrasive grains forming the seamer portion can be set to # 140 to # 200. In a core drill with a seamer, since the processing purpose is different between the drill part and the seamer part, it is necessary to make the grain sizes of the abrasive grains constituting the drill part and the seamer part different from each other. That is, it is necessary to adjust the grain size of the abrasive grains forming the drill portion and the seamer portion so that the wear speed of the drill portion and the wear speed of the seamer portion match, but the grain size of each portion is set to such a range. As a result, when drilling of a glass plate or the like is repeatedly performed, the drill portion and the seamer portion are equally worn, so that the so-called one-side loss is eliminated and the life is made uniform.
[0017]
In the case where the grain size of the abrasive grains constituting the drill portion is coarser than # 80, the processing speed increases, but chips which cannot be removed at the seamer portion occur. On the other hand, in the case of # 120 or smaller, the processing speed becomes slow and the abrasion becomes large, so that problems such as a loss of balance with the seamer portion are likely to occur. Further, when the grain size of the abrasive grains constituting the seamer portion is coarser than # 140, the quality of the chamfered portion is reduced. Problems such as a loss of balance tend to occur.
[0018]
Further, the core drill with a seamer of the present invention is characterized in that the degree of concentration of the drill portion is larger than the degree of concentration of the seamer portion. Here, the degree of concentration is expressed as a ratio with 100 when the content of diamond or CBN occupying 4.4 ct (= 0.2 g) per 1 cm 3 of the volume of the abrasive grain layer is 100. If the concentration of the drill and the seamer is the same, during the machining operation, the wear rate of the drill will be higher than that of the seamer, causing a loss, but the concentration of the drill will be greater than the concentration of the seamer. By doing so, the wear rates of the drill portion and the seamer portion become equal, so that there is no loss and the life can be made uniform.
[0019]
In this case, it is desirable that the concentration of the drill portion is about 10 to 50 greater than the concentration of the seamer portion, so that even when the machining operation is repeatedly performed, the drill portion and the seamer portion are equally worn and degraded. Does not occur and the life is made uniform.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a partially cutaway side view showing an embodiment of a core drill with a seamer, and FIG. 2 is an explanatory diagram showing a manufacturing process of the core drill with a seamer shown in FIG.
[0021]
As shown in FIG. 1, a core drill 10 with a seamer according to the present embodiment is formed by stacking a base metal 13 having a cylindrical end portion on a front end surface 13 f of the base metal 13 in an axial direction 13 a of the base metal 13. A seam portion 11 and a drill portion 12, and a slope portion 11 a having a diameter larger than the outer diameter of the drill portion 12 is provided in the seamer portion 11.
[0022]
With such a configuration, the seamer portion 11 and the drill portion 12 are formed in a stacked state in the axial direction 13 a on the tip end surface 13 f of the base metal 13, and the seamer portion 11 has a slope portion whose diameter is larger than the outer diameter of the drill portion 12. Since the structure is provided with 11a, drilling can be performed by the drill portion 12 and, in parallel with this, chamfering by the slope 11a can be performed.
[0023]
Moreover, in the core drill 10 with a seamer, since the seamer portion 11 and the drill portion 12 are formed by being laminated in the axial direction 13a of the base metal 13, the boundary surface 20 has a positional relationship such that it crosses the axial direction 13a. is there. Therefore, even when the outer diameter of the drill portion 12 is reduced due to wear of the outer peripheral surface of the drill portion 12 due to repetitive drilling, no gap is generated at the boundary surface 20 between the drill portion 12 and the seamer portion 13, and the glass chips It is possible to prevent chipping or the like from occurring due to clogging of the gap.
[0024]
Further, since the seamer portion 11 and the drill portion 12 have a structure formed in a laminated state on the front end face 13f of the base metal 13, the front end portion of the base metal 37 is cut like a core drill 40 with seamer shown in FIG. There is no need to make steps, and no complicated mold is required in the manufacturing process.
[0025]
Furthermore, in the core drill 10 with a seamer of the present embodiment, the grain size of the abrasive grains forming the drill portion 12 is set to # 120 which is within the range of # 80 to # 120, and the degree of concentration is set to 75, thereby forming the seamer portion 11. When the grain size of the abrasive grains was set to # 170 within the range of # 140 to # 200 and the degree of concentration was set to 50, when drilling of a glass plate or the like was repeatedly performed, the drill portion 12 and the seamer portion 11 were equivalently formed. Wear and loss did not occur, and the life of both members could be made uniform.
[0026]
Next, a manufacturing process of the core drill with seamer 10 shown in FIG. 1 will be described with reference to FIG.
[0027]
First, as shown in FIG. 2A, a tip 11 f of a base metal 13 held in a mold 14 is filled with a bond 11 b containing abrasive grains for a seamer portion, and after pressurizing, a bond for a drill portion is formed. The bond 12b containing grains is filled and pressurized. Then, when sintering is performed by a hot press method, as shown in FIG. 2B, a seamer prototype 11c and a drill prototype 12c stacked in the axial direction 13a are formed on the tip end surface 13f of the base 13. Is done.
[0028]
As described above, after filling and pressurizing the bond 11b, filling and pressurizing the bond 12b, and then performing sintering, the boundary between the drill original part 12c and the seamer original part 11c becomes clear, and the There is no mixing of abrasive grains.
[0029]
Next, as shown in FIG. 2 (c), electric discharge machining is performed on the Cima original part 11c and the drill original part 12c to remove the X portion, and as shown in FIG. Thus, the slope portion 11a having a diameter larger than the outer diameter of the drill portion 12 is formed, and the drill 10 with the seamer adjusted to the final shape is obtained.
[0030]
As described above, the core drill with seamer 10 of the present embodiment has a structure in which the inclined portion 11a having a diameter larger than the outer diameter of the drill portion 12 is provided in the seamer portion 11, but the original drill formed after sintering is completed. Since the part 12c and the Cima prototype part 11c are formed by performing electrical discharge machining, a complicated mold close to the final product shape is not required in the molding process, and only one kind of mold is required.
[0031]
In addition, by subjecting the seam prototype 11c and the drill prototype 12c to electric discharge machining after sintering, it is possible to form the core drill with seamer 10 having excellent dimensional accuracy and outstanding condition of the grindstone. In the case of electric discharge machining, pressure is not applied to the workpieces such as the seam prototype 11c and the drill prototype 12c, and a wide range of shapes can be easily formed without changing the physical properties of the bond.
[0032]
In addition, it is also possible to obtain the drill 10 with the seamer adjusted to the final shape by performing polishing on the seam prototype 11c and the drill prototype 12c to remove the X portion. In the case of polishing, shape formation can be performed in a relatively short time.
[0033]
Since the embodiment shown in FIG. 2 is an example for manufacturing the drill 10 with a seamer shown in FIG. 1, for the forming step, the sintering step or the processing step after sintering, other steps may be adopted. Can be.
[0034]
【The invention's effect】
According to the present invention, the following effects can be obtained.
[0035]
(1) A base metal having a cylindrical end portion, a seamer portion and a drill portion formed on the front end surface of the base metal in a stacked state in the axial direction of the base metal, and the seamer portion has an outer diameter of the drill portion. By providing the slope part with an enlarged diameter, drilling can be performed by the drill part, and in parallel with this, chamfering by the slope part can be performed. Also, since the seamer portion and the drill portion are formed by laminating in the axial direction of the base metal, and the boundary surface is in a positional relationship crossing the axial direction, the outer diameter of the drill portion is worn and the outer diameter is reduced. However, no gap is generated at the boundary surface between the drill portion and the seamer portion, and chipping or the like does not occur due to the chips of the glass clogging the gap.
[0036]
(2) Since the seamer portion and the drill portion have a structure formed in a stacked state on the tip end surface of the base metal, the tip end portion of the base metal does not need to be stepped, and a complicated mold is required in the manufacturing process. And not. In addition, since the bond containing abrasive grains having different grain sizes constituting the seamer portion and the drill portion is sequentially laminated and formed in the axial direction of the base metal, the boundary between the drill portion and the seamer portion becomes clear, and the abrasive grain between the two becomes clear. Does not occur.
[0037]
(3) In the structure in which the slope portion with a diameter larger than the outer diameter of the drill portion is provided on the seamer portion, the original drill portion and the original seamer portion formed by sintering are subjected to machining such as electric discharge machining or polishing. Therefore, in the molding process, a complicated mold close to the shape of the final product is not required, and only one kind of mold is required.
[0038]
(4) By setting the grain size of the abrasive grains constituting the drill portion to be in a range of # 80 to # 120 and the grain size of the abrasive grains constituting the seamer portion to be in a range of # 140 to # 200, drilling a glass plate or the like can be performed. When repeated, the wear rates of the drill portion and the seamer portion become equal, so that no loss occurs and the life can be made uniform.
[0039]
(5) By making the degree of concentration of the drill part larger than the degree of concentration of the seamer part, the wear rates of the drill part and the seamer part during the machining operation can be made equal, so that the one-sided wear does not occur and the life is shortened. Can be made uniform.
[Brief description of the drawings]
FIG. 1 is a partially cutaway side view showing an embodiment of a core drill with a seamer.
FIG. 2 is an explanatory view showing a manufacturing process of the core drill with a seamer shown in FIG. 1;
FIG. 3 is a sectional view showing a conventional core drill with a seamer.
[Explanation of symbols]
Reference Signs List 10 core drill with seamer 11 seamer 11a slope 11b, 12b bond 11c seamer original part 12 drill part 12c drill original part 13 base metal 13f tip surface 13a axial direction 14 die 20 boundary surface

Claims (1)

先端部分が円筒形状をした台金と、前記台金の先端面に前記台金の軸方向に積層状態に形成されたシーマ部およびドリル部とを備え、前記シーマ部に前記ドリル部の外径より拡径した斜面部を設け、前記ドリル部を構成する砥粒の粒度が#80〜#120、シーマ部を構成する砥粒の粒度が#140〜#200であり、前記ドリル部の集中度をシーマ部の集中度より大としたことを特徴とするシーマ付コアドリル。A tip metal having a cylindrical shape at the tip end, and a seamer portion and a drill portion formed in a stacked state in an axial direction of the tip metal on the tip surface of the metal stem, and the outer diameter of the drill portion is provided at the seamer portion. A slope part having a larger diameter is provided , and the grain size of the abrasive grains constituting the drill portion is # 80 to # 120, and the grain size of the abrasive grains constituting the seamer portion is # 140 to # 200. A core drill with a seamer, characterized in that it is larger than the degree of concentration of the seamer.
JP26452297A 1997-09-29 1997-09-29 Core drill with seamer Expired - Fee Related JP3601953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26452297A JP3601953B2 (en) 1997-09-29 1997-09-29 Core drill with seamer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26452297A JP3601953B2 (en) 1997-09-29 1997-09-29 Core drill with seamer

Publications (2)

Publication Number Publication Date
JPH1199516A JPH1199516A (en) 1999-04-13
JP3601953B2 true JP3601953B2 (en) 2004-12-15

Family

ID=17404432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26452297A Expired - Fee Related JP3601953B2 (en) 1997-09-29 1997-09-29 Core drill with seamer

Country Status (1)

Country Link
JP (1) JP3601953B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016819B3 (en) * 2004-04-05 2005-08-18 Hilti Ag Cutting segment for drill heads, circular saw blades and separating plates comprises cutting surface forming surface sections in stepped manner
CN105234849A (en) * 2015-09-16 2016-01-13 丹阳市长平机械有限公司 Combined grinding wheel
GB2547233A (en) * 2016-02-11 2017-08-16 Jaguar Land Rover Ltd A system comprising a transparent or translucent member
CN109795012B (en) * 2019-04-08 2020-11-10 成都惠灵丰金刚石钻头有限公司 PDC matrix drill bit molding process

Also Published As

Publication number Publication date
JPH1199516A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
CN100563932C (en) Milling tool and manufacture method thereof with patterned grit distribution
CN101528419B (en) Grindwheel with sloping groove and process for fabricating the same
KR100383715B1 (en) Metal cutting inserts having superhard abrasive bodies and methods of making same
US7128066B2 (en) Diamond tool with metal plate inserted therein
US5226760A (en) Cutting tool with twisted edge and manufacturing method thereof
EP2397254B1 (en) Method for multiple cutoff machining of rare earth magnet
US5297456A (en) Cutting tool with twisted edge and manufacturing method thereof
CN106956224A (en) A kind of skive rod and preparation method thereof
JP2002530212A (en) Method for producing sintered articles and products produced thereby
JP3601953B2 (en) Core drill with seamer
JPH09254042A (en) Grinding wheel for cutting groove and manufacture thereof
US4971602A (en) Method for grinding gear teeth
JP4215570B2 (en) Dresser
JP2972049B2 (en) Super-abrasive wheel for precision cutting with embedded tangled chips
JPS606356A (en) Sintered minute short fiber abrasive
CN1328027C (en) Method for processing crystal combination diamond and products thereof
JP2841288B2 (en) Super-finishing wheel holder and method of manufacturing the same
JP3102547B2 (en) Double-head grinding method
JP4132591B2 (en) Super abrasive tool manufacturing method
JP2001212769A (en) Super-abrasive grain wheel
JP3838824B2 (en) Metal bond thin blade blade manufacturing method
US5571425A (en) Method for making a single cone disk, in particular a dressing wheel
JP2750965B2 (en) Manufacturing method of contact having contact part with precision step surface
KR100398776B1 (en) Method for manufacturing cutting edge of cutting tool to manufacture boll-seat in piston of car compressor
JP2001138196A (en) Method of manufacturing for polishing tool, polishing method, polishing tool and optical element or its metal mold

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees