JPS58125388A - Monitoring method of working state by laser - Google Patents

Monitoring method of working state by laser

Info

Publication number
JPS58125388A
JPS58125388A JP57005424A JP542482A JPS58125388A JP S58125388 A JPS58125388 A JP S58125388A JP 57005424 A JP57005424 A JP 57005424A JP 542482 A JP542482 A JP 542482A JP S58125388 A JPS58125388 A JP S58125388A
Authority
JP
Japan
Prior art keywords
laser
working
processing
detected
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57005424A
Other languages
Japanese (ja)
Inventor
Shuichi Ishida
修一 石田
Taisuke Shimoi
下井 泰典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57005424A priority Critical patent/JPS58125388A/en
Publication of JPS58125388A publication Critical patent/JPS58125388A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece

Abstract

PURPOSE:To decide abnormal working conditions and abnormal results, by comparing the time required for generation of light emission from a working part after irradiation of a laser, or the maximum value of a detecting signal in this time, with a value of a normal time. CONSTITUTION:Laser light 2 outputted from a laser oscillator 1 is reflected by a reflector 10, is condensed by a condensing lens 3, and is irradiated to an object to be worked, through protecting glass 4. In this case, a working sound generated at the time of working is detected by a microphone 11 installed at a specified distance from a working point, and a detected working sound waveform is observed by an oscilloscope 12.

Description

【発明の詳細な説明】 El&明の技術分野】 この発明はレーザ加工時の異常状態をほぼ瞬時的に検知
して監視する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a method for almost instantaneously detecting and monitoring abnormal conditions during laser processing.

を発明の技術的前景l 切削加工や研N11EI工と同様、レーザ加工において
もその加工が定常状態で□行われているかどうかすなわ
ち加工中の異常状層を検知する必要のある仁とはいうま
でもない。従来、レーザ加工では、箇11fiに示すよ
うに加工中、レーザ発振器+1)から放出されているレ
ーザ光(2)の一部を集光レンズ(論および保臘ガラス
(4)の透過前にダイクロイックミラー(5)からとり
出し、これをエネルギモニタ(6)に入射させ、波形の
積分値により、エネルギ番ζ相幽する量を求める手段に
より加工中の異常状態を検知していた。
Technical Foreground of the Invention In laser processing, as with cutting and grinding N11EI, it is necessary to detect whether the processing is being performed in a steady state, that is, to detect abnormal layers during processing. Nor. Conventionally, in laser processing, a part of the laser beam (2) emitted from the laser oscillator +1) is transmitted through a dichroic lens (4) before passing through the condensing lens (4), as shown in Clause 11fi. The abnormal state during processing was detected by taking it out from the mirror (5) and making it incident on the energy monitor (6), and determining the amount by which the energy number ζ phased out based on the integral value of the waveform.

[背景技術の間趙点]− 上記の場合、ダイクロイ、クミラー(5)はその反射面
が損傷しないようにエネルギ密度の高い集束レーザ光(
2′)の光路上には配置されない。このため、上記のよ
うに集光レンズ(3)を透過する前のレーザ光のエネル
ギを検出する方法では、加工中、被加工物(7)よりの
飛散物で保鏝ガラス(4)が損傷し、レーザ(2′)の
透過が妨げられて被加工物(7)への入射エネルギが低
下したり、あるいは被加工物(7)の厚みの変動で加工
表面のレーザスポットのパワー密度が変化して正常な加
工が行われなくなってもその現象を検出できない不具合
があった。
[Background Art Zhao Point] - In the above case, the dichroic and cummirror (5) are heated by a focused laser beam with high energy density (
2') is not placed on the optical path. Therefore, in the method of detecting the energy of the laser beam before it passes through the condensing lens (3) as described above, the trowel glass (4) is damaged by flying objects from the workpiece (7) during processing. However, the transmission of the laser (2') may be blocked and the incident energy to the workpiece (7) may decrease, or the power density of the laser spot on the processing surface may change due to variations in the thickness of the workpiece (7). There was a problem in which the phenomenon could not be detected even if the machining was not performed normally.

(発明の目的3 実加工時の加工現象から得られる情報の検出で異常状態
を確実に知ることができる方法を提供するものである。
(Objective of the invention 3) To provide a method that can reliably know an abnormal state by detecting information obtained from processing phenomena during actual processing.

〔発明の概要) レーザを照射してから加工部より発光が生じるまでの時
間もしくはこの時間における検出信号の最大値を正常時
の値と比較して異常状噛を検知するよ・5にしたもので
ある。
[Summary of the invention] Abnormal bite is detected by comparing the time from laser irradiation until light emission occurs from the processed part or the maximum value of the detection signal during this time with the normal value. It is.

[発明の実施例j 発明者等が種々の実験を重ねたところ、レーザ加工にお
いて、エネルギ、焦点はずし距離等の加工条件の変化に
対応して変化する童として、レーザを照射し′Cから加
工前が検出されるまでの時間と、検出された加工音信号
の最大値のあることを見い出した。発明者等の行なった
、実験方法並びに実験結果について説明する。
[Embodiment j of the invention The inventors have conducted various experiments and found that in laser processing, the laser beam is irradiated as a beam that changes in response to changes in processing conditions such as energy and defocus distance. It was found that there is a time until the front is detected and a maximum value of the detected processed sound signal. The experimental method and experimental results conducted by the inventors will be explained.

実験方法を第2図に示すが、実験は、レーザ発l1ia
から出力されたレーザ光(望を反射鏡αlで反射して、
集光レンズ(Sで集光し、保鏝ガラス(尋を通して稙加
工物に照射する。このとき、加工時に発生する加工前を
加工点から一定距離化設置されたマイクロフォンQυに
より検出し、検出された加工音波形をオシロスコーモ 行なった。
The experimental method is shown in Figure 2.
The laser beam output from
The light is focused by a condensing lens (S) and irradiated onto the workpiece through a trowel glass (blind).At this time, the pre-processing that occurs during processing is detected by a microphone Qυ installed at a certain distance from the processing point. The processed sound waveforms were analyzed using an oscilloscope.

実験における変化量としては、加工部表面におけるパワ
ー+!Ij度を変化させ、加工結果を変化させる童であ
るエネルギと焦点はずし距離0を選んだ。
The amount of change in the experiment was power +! on the surface of the machined part. We chose energy and defocus distance of 0 to change the processing result by changing the Ij degree.

焦点はずし距離(ト)を変化蓋とした場合のオシロスコ
ープα2上の表革を第3図(→〜(d)に示す。第3図
(萄はレーザの発振波形、同図(−以下は加工前の波形
を示し、先ず(blは焦点はずし距離0鵡、(匂は同3
au+、(d)は5jIJIのときの波・形である。こ
れらの波形図から71tl工音の波形(−〜(d)はレ
ーザの発振波形よりも遅れて検出されることがわかった
。また、その時間遅れtは焦点はずし距離の違いにより
異なることがわかった。また、刀ロエ音波形の最大値P
も焦点はずし距離の違いによりPl、Pl、P3のよう
に異なることがわかった。焦点距離50mの集光レンズ
、被〃Ω工吻として0.761厚のSUS%加工点とマ
イクロフォンaυの距11115M、エネルギ6Jの条
件で、焦点はずし距離■を変化量とじて得られた発光の
波形より求めた時間遅れtと最大値Pを第4図に示す。
Figure 3 (→ to (d)) shows the surface of the oscilloscope α2 when the defocus distance (g) is changed. The previous waveform is shown, first (bl is the defocus distance of 0),
au+, (d) is the wave/form at 5jIJI. From these waveform diagrams, it was found that the 71tl sound waveform (-~(d)) was detected later than the laser oscillation waveform.It was also found that the time delay t differed depending on the defocus distance. In addition, the maximum value P of the sword Loe sound waveform
It was also found that Pl, Pl, and P3 differ depending on the defocus distance. Under the conditions of a condensing lens with a focal length of 50 m, a processing point of 0.761-thick SUS% as a proboscis, a distance of a microphone aυ of 11115 M, and an energy of 6 J, the luminescence obtained by taking the defocus distance ■ as the amount of change is FIG. 4 shows the time delay t and maximum value P determined from the waveform.

この図より焦点はずし距離のを大きくとり、加工部表面
に招ける照射レーザ光のパワー密度を小さくしていく時
、時間遅れtは大きくなっていくことがわかる。この焦
点はずし距離のと時間遅れtの関係をもと暑ζし、焦点
はずし距離のの変化にともなう加工条件の変化、すなわ
ち、パワー密度の変化を検出することができる。第4図
の最大値Pに着目する時、最大値P!まパワー密度が高
く加工部が穴あきとなって 焦点はずし距離Qsw+の
場合を除き、焦点はずし距離の増大a+こともなうパワ
ー密度の低下にともなG1減少していくことがわかる。
From this figure, it can be seen that the time delay t increases as the defocus distance is increased and the power density of the irradiated laser beam directed to the surface of the processed portion is decreased. Based on the relationship between the defocus distance and the time delay t, it is possible to detect a change in processing conditions, that is, a change in power density, due to a change in the defocus distance. When focusing on the maximum value P in FIG. 4, the maximum value P! It can be seen that G1 decreases as the power density decreases as the defocus distance increases a+, except in the case where the defocus distance is Qsw+, where the power density is high and the machined part becomes perforated.

このことは、適用範囲の限定が必要であるが、最大値P
も時間遅れtと同様に、無点はずし距離の変化にともな
う加工条件の変化の監視手段として有効な検知量である
ことを意味している。
Although this requires limitation of the applicable range, the maximum value P
Similarly to the time delay t, this means that it is an effective detection amount as a means for monitoring changes in machining conditions due to changes in the pointless removal distance.

エネルギを変化量とした場合の実験結果を第5−に示す
。この図では焦点距離90Mの集光レンズ、焦点はずし
距離qはO■である。
Experimental results when energy is used as the amount of change are shown in Section 5-. In this figure, the condenser lens has a focal length of 90M, and the defocus distance q is O■.

エネルギを大きくすることは、加工部表面−こおける照
射レーザ光のパワー密度を高くすることを意味している
。第5図よりエネルギを変化させた場合も焦点はずし距
離山を変化させた場合と同様、パワー密度の減少にとも
ない時間遅れtは大きくなり、厳大11i Pは小さく
なっていくことがわかる。
Increasing the energy means increasing the power density of the irradiated laser beam on the surface of the processed part. It can be seen from FIG. 5 that when the energy is changed, the time delay t becomes larger and the strictness 11i P becomes smaller as the power density decreases, as in the case when the defocus distance peak is changed.

すlよりち、第4図、渠5図の結果より、エネルギの減
少または焦点はぐし距−■の増大により加工物表面上の
照射レーザ光のパワー密度が減少する時、レーザを照射
してから〃ll前音検出ざnるまでの時間遅れ【は増大
し、加工音波形の最大値P、 は減少することが明確と
なった。このことは、時間遅れtlまたは成人1i!i
LPを各々の加工時に測定し、正常時の値と比較するこ
とにより、加工条件の変化にともなうパワー密度の変化
を検知できることを意味している。
From the results in Figures 4 and 5, it is clear that when the power density of the irradiated laser beam on the workpiece surface decreases due to a decrease in energy or an increase in the defocus distance, It became clear that the time delay from 1 to the detection of the fore-sound increases, and the maximum value P of the processed sound waveform decreases. This means that time delay tl or adult 1i! i
This means that by measuring LP during each machining process and comparing it with the normal value, changes in power density due to changes in machining conditions can be detected.

加工条件の変化にともなうパフ−[Eの変化を検出でき
るということは、加工条件の異常だけでなく、パワー′
!E度に傭く支配される7111工緒果も検知できるこ
とをt味している。
Being able to detect changes in puff-[E due to changes in machining conditions means that it is possible to detect not only abnormalities in machining conditions but also power
! I'm hoping that it will be able to detect 7111 effects that are controlled by the E degree.

[発明の効果] 加工前は、加工時の蒸発にともない発生するそみつ波で
ある。
[Effects of the Invention] Before processing, there are waves generated as a result of evaporation during processing.

加工前を監視の信号源とすることは、加工の進行状況を
監視することを意味し、従来のエネルギ法では検出でき
なか2った。
Using pre-processing as a signal source for monitoring means monitoring the progress of processing, which could not be detected using conventional energy methods2.

レンズ、保護ガラス等の損傷にともなう加工部への照射
エネルギの低下や焦点はずし距離の変化にともなう加工
条件の変化を、本発明の加工前を監視して行う方法では
検出することができ、加工条件の異常ならびに加工条件
の異常にともなう結果の異常を判断することができる。
The method of the present invention that monitors before processing can detect changes in processing conditions due to a decrease in irradiation energy to the processed part due to damage to the lens, protective glass, etc. or changes in defocus distance. It is possible to determine abnormalities in conditions as well as abnormalities in results associated with abnormalities in processing conditions.

また、加工と同時に監視のための値を測定できるため、
各加工ごとに加工条件、加工結果の異常の有無を判断す
ることができ、非常にlII!率的である。
In addition, since values for monitoring can be measured at the same time as processing,
It is possible to determine the presence or absence of abnormalities in the machining conditions and machining results for each machining process, which is very useful! Be proactive.

【図面の簡単な説明】[Brief explanation of the drawing]

is1図は従来のレーザの加工状急監視方法の説明図s
 m 2図はこの発明の一実1例を説明するための図、
嬉3#A(Jl)はレーザ発振波形図、蕗3図(婉乃至
(ψは加工前のa形図、第4図は集光レンズの焦点はず
し距離を変化量として得られた加工前の波形より求めた
時間遅れtと最大値Pの関係を示す測定図、第5図はエ
ネルギを変化量とした場合の実験性を示す図である。 (1)・・・レーザ発振器    (3)・・・集光レ
ンズαυ・・・マイクロフォン   αa・・・オシロ
スコープ第1図 り !3図 14図 、眸、衷はすし1巨1@、(荒惣) パワー2友(小] 第デロ
IS1 diagram is an explanatory diagram of the conventional laser machining status rapid monitoring method.
Figure m2 is a diagram for explaining an example of this invention.
3 #A (Jl) is a laser oscillation waveform diagram, Fuki 3 diagram (婉〜(ψ) is the a-shaped diagram before processing, and Figure 4 is the before processing obtained by changing the defocus distance of the condenser lens. A measurement diagram showing the relationship between time delay t and maximum value P obtained from the waveform, and Figure 5 is a diagram showing experimental performance when energy is used as the amount of change. (1) Laser oscillator (3) ...Condensing lens αυ...Microphone αa...Oscilloscope 1st drawing!3 figure 14 figure, eyes, sushi 1 giant 1@, (Araso) power 2 friends (small) 1st Dero

Claims (1)

【特許請求の範囲】[Claims] レーザ光放出−始時からその放出によって照射を受けた
加工物から加工前の生じるまでの発音時間もしくは検出
した加工前の最大値を検出する方法と、上記発音時間も
しくは最大値を正常な加工時の値とを比較して加工状態
を検知する方法とを備えることを特徴とするレーザ加工
状態監視方法。
Laser light emission - A method of detecting the sounding time from the start of laser light emission to the workpiece being irradiated by the laser beam until it occurs before processing, and the method of detecting the detected maximum value before processing, and how to measure the above sounding time or maximum value during normal processing. A method for monitoring a laser machining state, comprising: a method of detecting a machining state by comparing the value of .
JP57005424A 1982-01-19 1982-01-19 Monitoring method of working state by laser Pending JPS58125388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57005424A JPS58125388A (en) 1982-01-19 1982-01-19 Monitoring method of working state by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57005424A JPS58125388A (en) 1982-01-19 1982-01-19 Monitoring method of working state by laser

Publications (1)

Publication Number Publication Date
JPS58125388A true JPS58125388A (en) 1983-07-26

Family

ID=11610782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57005424A Pending JPS58125388A (en) 1982-01-19 1982-01-19 Monitoring method of working state by laser

Country Status (1)

Country Link
JP (1) JPS58125388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114786A (en) * 1985-11-14 1987-05-26 Fujitsu Ltd Method for monitoring processing condition
US6917020B2 (en) 1999-11-30 2005-07-12 Ibiden Co., Ltd. Ceramic heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114786A (en) * 1985-11-14 1987-05-26 Fujitsu Ltd Method for monitoring processing condition
US6917020B2 (en) 1999-11-30 2005-07-12 Ibiden Co., Ltd. Ceramic heater

Similar Documents

Publication Publication Date Title
US5869805A (en) Method and device for working materials using plasma-inducing laser radiation
US7148448B2 (en) Monitored laser shock peening
US5045669A (en) Method and apparatus for optically/acoustically monitoring laser materials processing
US7863544B2 (en) Arrangement and method for the on-line monitoring of the quality of a laser process exerted on a workpiece
US5026979A (en) Method and apparatus for optically monitoring laser materials processing
US9233434B2 (en) Method of and material processing apparatus for optimising the focus of a fibre laser; method of measuring changes in the focus of a fibre laser
US4960970A (en) Method and apparatus for acoustic breakthrough detection
JP2016155140A (en) Laser processing discrimination method and apparatus
De Keuster et al. Monitoring of high-power CO 2 laser cutting by means of an acoustic microphone and photodiodes
JPS58125388A (en) Monitoring method of working state by laser
JPH08174255A (en) Focus detector for laser beam machine
US4536639A (en) Regulating surface treatment by laser beam
JPH0292482A (en) Laser boring device
KR20160073785A (en) Laser processing system and laser processing method using the laser processing system
JPS58125389A (en) Monitoring method of working state of laser
JPS5979122A (en) Laser power measuring device
JPH11344417A (en) Detecting method for fracture and incidence deviation of optical fiber and laser machining apparatus
Garmendia et al. Optical monitoring of fiber laser based cutting processes for in-situ quality assurance
JP4136551B2 (en) Laser welding method
JPH0847786A (en) Laser beam machine
JP2971003B2 (en) Device to detect dirt on lens of laser repair device
JP3323874B2 (en) Laser processing equipment
JPS6018288A (en) Monitoring method of laser working device
Willmott et al. Keyhole/plasma sensing system for laser-welding control system
JP2000283888A (en) Method and device for inspecting laser focusing optical system for machining