JPS58125176A - Self-correlation coefficient generator - Google Patents

Self-correlation coefficient generator

Info

Publication number
JPS58125176A
JPS58125176A JP57006431A JP643182A JPS58125176A JP S58125176 A JPS58125176 A JP S58125176A JP 57006431 A JP57006431 A JP 57006431A JP 643182 A JP643182 A JP 643182A JP S58125176 A JPS58125176 A JP S58125176A
Authority
JP
Japan
Prior art keywords
coefficient
circuit
output signal
signal
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57006431A
Other languages
Japanese (ja)
Inventor
Makoto Nakamura
誠 中村
Fumio Sugiyama
文夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57006431A priority Critical patent/JPS58125176A/en
Publication of JPS58125176A publication Critical patent/JPS58125176A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Complex Calculations (AREA)

Abstract

PURPOSE:To exactly obtain a self-correlation coefficient of an optional number of degree, which is normalized by a self-correlation coefficient of ''0''-degree, by a simple circuit configulation, by constituting a correlation coefficient generator without providing a dividing circuit. CONSTITUTION:A signal X(n) supplied to an input terminal 100 is delayed by a delaying circuit 101 and becomes a signal of X(n-i), also, when an output signal of a coefficient generating circuit 501 is denoted as ri(n), an output signal of an adder 301 becomes X(n)-ri(n).X(n-i), an output signal of a coeffient correcting circuit 401, namely, an output signal of an attenuator is shown by DELTA{X(n)-ri(n).X(n-i)}.X(n-i), and accordingly, the output signal ri(n) of the coefficient generating circuit 501 is corrected to the expressionIin the following time slot. In this case, when DELTA is set suitably, ri(n) is corrected in order, and is converged to a value of the expression II. Since a mean value of the sum can be replaced with the sum of a mean value, the expression II becomes the expression III, and to output terminals, 601, 602,-60n, primary, secondary -(n)- degree self-correlation coefficients which have been normalized by a self-correlation coefficient of ''0''-degree are outputted, respectively.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は自己相関係数を求めるための自己相関係数発
生器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an autocorrelation coefficient generator for determining an autocorrelation coefficient.

〔発明の技術的背景〕[Technical background of the invention]

自己相関係数は種々の信号処理に用いられるもので、例
えば信号の概周期性を検出する際の有力な手法でもある
。また線形予測符号化法(LPC)として、音声分析装
置においてスペクトル包絡を表わすパラメータを計算す
る際にも自己相関係数を必要とする。
The autocorrelation coefficient is used in various signal processing, and is also an effective method for detecting the approximate periodicity of a signal, for example. Furthermore, as a linear predictive coding method (LPC), an autocorrelation coefficient is also required when calculating a parameter representing a spectrum envelope in a speech analysis device.

これらの種々の信号処理において、自己相関係数は0次
の自己相関係数a(0)を1に正規化した値を必要とさ
れる場合がしばしばある。上述の例で、信号の概周期性
を検出する手段として用いる場合には、自己相関係数の
ピーク値を探索すればよいのでfL(0)−1に正規化
の必要はないが、線形予測符号化法を用いて音声分析を
行なう場合には正規化された値が必要である。
In these various types of signal processing, the autocorrelation coefficient often requires a value obtained by normalizing the zero-order autocorrelation coefficient a(0) to 1. In the above example, if it is used as a means to detect the approximate periodicity of a signal, it is only necessary to search for the peak value of the autocorrelation coefficient, so there is no need to normalize it to fL(0)-1, but linear prediction Normalized values are required when performing speech analysis using encoding methods.

第1図は従来の自己相関係数発生器の一例を示し、0次
の自己相関係数で正規化した1次からn次までの自己相
関係数を求めることのできるものである。図中、10は
入力端子、11,12・・・1nは遅延回路、  21
,22.−2fiは乗算器、  31,32.−3nは
アキ、ムレータ、 41,42.・4fiは除算回路、
 51.52・・・5nは出力4子である。
FIG. 1 shows an example of a conventional autocorrelation coefficient generator, which is capable of obtaining first to nth order autocorrelation coefficients normalized by a zeroth order autocorrelation coefficient. In the figure, 10 is an input terminal, 11, 12...1n is a delay circuit, 21
, 22. -2fi is a multiplier, 31, 32. -3n is Aki, Mureta, 41, 42.・4fi is a division circuit,
51, 52...5n are four outputs.

第1図において、入力端子10に供給された信号は遅延
回路11,12.・・・1nで順次1タイムスロツトず
つ遅延され1乗算器21.22 、・・・2nにより入
力信号との積が1痺され、アキ、ムレータ31.32.
・・・3nにおいて適当な時間区間の平均値が計算され
る。
In FIG. 1, signals supplied to input terminal 10 are transmitted to delay circuits 11, 12 . . . 1n is sequentially delayed by 1 time slot, and the product with the input signal is multiplied by 1 multiplier 21.22, .
...3n, the average value of an appropriate time interval is calculated.

入力信号はまた乗算器20において2乗されアキュムレ
ータ30で、適当な時間区間の平均値が1痺される。
The input signal is also squared in the multiplier 20 and the average value of the appropriate time interval is multiplied in the accumulator 30.

ここでアキュムレータ30,31.・・・3nは1時間
平均をとるためのもので、低域症波器等の時間積分の動
作をするものに置き換えることもできる。アキエムレー
タ30 、30 、・・・3nにはそれぞれ0次、1次
・・・n次の自己相関係数が求まっている。さらに0次
の自己相関係数で正規化するためIC,アキル−タ31
.32.・−3nの出力信号は除算器41.42.・4
 n J(導かれ、アキ、ムレータ30からの信号によ
り除算されて出力端子51.52.・・・5nに導かれ
る。かくして、出力端子5L52t・・・5nからそれ
ぞれ0次の自己相関係数で正規化された1次からn次ま
での自己相関係数を得ることができる。
Here, accumulators 30, 31 . ... 3n is for taking an hourly average, and can be replaced with a device that performs time integration such as a low frequency waveform generator. 0th-order, 1st-order, . Furthermore, in order to normalize with the zero-order autocorrelation coefficient, IC, Aquita 31
.. 32.・The output signal of -3n is sent to the divider 41.42.・4
n J (lead, Aki, divided by the signal from the muleta 30 and guided to the output terminals 51, 52... 5n. Thus, from the output terminals 5L, 52t... 5n, each with a zero-order autocorrelation coefficient It is possible to obtain normalized first to nth order autocorrelation coefficients.

〔背景技術の問題点〕[Problems with background technology]

ところで、この相関係数発生器を具体的に構成する場合
には特1こ除算回路4142・−・4nが大きな規模を
しめ、精度のよい計算を行なおうとすると膨大な回路規
模になる。これは除算の場合、線数がOlこ近ずくと、
出力信号がオーバーフローすることもあり、ハードウェ
アでの具体的構成が容易でないためである。
By the way, when this correlation coefficient generator is specifically constructed, the scale of the division circuits 4142, . In the case of division, when the number of lines approaches Ol,
This is because the output signal may overflow, and a specific hardware configuration is not easy.

相関係数発生器に除算を必要とすることは%特にこの装
置をLSIで構成しようとする場合に大きな障害となる
The necessity of division in the correlation coefficient generator is a major hindrance, especially when attempting to configure this device with an LSI.

〔発明の目的〕[Purpose of the invention]

この発明は上記の事情を解決するためになされたもので
、除算を必要としない構成の簡略化された自己相関係数
発生器を提供しようとするものである。
The present invention was made to solve the above-mentioned situation, and aims to provide a simplified autocorrelation coefficient generator that does not require division.

〔発明の峨要〕[The key to the invention]

この発明は遅延回路1乗算器、加算器、係数発生回路、
係数修正回路等Iこよって除算回路を必要とせず自己相
関係数発生器を構成した点−ζ特徴がある。
This invention includes a delay circuit 1 multiplier, adder, coefficient generation circuit,
A characteristic feature of the present invention is that the autocorrelation coefficient generator is configured without the need for a coefficient correction circuit or a division circuit.

〔発明の幼果〕[Young fruit of invention]

この発明lこよれば除算器を必要としないので、簡易な
回路構成で、0次の自己相関係数で正規化された任意の
次数の自己相関係数を的確に得ることができる。
According to the present invention, since no divider is required, it is possible to accurately obtain an autocorrelation coefficient of any order normalized by a zero-order autocorrelation coefficient with a simple circuit configuration.

〔発明の実施例〕[Embodiments of the invention]

以71面を参照してこの発明の一実施例を説明する。第
2図に8いて100は入力端子、 101,102・1
0nは遅延回路、 201,202.・・・20nは乗
算器、301゜302・−3Onは加算器、 401.
402.・・・40nは係数修正回路、 501,50
2.−・−5Onは係数発生回路、601,602・・
・60nは出力端子を示している。
An embodiment of the present invention will be described below with reference to the 71st page. In Figure 2, 8 and 100 are input terminals, 101, 102・1
0n is a delay circuit, 201, 202. ...20n is a multiplier, 301°302.-3On is an adder, 401.
402. ...40n is a coefficient correction circuit, 501,50
2. -・-5On is a coefficient generation circuit, 601, 602...
・60n indicates an output terminal.

入力端子100に供給された信号は遅延回路101゜1
02、・・・101mで順次1タイムス口V′−ずつ遅
延された後、それぞれ乗算器201,202.・・・2
0nに導かれ。
The signal supplied to the input terminal 100 is sent to the delay circuit 101゜1.
02, . . . 101 m, and are sequentially delayed by 1 time V′-, and then the multipliers 201, 202 . ...2
Guided by 0n.

ここで係数発生回路501,502.・・・50nから
供給された係数が乗じられ、さらIこ加算器301,3
02.・・・30鵬に供給される。
Here, coefficient generation circuits 501, 502. . . . 50n is multiplied by the coefficient supplied from the adder 301, 3.
02. ...Supplied to 30 Peng.

加算器301302・・・30f1 iこおいて、入力
端子16Gに供給された信号と前記乗算4eB 201
,202.・・・20mの出力信号との和または差が計
算され、その結果を係数修正回路401.402.・・
・40nに導く。
In the adder 301302...30f1 i, the signal supplied to the input terminal 16G and the multiplication 4eB 201
, 202. ...20m output signal is calculated, and the result is applied to coefficient correction circuits 401, 402.・・・
・Lead to 40n.

遅延回路101,102.・・・Ionの出力信号は1
乗算器201、202.・20nの他lこ係数修正回路
401 、402.・4011に4導かれ、係数修正回
路401,402.・・・40nはこの遅延回路101
.102.・・・tonより供給される信号と加算器3
01.302.・・・39nより導かれる信号とを受入
して加算器301.302.・・・3Qnの出力信号が
小さくなる方向に係数発生回路501.502.・・・
50nの出力信号を修正する。
Delay circuits 101, 102. ...Ion's output signal is 1
Multipliers 201, 202 .・In addition to 20n, coefficient correction circuits 401, 402 . 4011, coefficient correction circuits 401, 402 . ...40n is this delay circuit 101
.. 102. ...signal supplied from ton and adder 3
01.302. . . 39n, and adders 301, 302 . . . . in the direction in which the output signal of 3Qn becomes smaller. ...
Modify the output signal of 50n.

この場合に1例えばi番目の係数修正回路40iおよび
係数発生回路50遍は第3図に示すような構成をとるこ
とができる。
In this case, for example, the i-th coefficient correction circuit 40i and the coefficient generation circuit 50 may have a configuration as shown in FIG.

第3図において、係数修正回路40iは乗算器41iと
減衰器42iとで構成され、係数発生回路50這は加算
器51盪と遅延素子521とで構成され、除算器は全く
用いられていない。
In FIG. 3, the coefficient correction circuit 40i is composed of a multiplier 41i and an attenuator 42i, the coefficient generation circuit 50 is composed of an adder 51 and a delay element 521, and no divider is used.

乗算1541iは遅延回路101の出力信号と加算器3
oiの出力信号の積を計算し、この信号を減衰器42i
を介して6倍した後加算a511に係数修正信号として
供給する。加算器511は減衰器421から供給された
係数修正信号を遅延素子524の出力としで得られてい
る現在の係数に加え、遅延素子521の入力端Iこ供給
し1次のタイムスロットにおいて遅延素子521の出力
として修正された係数が得られる。
Multiplication 1541i is the output signal of delay circuit 101 and adder 3
Calculate the product of the output signals of oi and send this signal to the attenuator 42i
After multiplying by 6, the signal is supplied to addition a511 as a coefficient correction signal. The adder 511 adds the coefficient modification signal supplied from the attenuator 421 to the current coefficient obtained as the output of the delay element 524, and supplies it to the input terminal of the delay element 521 to output the coefficient correction signal to the input terminal of the delay element 521 in the first time slot. The modified coefficients are obtained as the output of 521.

この場合、入力端子100に供給された信号をX(ロ)
とすれば、遅延回路10Mの出力信号はx(n−i)で
表わされる。また、係数発生回路50這の出方信号すな
わち遅延素子521の出力信号をrt(n)とすれば、
加算器30iの出力信号は x(n)−γ、 (n)す(n−i)・・・・・・・・
・・・・(1)係数修正回路40iの出力信号すなわち
減衰器42轟の出力信号は、 Δtx(n)−rl(n)す(n−リ)・x(n−4)
  ・・・・・・偉)で表わされ、したがって係数発生
回路503の出力信号r 1 (n)は次のタイムスロ
ットではrl(叶1)−ri(n)+Δ嗜(X(n)−
r&(n)”!(ト1))”x(n−i )  ・・・
−・−・−・−・−・・・・・・・・・・・・+3)と
修正される。△を適当に設定すればri(1m)は逐次
修正され (x(n)−rl(n)・x(n−4))・(x(n−
f)1mo −(4)(ただしx(n)はx(s)の時
間平均値を表わす。)なる値−ζ収束する。和の平均値
は平均値の和に置きかえられるので、(4)式は となり、係数発生回路50]の出方信号として、0次の
自己相関係数で正規化された1次の自己相関係数を求め
ることができる。
In this case, the signal supplied to the input terminal 100 is
Then, the output signal of the delay circuit 10M is expressed as x(ni). Further, if the output signal of the coefficient generation circuit 50, that is, the output signal of the delay element 521 is rt(n), then
The output signal of the adder 30i is x(n)-γ, (n)su(ni-i)...
(1) The output signal of the coefficient correction circuit 40i, that is, the output signal of the attenuator 42, is Δtx(n)−rl(n)su(n−ri)・x(n−4)
.
r&(n)"!(t1))"x(n-i)...
−・−・−・−・−・・・・・・・・・・・・・・・+3). If Δ is set appropriately, ri(1m) is successively modified as (x(n)−rl(n)・x(n−4))・(x(n−
f) converges to the value −ζ of 1mo −(4) (where x(n) represents the time average value of x(s)). Since the average value of the sums is replaced with the sum of average values, equation (4) becomes You can find the number.

したがって出力端子601.602・・・6〇四ζはそ
れぞれ0次の自己相関係数で正規化された1次、2次・
−・1次の自己相関係数が出力される。
Therefore, the output terminals 601, 602...604ζ are linear, quadratic, and
-・The first-order autocorrelation coefficient is output.

この際、出力端子60iに出力される自己相関係数の次
数は乗算120iに入力される遅延回路101からの信
号が、入力端子100に加えられた元の信号に対してど
れだけ時間的遅延をしているかによって決定される。
At this time, the order of the autocorrelation coefficient output to the output terminal 60i is determined by how much time delay the signal from the delay circuit 101 input to the multiplier 120i has with respect to the original signal applied to the input terminal 100. determined by what you do.

以ヒのようにこの発明に係る自己相関係数発生器は、除
算器を必要としない簡烏な回路構成により、0次の自己
相関係数で正規化された任意の次数の自己相関係数を得
ることができるものである。
As described below, the autocorrelation coefficient generator according to the present invention uses a simple circuit configuration that does not require a divider to generate an autocorrelation coefficient of any order normalized by a zero-order autocorrelation coefficient. This is something that can be obtained.

また、入力信号が定常信号であれば、減衰器424の利
得を小さくすることにより、自己相関係数の精度をとげ
ることができるし、入力信号の特性が時間的lこ変化す
るものであれば、その変化速度Iこ応じて減衰i 42
jの利得を大きくし収束速度を速めることもできる。
Furthermore, if the input signal is a stationary signal, the accuracy of the autocorrelation coefficient can be increased by reducing the gain of the attenuator 424; if the input signal characteristics change over time, , its rate of change I is attenuated according to i 42
The convergence speed can also be increased by increasing the gain of j.

〔発明の他の実施例〕[Other embodiments of the invention]

なお、この発明は上記実施例に限定されるものではなく
要旨を変更しない範囲において適宜変形して実施するこ
とができる。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and can be implemented with appropriate modifications within the scope without changing the gist.

例えば、遅延時間τxmf、の自己相関係数だけがほし
いときには入力信号をT、だけ遅延した信号にのみ、上
に詳述した処理をほどこせばよい。また。
For example, if only the autocorrelation coefficient of delay time τxmf is desired, the above-described process can be applied only to the input signal delayed by T. Also.

τ=τ鵞〜T、の間の自己相関係数がほしいときにはそ
の遅延回路の出力にのみ上記処理をほどこせばよいO さらに、係数修正回路401 * 402 ・”= 4
0n 41i113図に示した構成−ζ限定されるもの
ではなく1例えば第4図のように乗算器を符号変換器に
置きかえることもできる。
If you want the autocorrelation coefficient between τ = τ~T, you only need to apply the above processing to the output of that delay circuit.Furthermore, the coefficient correction circuit 401 * 402 ・"= 4
0n 41i 113 The configuration shown in FIG.

この場合には1例えば加算器304から得られる信号が
正のときには遅延回路101から供給される信号をその
まま加え、また加算器30iから得られる信号が負のと
きには遅延回路10iから供給される信号の符号を反転
して減資器42iに供給するようにする。
In this case, for example, when the signal obtained from the adder 304 is positive, the signal supplied from the delay circuit 101 is added as is, and when the signal obtained from the adder 30i is negative, the signal supplied from the delay circuit 10i is added. The sign is inverted and supplied to the capital reducer 42i.

係数発生回路50iの出力信号ri(In)は厳密には
Strictly speaking, the output signal ri (In) of the coefficient generation circuit 50i is as follows.

1次の自己相関係数とは若干異なった値に収束するが、
この差は殆んどの場合無視できる程度の小さなものであ
る。この構成のように符号変換器431で乗算a411
を代用すれば、自己相関係数発生器としての回路規模は
さらに簡単化される。
Although it converges to a value slightly different from the first-order autocorrelation coefficient,
This difference is negligible in most cases. As in this configuration, the code converter 431 multiplies a411
By substituting , the circuit scale of the autocorrelation coefficient generator can be further simplified.

このように係数修正回路40iは加算器30iの出力信
号値が小さくなる方向に修正信号を発生するものであれ
ば実用上問題はない。
As described above, there is no problem in practical use as long as the coefficient correction circuit 40i generates a correction signal in a direction in which the output signal value of the adder 30i becomes smaller.

また出力端子601,602・・・OQnに出力される
自己相関係数はlサンプル時間毎に微小変動するので。
Furthermore, the autocorrelation coefficients output to the output terminals 601, 602, . . . OQn vary slightly every l sample time.

この出力端子601.602・・・60rjに得られた
信号を時間平均したものを自己相関係数として用いても
よい。
A time average of the signals obtained at the output terminals 601, 602, . . . , 60rj may be used as the autocorrelation coefficient.

さらにまた、この発明の実mlζ当り1乗算器2012
02・・・200あるいは加算器301,302・・・
30nといった回路は、時分割処理を行なうことにより
1つの乗に′a、1つの加算器で構成することもできる
Furthermore, one multiplier 2012 per real mlζ of this invention
02...200 or adders 301, 302...
A circuit such as 30n can also be configured with one adder for each power by performing time division processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の自己相関係数発生器の一例の概略的回路
構成図、第2図はこの発明の一実施例の概略的回路構成
図、#13図は同実施例中の係数発生回路および係数修
正回路をより具体化した場合の回路図、第4図は同様に
係数修正回路の変形例を示す回路図である。 10:入力端子   o、t2−to :遅延回路21
.22・・・2n:乗算器 31.32・・・3n:アキュムレータ41、42・・
・4n:除算回路 51.52・・・5n:出力端子  100:入力端子
101.102−1011  :遅延回路201.20
2・・・20n=乗算器 301.302・・・30n=加算器 401.402・・・40n:係数修正回路501.5
02・・・50n:係数発生回路601.602・・・
60n=出力端子4ti :乗算器    42止:減
衰器51遍=加算器    52i:遅延素子43i:
符号変換器 第1 第2図 60+ On 434− 第3図 0i 第4図 0i
Figure 1 is a schematic circuit diagram of an example of a conventional autocorrelation coefficient generator, Figure 2 is a schematic circuit diagram of an embodiment of the present invention, and Figure #13 is a coefficient generation circuit in the same embodiment. FIG. 4 is a circuit diagram showing a modified example of the coefficient correction circuit. 10: Input terminal o, t2-to: Delay circuit 21
.. 22...2n: Multiplier 31.32...3n: Accumulator 41, 42...
・4n: Division circuit 51.52...5n: Output terminal 100: Input terminal 101.102-1011: Delay circuit 201.20
2...20n = Multiplier 301.302...30n = Adder 401.402...40n: Coefficient correction circuit 501.5
02...50n: Coefficient generation circuit 601.602...
60n = Output terminal 4ti: Multiplier 42nd: Attenuator 51st = Adder 52i: Delay element 43i:
Code converter 1 Fig. 2 60+ On 434- Fig. 3 0i Fig. 4 0i

Claims (3)

【特許請求の範囲】[Claims] (1)入力信号を所定の時間遅延させる遅延回路と、こ
の遅延回路の出力信号に係数発生回路から供給される係
数を乗する乗算器と、前記入力信号Sよびこの乗算器の
出力の和または差をとるための加算器と、この加算器の
出力信号および前記遅延回路の出力信号が供給され前記
加算器の出力信号が小さくなる方向に前記係数発生回路
から前記乗Jl器に供給される係数を修正する係数修正
回路とを備えたことを特徴とする自己相関係数発生器。
(1) A delay circuit that delays an input signal by a predetermined time, a multiplier that multiplies the output signal of this delay circuit by a coefficient supplied from a coefficient generation circuit, and a sum of the input signal S and the output of this multiplier, or an adder for taking a difference, an output signal of this adder and an output signal of the delay circuit are supplied, and a coefficient is supplied from the coefficient generation circuit to the multiplier in a direction in which the output signal of the adder becomes smaller. An autocorrelation coefficient generator characterized by comprising a coefficient correction circuit for correcting.
(2)係数修正回路は乗算器および減衰器で構成され、
係数発生回路は加算器および遅砥索子で構成されている
ことを特徴とする特許請求の範囲第1項記載の自己相関
係数発生器。
(2) The coefficient correction circuit consists of a multiplier and an attenuator,
2. The autocorrelation coefficient generator according to claim 1, wherein the coefficient generation circuit comprises an adder and a slow grinder.
(3)  係数修正回路は符号変換器および減衰器によ
り構成されていることを特徴とする特許請求の範囲第1
項記載の自己相関係数発生器。
(3) Claim 1, characterized in that the coefficient correction circuit is composed of a code converter and an attenuator.
Autocorrelation coefficient generator as described in section.
JP57006431A 1982-01-19 1982-01-19 Self-correlation coefficient generator Pending JPS58125176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57006431A JPS58125176A (en) 1982-01-19 1982-01-19 Self-correlation coefficient generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57006431A JPS58125176A (en) 1982-01-19 1982-01-19 Self-correlation coefficient generator

Publications (1)

Publication Number Publication Date
JPS58125176A true JPS58125176A (en) 1983-07-26

Family

ID=11638199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57006431A Pending JPS58125176A (en) 1982-01-19 1982-01-19 Self-correlation coefficient generator

Country Status (1)

Country Link
JP (1) JPS58125176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195464A (en) * 1985-02-26 1986-08-29 Fujitsu Ltd Autocorrelation function calculating circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195464A (en) * 1985-02-26 1986-08-29 Fujitsu Ltd Autocorrelation function calculating circuit

Similar Documents

Publication Publication Date Title
CN101091209B (en) Noise suppressing method and apparatus
JPH04304029A (en) Digital signal coder
Gold et al. Analysis of digital and analog formant synthesizers
SE422377B (en) speech coding
US4062060A (en) Digital filter
WO1982004488A1 (en) Adaptive techniques for automatic frequency determination and measurement
WO2003015272A1 (en) Method and apparatus for providing an error characterization estimate of an impulse response derived using least squares
US5687282A (en) Method and apparatus for determining a masked threshold
JPS58125176A (en) Self-correlation coefficient generator
US20210152936A1 (en) Information processing device, mixing device using the same, and latency reduction method
EP0422809B1 (en) Adaptive apparatus
JPS5917839B2 (en) Adaptive linear prediction device
JPH08102644A (en) Adaptive filter system
JP2655834B2 (en) Reverberation device
JP2603065B2 (en) Prediction filter
JPS5924439B2 (en) Control method for speech analysis and synthesis equipment
JP2001345762A (en) Method for generating signal
JP3200940B2 (en) Music control device
JPH06216711A (en) Sampling rate converter
Dorken et al. Frame-adaptive techniques for quality versus efficiency tradeoffs in STFT analysis
CN112735453A (en) Audio signal processing method and device
SU1352659A1 (en) Device for adaptive correction of signal
JPS60117922A (en) Digital/analog converting circuit
JPS63281510A (en) Tone control device
JPS62172809A (en) Digital filter