JPS5917839B2 - Adaptive linear prediction device - Google Patents

Adaptive linear prediction device

Info

Publication number
JPS5917839B2
JPS5917839B2 JP51099116A JP9911676A JPS5917839B2 JP S5917839 B2 JPS5917839 B2 JP S5917839B2 JP 51099116 A JP51099116 A JP 51099116A JP 9911676 A JP9911676 A JP 9911676A JP S5917839 B2 JPS5917839 B2 JP S5917839B2
Authority
JP
Japan
Prior art keywords
prediction
predictor
signal
prediction error
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51099116A
Other languages
Japanese (ja)
Other versions
JPS5324206A (en
Inventor
卓 荒関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP51099116A priority Critical patent/JPS5917839B2/en
Publication of JPS5324206A publication Critical patent/JPS5324206A/en
Publication of JPS5917839B2 publication Critical patent/JPS5917839B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は音声信号の分析および帯域圧縮に用いられ、予
測係数を逐次適応的に求める適応形線形予測装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adaptive linear prediction device that is used for audio signal analysis and band compression and that sequentially and adaptively obtains prediction coefficients.

近年、音声の分析および帯域圧縮のための有効な手段と
して線形予測法を用いたものが脚光をあびている。
In recent years, linear prediction methods have been attracting attention as an effective means for speech analysis and band compression.

これは音声信号がその過去の信号を用いてある程度予測
することができるという事実による。この場合求まつた
予測係数は音声信号の特性を現わすパラメータであると
共に、予測係数と予測誤差をもとに原信号を再生できる
ため帯域圧縮も可能となるのである。例えばDPCMあ
るいは△Mでは1サンプル過去の信号をもとに現在の信
号を推定し、その差成分(予測信号差)のみを伝送する
。過去の複数個のサンプル値を用いるならばより正確な
予測ができ、伝送すべき予測誤差がより小さくなること
は想像に難くない。このとき各サンプルの重み係数は予
測係数と呼ばれる。線形予測に関しては例えばJ、Ma
khoulの解説的な論文(゛LinearPredi
ction■ATuto一ria1Review’’3
ProceedingsoftheIEEE、Vol、
63、遥4、pp、561−58O、5April19
75)あるいはその他の論文で述べられている。これら
に従うと、音声信号系列をX。
This is due to the fact that the audio signal can be predicted to some extent using its past signals. In this case, the determined prediction coefficient is a parameter representing the characteristics of the audio signal, and since the original signal can be reproduced based on the prediction coefficient and the prediction error, band compression is also possible. For example, in DPCM or ΔM, the current signal is estimated based on the signal of one sample past, and only the difference component (predicted signal difference) is transmitted. It is not hard to imagine that if a plurality of past sample values are used, more accurate predictions can be made and the prediction error to be transmitted is smaller. At this time, the weighting coefficient of each sample is called a prediction coefficient. For linear prediction, for example, J, Ma
khoul's explanatory paper ('Linear Predi
ction■ATutoichiria1Review''3
Proceedings of the IEEE, Vol.
63, Haruka 4, pp, 561-58O, 5April19
75) or other papers. According to these, the audio signal sequence is X.

、X1、・・・Xj−1とするとj時刻の音声信号はΛ
N ’0Xj=Σ ・・・・・・・・・・・・・・・・・・
(1)i■1aiXj−iで近似できる。
, X1, ...Xj-1, the audio signal at time j is Λ
N '0Xj=Σ ・・・・・・・・・・・・・・・・・・
(1) It can be approximated by i■1aiXj-i.

但し、ai(i■1、2、・・・N )は予測係数。
Λここで予測値Xjと真の値Xjとの差の二乗平均j5
が最小となるような最適な予測係数を求める一つの方法
は、音声信号Xjの自己相関係数ψ。
However, ai (i■1, 2,...N) is a prediction coefficient.
ΛHere, the root mean square of the difference between the predicted value Xj and the true value Xj j5
One method for finding the optimal prediction coefficient that minimizes is the autocorrelation coefficient ψ of the audio signal Xj.

、ψ1、ψNを求め、ψoψ10゜゜゜゜゜゜゜゜゜゜
゜ψN−1ψ1ψ1ψ0 ψ2 ・イ2) ψN−1゜ψo ψN しかし、この なる線形方程式を解くことである 25方法では自己相関を求めるために極めて大量の演算
が必要となり実際に装置を作るときに大きな難点となる
, ψ1, ψN, and ψoψ10゜゜゜゜゜゜゜゜゜゜゜ψN−1ψ1ψ1ψ0 ψ2 ・i2) ψN−1゜ψo ψN However, the method 25, which involves solving this linear equation, requires an extremely large amount of calculations to find the autocorrelation. This is a major difficulty when actually building the device.

予測係数を求める他の方法は予測係数の逐次修正を行な
うものである。
Another method for determining prediction coefficients is to sequentially modify the prediction coefficients.

つまり、時刻jにおける刃 予測誤差ejをΛ ej=xj−xj・・・・・・・・・・・・・・・(3
)とすると、予測係数a)(i■1、2、・・・・・・
N )は96a?゛″a4fγ・f(Xj−i)・g(
ej)、(i=1、2、・・・N)・イ4)のごとくに
修正される。
In other words, the blade prediction error ej at time j is Λ ej = xj - xj (3
), then the prediction coefficient a)(i■1, 2,...
N) is 96a?゛''a4fγ・f(Xj-i)・g(
ej), (i=1, 2, . . . N)・a4).

ここでγは修正ゲイン、f、gは任意の非減少関数であ
る。(4)式を繰り返すことによりa!は最適値に近づ
く。線形予測法を用いた音声帯域圧縮の例はAtal等
による(2)式を解く方式(B.S.AtalandM
.あるいは(4)式のごとく逐次法によるもの(J.が
挙げられる。
Here γ is a modified gain, and f and g are arbitrary non-decreasing functions. By repeating equation (4), a! approaches the optimal value. An example of voice band compression using the linear prediction method is the method of solving equation (2) by Atal et al.
.. Alternatively, a method using a sequential method as shown in equation (4) (J.

いずれの場合も予測係数の数は10程度である。前者は
帯域圧縮比は大きいが装置が極めて複雑化するという欠
点を持つ。後者は圧縮比は前者よりも小さいが相関係数
を求める必要がないこと、予測係数を送信する必要がな
いこと等の理由で回路的にはかなり簡単となる。従つて
本発明は後者に関するものである。音声信号は母音と子
音から構成されており、母音は周期的な声帯の振動によ
る空気流の変化を音源としている。
In either case, the number of prediction coefficients is about 10. The former has a large band compression ratio, but has the disadvantage that the device becomes extremely complex. Although the latter has a smaller compression ratio than the former, it is considerably simpler in terms of circuitry because there is no need to obtain correlation coefficients or to transmit prediction coefficients. The present invention therefore relates to the latter. Speech signals are composed of vowels and consonants, and vowels originate from changes in airflow due to periodic vibrations of the vocal cords.

この周期的な音源のため予測誤差はやはり周期的な信号
となる。つまり周期的に予測し難い部分が現われる。線
形予測による音声の帯域圧縮の限界は上述の音源で決定
され、原音声信号と最適線形予測したときの予測誤差信
号との電力比(圧縮比)は予測係数の数が10前後の場
合に14dB程度となる。圧縮比をさらに上げるには予
測係数の数を増す方法、あるいは音源の周期をあらかじ
め測定し音源の周期性をとり除く前掲のAtal等の方
法が考えられる。しかし予測係数の個数を増す方法は逐
次法によると一般に予測係数の数の増加と共に予測係数
の音声の変化に対する追従性が悪くなること、S/Nの
悪化を防ぐため演算の精度を上げなければならないこと
、予測係数の解が一義的でない等問題が多い。一方At
al等の方法では周期性を求めるため相関係数を求めな
ければならないこと、また検出した周期を送信しなけれ
ばならないこと等の理由で回路的に極めて複雑となる。
Because of this periodic sound source, the prediction error is still a periodic signal. In other words, parts that are difficult to predict appear periodically. The limit of speech band compression by linear prediction is determined by the above-mentioned sound source, and the power ratio (compression ratio) between the original speech signal and the prediction error signal when performing optimal linear prediction is 14 dB when the number of prediction coefficients is around 10. It will be about. To further increase the compression ratio, it is possible to use a method of increasing the number of prediction coefficients, or a method such as that of Atal mentioned above, which measures the period of the sound source in advance and removes the periodicity of the sound source. However, when increasing the number of prediction coefficients using the sequential method, generally speaking, as the number of prediction coefficients increases, the ability of the prediction coefficients to follow changes in the audio deteriorates, and in order to prevent deterioration of the S/N ratio, the accuracy of calculation must be increased. There are many problems, such as that the prediction coefficient is not unique, and that the solution to the prediction coefficient is not unique. On the other hand, At
In the method such as al, the circuit becomes extremely complicated because a correlation coefficient must be determined to determine the periodicity, and the detected period must be transmitted.

また音声分析においても、音源の周期を求めるためには
自己相関を求める等の多量の計算量が要本発明の目的は
簡単な回路で音源の周期をも含めた音声分析を行なう装
置の提供にある。
Also, in voice analysis, in order to determine the period of a sound source, a large amount of calculation is required, such as calculating autocorrelation.The purpose of the present invention is to provide a device that performs voice analysis including the period of the sound source using a simple circuit. be.

本発明の他の目的は回路を複雑化することなしにさらに
大幅な帯域圧縮を可能とする予測装置の提供にある。
Another object of the present invention is to provide a prediction device that enables even greater band compression without complicating the circuit.

本発明によれば、予測誤差を用いて自らの予測係数を逐
次的に修正する第1の適応形線形予測器と、第2の適応
形線形予測器とを有し、両者を縦続接続したことを特徴
とする音声分析用の適応形線形予測装置が得られる。
According to the present invention, there is provided a first adaptive linear predictor that sequentially corrects its own prediction coefficient using a prediction error, and a second adaptive linear predictor, which are connected in cascade. An adaptive linear prediction device for speech analysis is obtained.

次に図面を用いて本発明を詳細に説明する。Next, the present invention will be explained in detail using the drawings.

第1図は本発明の原理説明図であり、第2図は各信号の
波形を示す図である。音声信号系列X。,Xl,・・・
・・・Xjは送信側入力端子10から与えられ、比較的
少数個の予測係数を持つ第1の予測器20に加えられる
。第1の予測器20ではj−1時刻までの入力信号をも
とにXjの推定値を得る。
FIG. 1 is a diagram explaining the principle of the present invention, and FIG. 2 is a diagram showing the waveforms of each signal. Audio signal series X. ,Xl,...
...Xj is given from the transmission side input terminal 10 and applied to the first predictor 20 having a relatively small number of prediction coefficients. The first predictor 20 obtains an estimated value of Xj based on the input signal up to time j-1.

ここでh1は時刻jにおける第1の予測器のi番目の子
測係数である。一般的には入力信号は8kHzサンプリ
ングとしNとして10程度の値を用いればよい入減算器
21では真の音声?号Xjから予炊直刊 を差し引いて
第1の予測誤差Fj=Xj−Xjを得る。
Here, h1 is the i-th child measurement coefficient of the first predictor at time j. Generally, the input signal should be sampled at 8kHz, and a value of about 10 should be used for N.The input subtracter 21 can detect the true voice? The first prediction error Fj=Xj-Xj is obtained by subtracting the pre-cooked direct publication from issue Xj.

原音声信号が第2図xで表わされる場合には第1の予測
誤差は同図fのようになる。つまり音声源の周期に従い
予測誤差が大きくなる。第1の予測誤差は第2の予測器
30に加えられ、第1の予測誤差F,の推定値1−ν を出力する。
When the original audio signal is represented by x in FIG. 2, the first prediction error is as shown in f in the same figure. In other words, the prediction error increases with the period of the audio source. The first prediction error is applied to a second predictor 30, which outputs an estimate 1-v of the first prediction error F,.

但しLは10〜20.Mは100程度の値が選ばれる。
またp1は時刻jにおける第i番目の子測係数である。
第2の予測器30でiがLより小さいところの予測係数
は、第1の予測器20で用いられていること、音源の周
期性とは7.′:′:π呻二;:′I′?1,種::る
。Ejは第2図eで示すように極めて小さな信号となる
。ここで第1の予測器20は入力信号系列と第1の予測
誤差とから逐次修正される。この一例は前述のGibs
On等の文献に示されており、一般的にはで示される。
However, L is 10-20. A value of about 100 is selected for M.
Further, p1 is the i-th child measurement coefficient at time j.
7. The prediction coefficients where i is smaller than L in the second predictor 30 are used in the first predictor 20, and the periodicity of the sound source is 7. ′:′:π groan 2;:′I′? 1, Seed::ru. Ej becomes an extremely small signal as shown in FIG. 2e. Here, the first predictor 20 is successively corrected from the input signal sequence and the first prediction error. An example of this is the aforementioned Gibs
On et al., and is generally indicated by .

但し、γは修正ゲイン、ψ1,ψ2は任意の非減少開数
、1は1〜Nの値である。しかし音声の変化に対する追
従性をよくするために(7)式として比較的高速なアル
ゴリズムが要求される。第2の予測器30は第1の予測
誤差と第2の予測誤差から逐次修正される。一般的に表
わすと、となる。ここでψ3,ψ4は任意の非減少関数
、1はL−Mの値、δは修正ゲインである。第2の予測
器30では、予測係数の数がかなり多いが、音声源の周
期の急激な変動はまれである。従つて高い修正の速度は
要求されない。また周期性の消去の際に高い精度は要求
されない。これらの理由から第2の予測器30では予測
係数の数は多いが、低い演算精度で、かつ簡単な修正ア
ルゴリズムを採用することもできる。
However, γ is a modified gain, ψ1 and ψ2 are arbitrary non-decreasing numerical numbers, and 1 is a value from 1 to N. However, in order to improve the ability to follow changes in voice, a relatively fast algorithm is required for equation (7). The second predictor 30 is successively corrected from the first prediction error and the second prediction error. Generally expressed, it becomes. Here, ψ3 and ψ4 are arbitrary non-decreasing functions, 1 is the value of LM, and δ is a modified gain. In the second predictor 30, the number of prediction coefficients is quite large, but rapid fluctuations in the period of the speech source are rare. Therefore high modification speeds are not required. Furthermore, high accuracy is not required when erasing periodicity. For these reasons, although the second predictor 30 has a large number of prediction coefficients, it is possible to employ a simple correction algorithm with low calculation accuracy.

音声分析装置は送信側のみだけで実現できる。A voice analysis device can be implemented only on the transmitting side.

この場合第1の予測器20の予測係数は音声のフオルマ
ントあるいは声道に関する情報に変換できる。また第2
の予測器30の予測係数から音声源の周期が得られる。
これらに関しては前出のMakhOulの論文に述べら
れている。一方、帯域圧縮に用いる場合は、送信側出力
端子から送られた第2の予測誤差Ejは伝送チヤンネル
14を通り受信側に与えられる。
In this case, the prediction coefficients of the first predictor 20 can be converted into information about speech formants or vocal tracts. Also the second
The period of the speech source is obtained from the prediction coefficient of the predictor 30.
These are described in the paper by MakhOul mentioned above. On the other hand, when used for band compression, the second prediction error Ej sent from the transmitting side output terminal is given to the receiving side through the transmission channel 14.

受信側第1の加算器41では受信信号e・と受信側第1
の予測器40の出力信号である。外1を加えてFSを作
る。受信側第1の予測器40は送信側第2の予測:′I
,′.′(′;″,″(,羊?ア潔“;一また受信側第
2の予測器50では予測信号X/jを生成し、第2の加
算器51により原信号X5が再生される ここでも、エ
ラーがなければx・,=Xj,)1=金jで゛ある。
The first adder 41 on the receiving side combines the received signal e.
is the output signal of the predictor 40. Add outside 1 to make FS. The first predictor 40 on the receiving side makes the second prediction on the transmitting side: 'I
,′. ′(′;″,″(, え? あ き“) Also, the second predictor 50 on the receiving side generates the predicted signal X/j, and the second adder 51 reproduces the original signal X5. However, if there is no error, x・,=Xj,)1=money j.

また受信側の第1の予測器50はそれぞね8)式、(7
)式の修正アルゴリズムを持つ。以上の説明から明らか
なように逐次形の線形予測を行なつた場合予測係数を伝
送する必要がない。
Furthermore, the first predictor 50 on the receiving side is
) has a correction algorithm for the formula. As is clear from the above description, there is no need to transmit prediction coefficients when sequential linear prediction is performed.

従つて従来形では第2図のfを伝送しなければならない
のに対して、本発明では第2図のeを伝送することによ
り大幅な伝送ビツト数の低減が可能となる。上の説明で
本発明の原理的な動作を示したが、実際には伝送、演算
でのエラーがあり得ること、量子化を行なわねばならな
いこと等から構成に若干の差が現われる。第3回は本発
明による実施例であり、本実施例では送信側の予測器お
よび量子化器がループを作つている。つまり送信側では
Ji刻に原音声信号系列Xjは入力端子ス0から与え送
信側第1の減算回路60で入測値Xjとの差即ち第1の
予測誤差Fj=Xj−Xjが求められる。△予測値Xj
は第1の予測器30で過去の入力音声信号をもとに次式
により第1の予測器20において生成される。
Therefore, in the conventional type, f in FIG. 2 must be transmitted, whereas in the present invention, by transmitting e in FIG. 2, it is possible to significantly reduce the number of transmission bits. Although the principle operation of the present invention has been shown in the above explanation, in reality, there are some differences in the configuration because errors may occur in transmission and calculation, quantization must be performed, etc. The third example is an example according to the present invention, in which the transmitting side predictor and quantizer form a loop. That is, on the transmitting side, at Ji time, the original audio signal sequence Xj is applied from the input terminal S0, and the first subtraction circuit 60 on the transmitting side calculates the difference from the measured value Xj, that is, the first prediction error Fj=Xj-Xj. △Predicted value Xj
is generated in the first predictor 20 by the first predictor 30 based on the past input audio signal using the following equation.

但し、Xj−1は送信側で再生された音声信号サンプル
であり、Nは10程度の値である。
However, Xj-1 is an audio signal sample reproduced on the transmitting side, and N is a value of about 10.

h}は次式のように修正される。但しkは1より充,分
小さな値、ψ1,ψ2は任意の非減少関数である。
h} is modified as shown in the following equation. However, k is a value sufficiently smaller than 1, and ψ1 and ψ2 are arbitrary non-decreasing functions.

7jは送信側で再生された第1の予測誤差である。7j is the first prediction error reproduced on the transmitting side.

第1の予測誤差Fjは第;Pぜζ―〒冬1゛:[ャ梶FT
−;=Z今1は第2の予測器30において次式により得
られる。ここでFj−1は送!側で再生された第1の予
測誤差である。またP}は次式に従0;修正される。但
しtは1より充分小さな値である。またψ3,ψ4は任
意の非減少関数である。第2の予測誤差Ejは量子化器
70により量子化され送信信号Ejとなつて送り出され
る。送信信号Ej″は量子化器人0の逆特性を持つ逆量
子化器71に入力され7;袷:)−13;:リ:慕=X
O。ょ.い入力信号となる。
The first prediction error Fj is
-;=Z Now 1 is obtained in the second predictor 30 by the following equation. Here, Fj-1 is sent! This is the first prediction error reproduced on the side. Further, P} is corrected to 0 according to the following equation. However, t is a value sufficiently smaller than 1. Further, ψ3 and ψ4 are arbitrary non-decreasing functions. The second prediction error Ej is quantized by a quantizer 70 and sent out as a transmission signal Ej. The transmitted signal Ej'' is input to the inverse quantizer 71 which has the inverse characteristic of the quantizer 0, and is given as 7;
O. Yo. This results in a poor input signal.

また第1の加算器22により′Xj=了j+マjが得ら
れ第1の予測器20の新しい入力信号となる。一方 受
信側においては受信した信号eノは逆゛ △
J量子化装置72によりe に変換され第1
の加算j柑?゛I?:“廿== 測器40により次式に従い求められる。
Also, the first adder 22 obtains 'Xj=endj+maj, which becomes a new input signal to the first predictor 20. On the other hand, on the receiving side, the received signal e is reversed △
It is converted into e by the J quantizer 72 and the first
Addition of j?゛I? : "廿== It is determined by the measuring instrument 40 according to the following formula.

5叫{゜?′.′v工1重!÷Zr重 2の予測器50において次式により求められる。5 shouts {゜? '. 'V engineering 1 layer! ÷Zr weight It is determined by the following equation in the predictor 50 of No. 2.

. 151..p〜およびh′νの修正は送信側におけ
るp!お1.11よびh!の修正と同じアルゴリズムに
よつて行なわれる。
.. 151. .. The modification of p~ and h'ν is p! at the transmitter side. 1.11 and h! This is done using the same algorithm as the modification of .

以上の説明で明らかなように本実施例で用いられる線形
予測器はいずれも予測値を求めるための積和演算と予測
係数の修正だけであり、回路的には比較的単純である。
As is clear from the above description, the linear predictors used in this embodiment are relatively simple in terms of circuitry, as they only perform sum-of-products operations and correction of prediction coefficients to obtain predicted values.

また送信側、受信側それぞれに2つの予測器が用いられ
るが、両予測器で用いられるアルゴリズムが似ているな
らば一つの演算回路を時分割で用いて2つの予測器が実
現できる。また二つの予測器の順序を入れ換えても何ら
さしつかえない。以上述べたように本発明によれば回路
的には小形で単純な構成で、かつ帯域圧縮比の大きい線
形予測符号復号化装置が得られる。
Furthermore, two predictors are used on each of the transmitting side and the receiving side, but if the algorithms used by both predictors are similar, the two predictors can be realized by using one arithmetic circuit in a time-sharing manner. Moreover, there is no problem even if the order of the two predictors is switched. As described above, according to the present invention, it is possible to obtain a linear predictive code decoding device that has a small and simple circuit configuration and has a high band compression ratio.

以上の説明においては帯域圧縮のみについて述べたが、
第1図の送信部のみを取り出し、音声分析装置としても
使用できる。
In the above explanation, we only talked about bandwidth compression, but
By removing only the transmitter shown in FIG. 1, it can also be used as a speech analysis device.

つまり小数個の予測係数を持つ予測器には音声のフオル
マントあるいは声道に関する情報が求められており、他
の予測器からは音源の情報即ちピツチ周波数を抽出する
ことができる。つまり本発明によれば簡単な回路を用い
て極めて有効な音声分析装置たる線形予測が得られる。
In other words, a predictor having a decimal number of prediction coefficients is required to provide information regarding the formant of the voice or the vocal tract, and other predictors are capable of extracting information about the sound source, that is, the pitch frequency. In other words, according to the present invention, linear prediction, which is an extremely effective speech analysis device, can be obtained using a simple circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は第1図各部の波
形図、第3図は本発明の一実施例を示すプロツク図であ
る。
FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a waveform diagram of each part of FIG. 1, and FIG. 3 is a block diagram showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 自らの予測係数を逐次的に修正する第1の適応形線
形予測器と、自らの予測係数を逐次的に修正する第2の
適応形線形予測器とを有し、両者を継続接続したことを
特徴とする適応形線形予測装置。
1. It has a first adaptive linear predictor that sequentially corrects its own prediction coefficients and a second adaptive linear predictor that sequentially corrects its own prediction coefficients, and the two are continuously connected. An adaptive linear prediction device characterized by:
JP51099116A 1976-08-18 1976-08-18 Adaptive linear prediction device Expired JPS5917839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51099116A JPS5917839B2 (en) 1976-08-18 1976-08-18 Adaptive linear prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51099116A JPS5917839B2 (en) 1976-08-18 1976-08-18 Adaptive linear prediction device

Publications (2)

Publication Number Publication Date
JPS5324206A JPS5324206A (en) 1978-03-06
JPS5917839B2 true JPS5917839B2 (en) 1984-04-24

Family

ID=14238817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51099116A Expired JPS5917839B2 (en) 1976-08-18 1976-08-18 Adaptive linear prediction device

Country Status (1)

Country Link
JP (1) JPS5917839B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111532U (en) * 1985-12-27 1987-07-16
JPS62174624A (en) * 1986-01-29 1987-07-31 Mitsubishi Kakoki Kaisha Ltd Field inspecting method for large-sized tower tank, or the like

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197204A (en) * 1981-05-27 1982-12-03 Shiseido Co Ltd Emulsion cosmetic
JPS57197500A (en) * 1981-05-29 1982-12-03 Hitachi Ltd Method of solidifying radioactive waste pellet
JPS58155398A (en) * 1982-03-12 1983-09-16 株式会社日立製作所 Method of solidifying radioactive waste
JPS58165100A (en) * 1982-03-25 1983-09-30 株式会社日立製作所 Method of solidifying radioactive waste
JPS58166299A (en) * 1982-03-27 1983-10-01 株式会社日立製作所 Solidification of radioactive waste with inorgative solidifying agent
JPS58213300A (en) * 1982-06-04 1983-12-12 株式会社日立製作所 Method of processing radioactive waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111532U (en) * 1985-12-27 1987-07-16
JPS62174624A (en) * 1986-01-29 1987-07-31 Mitsubishi Kakoki Kaisha Ltd Field inspecting method for large-sized tower tank, or the like

Also Published As

Publication number Publication date
JPS5324206A (en) 1978-03-06

Similar Documents

Publication Publication Date Title
US4301329A (en) Speech analysis and synthesis apparatus
JP3254687B2 (en) Audio coding method
JPH02272500A (en) Code driving voice encoding system
JPH0395600A (en) Apparatus and method for voice coding
US3909533A (en) Method and apparatus for the analysis and synthesis of speech signals
JPS58207100A (en) Lpc coding using waveform formation polynominal with reduced degree
JP2738533B2 (en) Speech synthesis using multi-level filter excitation
JPH08179795A (en) Voice pitch lag coding method and device
JPS5917839B2 (en) Adaptive linear prediction device
US7305337B2 (en) Method and apparatus for speech coding and decoding
JPH10240299A (en) Voice encoding and decoding device
JPH07199997A (en) Processing method of sound signal in processing system of sound signal and shortening method of processing time in itsprocessing
JP3338074B2 (en) Audio transmission method
JP3183944B2 (en) Audio coding device
JP3138574B2 (en) Linear prediction coefficient interpolator
JP4489371B2 (en) Method for optimizing synthesized speech, method for generating speech synthesis filter, speech optimization method, and speech optimization device
Nagarajan et al. Efficient implementation of linear predictive coding algorithms
JPH08194497A (en) Encoding and decoding method for conversion of acoustic signal
JP3144213B2 (en) Speech parameter analyzer and speech coder
KR0138878B1 (en) Method for reducing the pitch detection time of vocoder
JP3068688B2 (en) Code-excited linear prediction coding method
JP3092344B2 (en) Audio coding device
JP3271966B2 (en) Encoding device and encoding method
JPH0728497A (en) Voice coding device and its analyzer and synthesizer
JPS5924439B2 (en) Control method for speech analysis and synthesis equipment