JPS58124987A - Control rod operation guide device for atomic power plant - Google Patents

Control rod operation guide device for atomic power plant

Info

Publication number
JPS58124987A
JPS58124987A JP57007482A JP748282A JPS58124987A JP S58124987 A JPS58124987 A JP S58124987A JP 57007482 A JP57007482 A JP 57007482A JP 748282 A JP748282 A JP 748282A JP S58124987 A JPS58124987 A JP S58124987A
Authority
JP
Japan
Prior art keywords
control rod
reactor
detector
power distribution
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57007482A
Other languages
Japanese (ja)
Inventor
勉 大塚
浩一 関水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP57007482A priority Critical patent/JPS58124987A/en
Publication of JPS58124987A publication Critical patent/JPS58124987A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、冷却材流量の調整と制御棒の操作とにより、
炉出力の制御を行う原子力発電所の炉内中性子分布を予
測し、これにより制御棒操作をガイドする原子力発電所
の制御棒操作ガイド装置に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention provides a method for controlling coolant flow rate and controlling a control rod by controlling a coolant flow rate and controlling a control rod.
The present invention relates to a control rod operation guide device for a nuclear power plant that predicts the neutron distribution within the reactor of a nuclear power plant that controls reactor output and guides control rod operation based on this prediction.

〔発明の技術的背景〕[Technical background of the invention]

沸騰水型原子炉(BWR)プラントの運転において、起
動から定格出力レベル到達までの間に、以下の3つの検
出器領域を経過する。
During the operation of a boiling water reactor (BWR) plant, the following three detector regions are passed between startup and reaching the rated output level.

(a) S RM (5ource range mo
nitor )領域起動時より臨界付近までの領域 (b) I RM(Intermediate ran
ge monitor )領域臨界付近から低出力レベ
ルまでの領域 (c) APRM(Average power ra
nge monitor )領域低出力レベルから高出
力レベルに至る全領域 これらの各検出器領域中、運転員が最も注意しなければ
ならないのは、IRM領域である。すなわち、この領域
では炉内温度上昇率が一定となるよう制?@棒を操作す
る必要があり、また複数のIRMのレンチ切換えを行う
必要がある。
(a) SRM (5source range mo
(b) I RM (Intermediate run)
ge monitor) area Area from near criticality to low output level (c) APRM (Average power ra
nge monitor) area All areas from low output level to high output level Among these detector areas, the IRM area requires the most attention from the operator. In other words, is the temperature increase rate in the furnace constant in this region? It is necessary to operate the @ stick, and it is necessary to switch wrenches between multiple IRMs.

〔背景技術の問題点〕[Problems with background technology]

運転員は制御棒の操作に伴い、前記のIRMのレンチ切
換えを頻繁に行わなければならない。
Operators must frequently switch the IRM wrench as described above as they operate the control rods.

また、レンチ切換えのタイミングを逸した場合には原子
炉スクラムを生じるので、タイミングに十分留意しなけ
ればならない。
Furthermore, if the timing of wrench switching is missed, a reactor scram will occur, so careful attention must be paid to the timing.

また、IRMレンヂ切換えを過早に行った場合には、ス
ケールが小さくなるため制御棒引抜阻止を生じるおそれ
がある。さらに、制御棒操作直後はIRMの指示値は上
昇するが、その後温度上昇に伴ってIRM指示値が減少
することもある。従って、スケールに対し指示値の小さ
い段階でレンチ切換えを行う場合には、レンチダウン、
レンヂアノプの何れかを選択しなければならないことと
なり、レンチ切換えの繁雑さを増大させている。
Furthermore, if the IRM range is switched prematurely, the scale becomes smaller and there is a risk that the control rod will be blocked from being pulled out. Further, although the IRM instruction value increases immediately after the control rod is operated, the IRM instruction value may decrease thereafter as the temperature rises. Therefore, when changing the wrench at a stage where the indicated value is small relative to the scale, the wrench down,
This means that one of the range knobs must be selected, which increases the complexity of switching wrenches.

従って、スケール下部でレンチ切換えを行うことは得策
でなく、スケール−に部で切換えを行うことにより切換
え回数を減少させることが望ましいが、この場合には前
記のようにタイミングを失し、スケールオーバによる原
子炉スクラムを生じるおそれがある。
Therefore, it is not a good idea to switch the wrench at the bottom of the scale, and it is desirable to reduce the number of switches by switching at the bottom of the scale, but in this case, as mentioned above, the timing will be lost and the scale will be over may cause a reactor scram.

従来は、制御棒の操作とIRMレンヂの切換えを運転員
の経験と勘にたよっていたが、制御棒操作とレンチ切換
えのガイドな適確になし得る装置の開発が要望されてい
る。
Conventionally, control rod operations and IRM range switching have relied on the experience and intuition of operators, but there is a need for the development of a device that can guide and accurately control control rod operations and wrench switching.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に基きなされたもので、制御棒操作
の都度次回に操作すべき制御棒炉心位置および操作量を
指示し、さらに前記の操作の結果IRMのレンチ切換え
の必要があるか否かを指示する制御棒操作ガイド装置を
得ることを目的としている。
The present invention has been made based on the above circumstances, and each time a control rod is operated, it instructs the control rod core position and operation amount to be operated next time, and also determines whether it is necessary to change the IRM wrench as a result of the above operation. The objective is to obtain a control rod operation guide device that instructs the

〔発明の概要〕[Summary of the invention]

本発明においては、制御棒操作の都度次回に操作すべき
制御棒炉心位置および操作量を指示し、前記操作に伴う
炉出力分布結果から、検出器指示値を予測し、それが現
在設定しである検出器レンチの範囲に留るか否かにより
、レンチの切換えを指示するようにして前記目的を達成
している。
In the present invention, each time a control rod is operated, the control rod core position and operation amount to be operated next are instructed, and the detector indication value is predicted from the reactor power distribution result associated with the operation, and the detector indication value is predicted from the current set value. The above objective is achieved by instructing the wrench to be switched depending on whether or not the detector stays within the range of a certain detector wrench.

〔発明の実施例〕[Embodiments of the invention]

第1図において、原子炉1内には、炉心に挿入されてい
る制御棒の位置、炉心内の中性子束、炉心の冷却材流量
、圧力、温度等のプロセス量を検出する各種検出器(図
示しない)が設けられており、それらの検出出力すなわ
ち炉心データ信号S1は、炉心の性能を計算する炉心性
能計算装置2に入力されている。この炉心性能計算装置
2は周知の電子計算機により構成され、入力された炉心
データ信号S1に基き炉心性能を計算する。
In Figure 1, inside the reactor 1 are various detectors (not shown) that detect process variables such as the position of the control rods inserted in the reactor core, the neutron flux in the reactor core, the flow rate of coolant in the reactor, pressure, and temperature. The detected outputs, that is, the core data signal S1, are input to a core performance calculation device 2 that calculates the performance of the reactor core. This core performance calculation device 2 is constituted by a well-known electronic computer, and calculates the core performance based on the input core data signal S1.

炉心性能計算装置2の計算結果である出力信号S2は、
軸方向出力分布予測装置3および2次元炉出力分布予測
装置4に与えられ、これらの装置で初期値データとされ
る。軸方向出力分布予測装置3は、炉心を軸方向−次元
の拡散モデルで近似して、制御棒位置変化にf4’5炉
出力分布を必要な精度で迅速に求めるものであり、本出
願人の出願に係る特願昭55−89001号開示の装置
と同様の構成を有する。
The output signal S2, which is the calculation result of the core performance calculation device 2, is
It is given to the axial power distribution prediction device 3 and the two-dimensional furnace power distribution prediction device 4, and is used as initial value data by these devices. The axial power distribution prediction device 3 approximates the reactor core with an axial-dimensional diffusion model to quickly obtain the f4'5 reactor power distribution based on control rod position changes with the necessary accuracy. It has the same configuration as the device disclosed in Japanese Patent Application No. 55-89001.

2次元炉出力分布予測装置4は、炉心性能、計算装置2
よりIRM検出検出器付置に対応する2次元炉出力分布
を入力し、2次元炉出力分布を規格化し、下記の計算式
から制御棒操作後の炉出力分布を予測する。すなわち、
原子炉において、次の拡散方程式が成立する。
The two-dimensional reactor power distribution prediction device 4 is a core performance calculation device 2.
Input the two-dimensional reactor power distribution corresponding to the installation of the IRM detection detector, normalize the two-dimensional reactor power distribution, and predict the reactor power distribution after control rod operation from the following calculation formula. That is,
In a nuclear reactor, the following diffusion equation holds.

ここに、KH,Ji M 1. J i B 1. J
は炉心高さがIRM検出器位置で、ノードI、Jにおけ
る無限増倍率、移動面積、軸方向バックリングを示し、
λは原子炉の固有値、φは中性子束を示している。
Here, KH, Ji M 1. J i B 1. J
indicates the infinite multiplication factor, moving area, and axial buckling at nodes I and J, where the core height is the IRM detector position,
λ is the eigenvalue of the reactor, and φ is the neutron flux.

軸方向もれ量Bl、Jは式(1)を逆算することにより
、 ・・・・・・・・・・・・・(2) 上記の如くして炉心性能計算装置2がら転送されたデー
タに基く全核定数が求められ、かつ炉内中性子束分布と
演算式上の中性子束分布とが一致することとなる。
The axial leakage amounts Bl and J are determined by back calculation of equation (1). (2) The data transferred from the core performance calculation device 2 as described above. The total nuclear constant based on is calculated, and the neutron flux distribution in the reactor and the neutron flux distribution on the calculation formula match.

制御棒操作後の中性子束分布の変化は、制御棒に関する
核定数を求め、式(1)を繰返し計算することによって
求めることができる。
Changes in the neutron flux distribution after control rod operation can be determined by determining the nuclear constant for the control rod and repeatedly calculating equation (1).

軸方向出力分布予測装置3の予測結果の絶対値の信号S
3と、2次元炉出力分布予測装置4の予測結果のIRM
検出検出器子面上の規格化した炉出力分布の信号S4と
は、検出器指示値予測装置5に入力され、検出器指示値
予測装置5は、信号S3゜S4かも検出器位置での中性
子束分布を合成して検出器位置における中性子束を求め
る。さらに、ここで求められた中性子束φ1を次式に従
って検出器指示値を変換する。
Signal S of the absolute value of the prediction result of the axial output distribution prediction device 3
3 and IRM of the prediction results of the two-dimensional reactor power distribution prediction device 4
The signal S4 of the normalized reactor power distribution on the detection detector surface is input to the detector indication value prediction device 5, and the detector indication value prediction device 5 calculates whether the signal S3 or S4 is the neutron at the detector position. The neutron flux at the detector position is determined by combining the flux distributions. Furthermore, the neutron flux φ1 obtained here is converted into a detector indication value according to the following equation.

Ai =αφ1・・・・・・・・・・・・・・・・・・
・・・・・・・・・(8)ここで、A1は検出器1の指
示値、αは検出器1まわり、の制御棒位置を考慮して定
めた変換係数である。
Ai = αφ1・・・・・・・・・・・・・・・・・・
(8) Here, A1 is the indicated value of the detector 1, and α is a conversion coefficient determined in consideration of the control rod position around the detector 1.

制御棒位置指定装置6は、原子炉1の制御棒位置信号S
5を取入れ、この信号S5と予め設定しである制御棒引
抜手順とから、次に操作すべき制御棒の炉心位置と操作
量とを指定し、これらについての信号S6を軸方向炉出
力分布予測装置3.2次元炉出力分布予測装置4に与え
、これらを起動する。
The control rod position designation device 6 receives a control rod position signal S of the reactor 1.
5, and from this signal S5 and the preset control rod withdrawal procedure, specify the core position and operation amount of the control rod to be operated next, and use the signal S6 regarding these to predict the axial reactor power distribution. Apparatus 3: Supply to the two-dimensional reactor power distribution prediction apparatus 4 and start them.

制御棒操作指示装置7は信号S6を受け、操作すべき制
御棒の位置、操作量を指示すると共に、検出器指示値予
測装置5の出力信号S7により、指示値が現在設定しで
あるレンチの範囲内に留まるか否かを判定し、逸脱する
場合にはレンチ切換えを指示する。
The control rod operation instruction device 7 receives the signal S6 and instructs the position and operation amount of the control rod to be operated, and also determines the wrench whose instruction value is currently set based on the output signal S7 of the detector instruction value prediction device 5. It determines whether or not it stays within the range, and if it deviates, it instructs to change the wrench.

なお、第1図中8は原子炉操作盤であり、これに設定し
である検出器レンチデータに関する信号S8が制御棒操
作指示装置7に与えられている。
In addition, 8 in FIG. 1 is a nuclear reactor operation panel, and a signal S8 related to detector wrench data set on this panel is given to the control rod operation instruction device 7.

従って、本発明装置においては、運転負が制御棒を操作
するとその直後に制御棒位置指定装置6が自動的に起動
され、次に操作すべき制御棒の位置、操作量が設定され
、制御棒操作指示装置7において指示される。同時に軸
方向炉出力分布装置3.2次元炉出力分布予測装置4に
は制御棒操作についての前記データが引渡され、それら
の装置は起動され、それらの装置は式(1)、(2)に
ついての計算を行い、制御棒操作後の炉出力分布を予測
し、検出器指示値予測装置5は、前記両装置3゜4の予
測結果に基き、検出器指示値を予測する。
Therefore, in the device of the present invention, when the operator operates a control rod, the control rod position specifying device 6 is automatically activated immediately after, and the position and operation amount of the control rod to be operated next are set. The instruction is given by the operation instruction device 7. At the same time, the data on the control rod operations are delivered to the axial reactor power distribution device 3 and the two-dimensional reactor power distribution prediction device 4, and these devices are started up and The detector indication value prediction device 5 predicts the detector indication value based on the prediction results of both the devices 3 and 4.

制御棒操作指示装置は検出器指示値予測装置5の予測結
果に基き、現在設定しである検出器のレンチの切換えの
必要があるか否かを判定し、必要のある場合切換えを指
示する。
The control rod operation instruction device determines whether or not it is necessary to change the currently set detector wrench based on the prediction result of the detector instruction value prediction device 5, and instructs the change if necessary.

而して、原子炉出力分布の予測は3次元計算を行って予
測するのが精度上は最も好ましいが、3次元計算は長大
な演算時間を必要としオン・ラインでの予測に適しない
ので、本発明では軸方向炉出力分布予測と2次元炉出力
分布予測とを合成して3次元計算に近似させ、計算時間
の短縮をはかっているが、その予測精度は第2図に示す
如くである。すなわち、第2図A、Bは制御棒の挿入状
態を格子で示してあり、格子目中の空白は制御棒全引抜
、Oは全挿入である。第2図Cは第2図Aの状態から同
図Bの状態に移行、すなわち・第2図Aの(9,8)の
制御棒を全挿入した時の中性子束分布を予測した結果を
示している。この図から、操作した(9.8)の制御棒
炉心位置とその周辺の炉心位置で、中性子束の落込みが
本発明による予測と3次り計算による予測とでほぼ同じ
程度であることがわかる。他の炉心位置でもほぼ同じ予
測結果が得られていることがわかる。従って、本発明装
置によって3次元計算による予測とほぼ同様の予測精度
が得られるものと認められる。
Therefore, it is most preferable in terms of accuracy to predict the reactor power distribution by performing three-dimensional calculations, but three-dimensional calculations require a long calculation time and are not suitable for online prediction. In the present invention, the axial reactor power distribution prediction and the two-dimensional reactor power distribution prediction are combined to approximate three-dimensional calculations in order to shorten the calculation time, but the prediction accuracy is as shown in Figure 2. . That is, in FIGS. 2A and 2B, the inserted state of the control rod is shown in a grid, where blanks in the grid indicate that the control rod is fully withdrawn, and O indicates that the control rod is fully inserted. Figure 2C shows the predicted neutron flux distribution when the state in Figure 2A changes to the state in Figure 2B, that is, when the control rods (9, 8) in Figure 2A are fully inserted. ing. From this figure, it can be seen that the drop in neutron flux at the operated control rod core position (9.8) and the surrounding core positions is approximately the same between the predictions made by the present invention and the predictions made by cubic calculation. Recognize. It can be seen that almost the same prediction results are obtained at other core locations. Therefore, it is recognized that the apparatus of the present invention can obtain prediction accuracy that is almost the same as prediction by three-dimensional calculation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、制御棒操作の都度次に操作すべき制御
棒の炉心位置および操作量が指示され、また前記の制御
棒操作の結果IBMのレンチ切換えを行うべきか否かも
指示されるので、レンジ切換えの通期、過早に基(種々
の不都合を生じるおそれはない。さらに上記のようにレ
ンチの切換えが指示される結果、運転員の精神的負担は
著しく軽減される。
According to the present invention, each time a control rod is operated, the core position and operation amount of the control rod to be operated next are instructed, and it is also instructed whether or not to change the IBM wrench as a result of the control rod operation. There is no risk of various inconveniences occurring due to premature range switching.Furthermore, as a result of being instructed to switch the wrench as described above, the mental burden on the operator is significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例のブロックダイヤグラム、第2
図A、Bは制御棒パターン図、第2図Cは本発明の詳細
な説明するためのグラフである。 1・・原子炉、      2・・炉心性能計算装置、
   3・・・軸方向出力分布予測装置、4・・・2次
元炉出力分布予測装置、 5・・検出器指示値予測装置、 6・・制御棒位置指示装置、 7・・・制御棒操作指示装置、 S、〜S8・・信  号 11−
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG.
Figures A and B are control rod pattern diagrams, and Figure 2C is a graph for explaining the present invention in detail. 1. Nuclear reactor, 2. Core performance calculation device,
3... Axial power distribution prediction device, 4... Two-dimensional reactor power distribution prediction device, 5... Detector indication value prediction device, 6. Control rod position indicating device, 7... Control rod operation instruction Device, S, ~S8...Signal 11-

Claims (1)

【特許請求の範囲】 原子炉の炉心に挿入される制御棒の位置、炉心内の中性
子東、炉心内外のプロセス量等を検出する各種検出器か
ら得られるプラントデータを基に炉心の性能を計算する
炉心性能計算装置と、前記炉心性能計算装置により出力
されるデータを利用して、軸方向−次元拡散モデルによ
る軸方向炉出力分布を予測する軸方向炉出力分布予測装
置と、前記炉心性能計算装置により出力されるデータを
利用して、中性子検出器の高さ平面における炉出力分布
を予測する2次元炉出力分布予測装置と、前記軸方向炉
出力分布予測と前記2次元炉出力分布予測装置による中
性子束分布から検出器位置での中性子束分布を合成し、
検出器信号に変換する検出器指示値予測装置と、原子炉
操作盤で設定しである検出器レンヂデータと前記検出器
指示値子 1− 副装置の結果からレンヂ切替えの情報と操作すべき制御
棒の情報をもたらす制御棒操作指示装置とからなること
を特徴とする原子力発電所の制御棒操作ガイド装置。
[Claims] Calculates core performance based on plant data obtained from various detectors that detect the position of control rods inserted into the reactor core, neutron east inside the reactor core, process quantities inside and outside the core, etc. an axial reactor power distribution prediction device that predicts an axial reactor power distribution based on an axial-dimensional diffusion model using data output by the core performance calculation device; A two-dimensional reactor power distribution prediction device that predicts a reactor power distribution in a height plane of a neutron detector using data output by the device, and the axial reactor power distribution prediction device and the two-dimensional reactor power distribution prediction device. The neutron flux distribution at the detector position is synthesized from the neutron flux distribution by
A detector indication value prediction device that converts into a detector signal, the detector range data set on the reactor operation panel, and the detector indication value 1- Range switching information and control to be operated from the results of the sub-device A control rod operation guide device for a nuclear power plant, comprising a control rod operation instruction device that provides rod information.
JP57007482A 1982-01-22 1982-01-22 Control rod operation guide device for atomic power plant Pending JPS58124987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57007482A JPS58124987A (en) 1982-01-22 1982-01-22 Control rod operation guide device for atomic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57007482A JPS58124987A (en) 1982-01-22 1982-01-22 Control rod operation guide device for atomic power plant

Publications (1)

Publication Number Publication Date
JPS58124987A true JPS58124987A (en) 1983-07-25

Family

ID=11666979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57007482A Pending JPS58124987A (en) 1982-01-22 1982-01-22 Control rod operation guide device for atomic power plant

Country Status (1)

Country Link
JP (1) JPS58124987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680274A1 (en) * 1991-08-05 1993-02-12 Westinghouse Electric Corp DEVICE FOR INDICATING THE POSITION OF THE CONTROL BARS.
US11574746B2 (en) 2014-12-31 2023-02-07 Terrapower, Llc Flux-shifting reactivity control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680274A1 (en) * 1991-08-05 1993-02-12 Westinghouse Electric Corp DEVICE FOR INDICATING THE POSITION OF THE CONTROL BARS.
US5229066A (en) * 1991-08-05 1993-07-20 Westinghouse Electric Corp. Control rod position indication system
US11574746B2 (en) 2014-12-31 2023-02-07 Terrapower, Llc Flux-shifting reactivity control system

Similar Documents

Publication Publication Date Title
JP4999222B2 (en) Method for monitoring at least one operating parameter of a reactor core
Planchon et al. Implications of the EBR-II inherent safety demonstration test
JPH0515240B2 (en)
JPS58124987A (en) Control rod operation guide device for atomic power plant
WO2022113592A1 (en) Reactor control device and reactor control method
JPS6122278B2 (en)
JP4533911B2 (en) Xenon vibration prediction method and computer program for xenon vibration prediction
JPH02110399A (en) Automatic atomic reactor starting apparatus
JPS6262313B2 (en)
JP2005207944A (en) Reactor output control method and its system
JPS5924399B2 (en) Reactor power distribution prediction device
JPH0219919B2 (en)
JPH11142588A (en) Reactor automatic start device
JPH0697269B2 (en) How to operate a nuclear reactor
JP2723310B2 (en) Reactor power control device
JPH04265899A (en) Nuclear furnace simulator
JPS5951391A (en) Reactor core state monitoring device
JPH0381693A (en) Control method for nuclear reactor control rod
JPS59126999A (en) Automatic start-up device for reactor
JPS61230092A (en) Monitor device for operation of control rod
JPH01262496A (en) Automatic start-up device for nuclear reactor
JPH05323088A (en) Reactor control rod inspection device
JPH0656431B2 (en) Nuclear plant condition evaluation support method and apparatus
JPS59164988A (en) Device for forecasting reactor power distribution
JPS58215592A (en) Device for forecasting core state of atomic power plant