JPH01262496A - Automatic start-up device for nuclear reactor - Google Patents

Automatic start-up device for nuclear reactor

Info

Publication number
JPH01262496A
JPH01262496A JP63089982A JP8998288A JPH01262496A JP H01262496 A JPH01262496 A JP H01262496A JP 63089982 A JP63089982 A JP 63089982A JP 8998288 A JP8998288 A JP 8998288A JP H01262496 A JPH01262496 A JP H01262496A
Authority
JP
Japan
Prior art keywords
reactivity
neutron flux
control rod
reactor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63089982A
Other languages
Japanese (ja)
Other versions
JP2809639B2 (en
Inventor
Akio Arakawa
秋雄 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63089982A priority Critical patent/JP2809639B2/en
Publication of JPH01262496A publication Critical patent/JPH01262496A/en
Application granted granted Critical
Publication of JP2809639B2 publication Critical patent/JP2809639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To efficiently and safely attain the critical state at a specified change rate of neutron flux by executing the automatic operation of control rods in proportion to the deviation between an estimated reactivity and target reactivity. CONSTITUTION:The neutron flux of a reactor core 1 is measured by a neutron flux detector 2 disposed in the core and is inputted as a neutron flux detector reading by a nuclear instrumentation device 3 to a reactivity estimating device 4. The estimating device 4 calculates the estimated reactivity of the core 1 by using a physical model from the neutron flux reactor reading. The estimated reactivity is inputted to a control rod manipulated variable deciding device 5. The deciding device 5 determines the manipulated variable of the reactivity in proportion to the estimated reactivity and the target reactivity inputted from a reactivity setting device 6 and outputs the control rod operation signal as to whether the control rods are withdrawn or inserted at what notches to a control rod drive control device 8. The control device 8 drives the selected control rods 11 automatically by a control rod drive device 9. The increase of the neutron flux is thus executed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、原子力発電プラントにおける臨界の達成と中
性子束の上昇を安全かつ効率的に行うだめの原子炉自動
起動装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an automatic nuclear reactor startup device that safely and efficiently achieves criticality and increases neutron flux in a nuclear power plant. .

(従来の技術) 一般に、原子力発電プラント、たとえば沸騰水型原子力
発電プラントでは、従来は運転員が中性子束検出器の読
み値およびその対数変化率である炉周期を監視しながら
手動で制御棒を引抜き臨界を達成している。
(Prior Art) In general, in nuclear power plants, such as boiling water nuclear power plants, operators have conventionally operated control rods manually while monitoring the readings of neutron flux detectors and the reactor period, which is the logarithmic rate of change. Extraction criticality has been achieved.

臨界までの制御操作は、オフライン計算による予;AI
J臨界パターンを目安として、引抜シーケンスに従い制
御棒を1本づつ引抜き、引抜き中および引抜後の中性子
束の応答を見て引抜きのタイミングを判断し行っていく
Control operations up to criticality are predicted by offline calculation; AI
Using the J criticality pattern as a guide, the control rods are pulled out one by one according to the withdrawal sequence, and the timing of withdrawal is determined by looking at the response of the neutron flux during and after the withdrawal.

未臨界の深い制御棒の引抜き始めでは、制御棒引抜きに
伴い中性子束は、直ちに上昇し整定する。
At the beginning of control rod withdrawal in a deep subcritical state, the neutron flux immediately rises and stabilizes as the control rod is withdrawn.

また、このとき中性子束レベルは臨界時の予測値と比べ
て低く、予測パターンと現状パターンとの差が大きなた
め、この領域では、制御棒を連続的に引抜くことができ
る。
Furthermore, at this time, the neutron flux level is lower than the predicted value at the critical time, and the difference between the predicted pattern and the current pattern is large, so the control rods can be continuously withdrawn in this region.

臨界に近づくと制御棒を引抜いてから中性子束が増加し
整定するまでの時間が長くなってくる。
As criticality approaches, the neutron flux increases and the time required to stabilize after the control rod is withdrawn increases.

これに伴い運転員は制御棒引抜量を小さくとり、慎重に
制御棒引抜きを行い、臨界近傍では、ノツチ単位の操作
となる。
In response to this, the operator reduces the amount of control rod withdrawal and carefully withdraws the control rod, and in the vicinity of criticality, the operation is performed in units of notches.

原子炉が物理的な臨界すなわち反応度が0以上の状態に
なると、中性子束は一定の正の炉周期、すなわち中性子
束の対数変化率の逆数で上昇するようになるが、この値
が所定の正の値になるよう制御棒を引抜き、この炉周期
を測定して原子炉の臨界状態が達成されたことを確認す
る。
When a nuclear reactor reaches a state of physical criticality, that is, the reactivity is greater than zero, the neutron flux increases at a constant positive reactor period, that is, the reciprocal of the logarithmic rate of change of the neutron flux; The control rods are withdrawn to ensure a positive value, and the reactor cycle is measured to confirm that the reactor has reached a critical state.

この臨界達成までには、通常の炉水温度が70℃程度の
ときの冷態起動時では全制御棒の20〜40%、またス
クラムからの再起動時のように炉水温度が高い領域では
50%程度の制御棒を引抜く。
To achieve this criticality, 20 to 40% of all control rods will be used during cold startup when the normal reactor water temperature is around 70℃, and in areas where the reactor water temperature is high such as during restart from scram. Pull out about 50% of the control rods.

(発明が解決しようとする課題) 上述の運転では、制御棒を運転員が手動操作で引抜くた
めそのワークロードは大きく、また、臨界に接近した状
態では、制御棒の過引抜きによる臨界超過による中性子
束の急上昇によってアラームの発生および原子炉トリッ
プなどが起らないよう注意深く操作する必要があり、運
転員の精神的負担も大きい。
(Problems to be Solved by the Invention) In the above-mentioned operation, the workload is large because the control rods are manually pulled out by the operator, and in a state approaching criticality, over-criticality due to excessive withdrawal of the control rods may occur. Careful operation is required to prevent alarms and reactor trips due to a sudden increase in neutron flux, which places a heavy mental burden on operators.

したがって、制御棒操作を自動化し、運転員の負担軽減
と誤操作によるプラントトリップの防止を行うことが考
えられている。
Therefore, it is being considered to automate control rod operations to reduce the burden on operators and prevent plant trips due to erroneous operations.

制御棒操作の自動化方法として、上述の監視運転をその
まま自動化する方法、すなわち中性子束検出器読み値か
ら炉周期を求め、これが設定値以上ならば制御棒を引抜
く、また、この炉周期が別の設定値以上の状態を持続す
れば臨界と判定するといった方法が考えられる。
A method for automating control rod operation is to directly automate the monitoring operation described above. In other words, the reactor period is determined from the neutron flux detector reading, and if this is greater than a set value, the control rod is pulled out. A possible method is to determine that the condition is critical if the condition continues to exceed a set value.

しかしながら、このような方法では、炉周期の測定は制
御棒操作後しかできないため、制御棒操作中およびペリ
オド測定中の中性子束の挙動を監視できない。このため
運転の安全性上問題がある。
However, with this method, the reactor period can only be measured after control rod operation, and therefore the behavior of the neutron flux cannot be monitored during control rod operation and period measurements. This poses a problem in terms of driving safety.

特に、給水制御系の系統に外乱が入り、給水が急激に増
加した場合には、冷水による反応度印加により中性子束
が急上昇し、アラームレベルに達したり、原子炉のトリ
ップを発生する可能性がある。
In particular, if a disturbance enters the water supply control system and the water supply increases rapidly, the reactivity applied by the cold water will cause the neutron flux to rise rapidly, potentially reaching an alarm level or causing a reactor trip. be.

本発明は、かかる従来の事情に対処してなされたもので
、安全かつ効率的に原子炉の臨界達成を行うことのでき
る原子炉自動起動装置を提供しようとするものである。
The present invention has been made in response to such conventional circumstances, and aims to provide an automatic nuclear reactor startup device that can safely and efficiently achieve criticality of a nuclear reactor.

[発明の構成] (課題を解決するための手段) すなわち本発明は、制御棒操作によって反応度を投入し
原子炉炉心の臨界状態を達成し、中性子束を上昇させる
原子炉自動起動装置であって、前記原子炉炉心内に配置
された中性子束検出器からの情報によって前記原子炉炉
心の推定反応度を算出する反応度推定手段と、前記反応
度推定手段によって算出された前記推定反応度と予め設
定された目標反応度との偏差に比例させて反応度投入量
を決め、この反応度投入量に応じて前記制御棒の操作を
制御する制御棒操作手段とを備えたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In other words, the present invention is an automatic reactor startup device that injects reactivity through control rod operation, achieves a critical state in the reactor core, and increases neutron flux. a reactivity estimating means for calculating an estimated reactivity of the nuclear reactor core based on information from a neutron flux detector arranged in the reactor core; and the estimated reactivity calculated by the reactivity estimating means. It is characterized by comprising a control rod operating means that determines the reactivity input amount in proportion to the deviation from a preset target reactivity, and controls the operation of the control rod according to this reactivity input amount. .

(作 用) 上記構成の本発明の原子炉自動起動装置では、炉心の中
性子束の監視を原子炉内に配置された核計装データから
推定される推定反応度により監視し、この推定反応度の
目標反応度との偏差に比例させて投入反応度を決定する
ことにより、中性子束の対数的な変化率を一定にして目
標反応度の達成維持ができる。
(Function) In the automatic reactor startup system of the present invention having the above configuration, the neutron flux of the reactor core is monitored based on the estimated reactivity estimated from nuclear instrumentation data placed in the reactor, and the estimated reactivity is monitored. By determining the input reactivity in proportion to the deviation from the target reactivity, it is possible to maintain the target reactivity by keeping the logarithmic rate of change in the neutron flux constant.

(実施例) 以下、本発明を沸騰水型原子炉に適用した一実施例につ
いて図面を参照して説明する。
(Example) Hereinafter, an example in which the present invention is applied to a boiling water reactor will be described with reference to the drawings.

第1図は本発明の一実施例の原子炉自動起動装置の構成
を示すもので、原子炉炉心1の中性子束を炉心内に配置
した中性子束検出器2によって電気信号として測定し、
核計装装置3によって中性子束検出器読みとして反応度
推定装置4に入力される。
FIG. 1 shows the configuration of an automatic nuclear reactor startup system according to an embodiment of the present invention, in which the neutron flux of a nuclear reactor core 1 is measured as an electrical signal by a neutron flux detector 2 disposed within the reactor core.
The nuclear instrumentation device 3 inputs it to the reactivity estimation device 4 as a neutron flux detector reading.

反応度推定装置4はこの中性子束検出器読みから物理モ
デルを用いて炉心の推定反応度を算出する。この推定反
応度は、制御棒操作量判定装置5に入力され、制御棒操
作量判定装置5は、この推定反応度と反応度設定装置6
から入力された目標反応度との偏差に比例させて反応度
投入量を決め、この反応度投入量および制御棒シーケン
ス装置7からの情報をもとに制御棒11を何ノツチ引抜
くかまたは挿入するかの制御棒操作量と操作すべき制御
棒11の座標である制御棒操作信号を制御棒駆動制御装
置8に出力する。
The reactivity estimating device 4 calculates the estimated reactivity of the core from the neutron flux detector readings using a physical model. This estimated reactivity is input to the control rod manipulated variable determining device 5, and the control rod manipulated variable determining device 5 uses the estimated reactivity and the reactivity setting device 6.
The reactivity input amount is determined in proportion to the deviation from the target reactivity input from the control rod sequencer 7, and the control rod 11 is withdrawn or inserted by how many notches based on this reactivity input amount and information from the control rod sequence device 7. A control rod operation signal, which is the control rod operation amount and the coordinates of the control rod 11 to be operated, is output to the control rod drive control device 8.

この制御棒駆動制御装置8では、選択された制御棒11
を制御棒駆動装置9により自動的に駆動させ中性子束の
上昇が行なわれる。また、選択された制御棒、制御棒操
作量および推定反応度は表示装置10に表示される。
In this control rod drive control device 8, the selected control rod 11
is automatically driven by the control rod drive device 9 to increase the neutron flux. Further, the selected control rod, control rod operation amount, and estimated reactivity are displayed on the display device 10.

これらの操作が完了した後、再び反応度推定計算が行な
われ次の制御棒操作が決定され同様に次々と実行される
After these operations are completed, the reactivity estimation calculation is performed again to determine the next control rod operation, which is similarly executed one after another.

上記構成のこの実施例の原子炉自動起動装置では、単位
時間あたりの反応度投入量ρ゛aは、反応度推定装置1
4の出力である推定反応度ρと目標反応度ρt (≧0
)の差に比例して決める。
In the reactor automatic startup system of this embodiment with the above configuration, the reactivity input amount ρ'a per unit time is determined by the reactivity estimation device 1
Estimated reactivity ρ and target reactivity ρt (≧0
) is determined in proportion to the difference between

すなわち、 ρ゛a−Kl(ρt−ρ)      ・・・・・・■
とする。ここでに1は投入反応度を決める制御ゲインで
あり、(時間)−1の単位を持つ定数である。
That is, ρ゛a−Kl(ρt−ρ) ・・・・・・■
shall be. Here, 1 is a control gain that determines the input reactivity, and is a constant having a unit of (time)-1.

上記■式のように反応度投入量を決めると、未臨界の深
い状態では、ρ1<<−ρであるから、ρ1−0とし、
また反応度の推定誤差がないとすればρa−ρであるか
ら、 ρ’a−Kl(−ρa)       ・・・・・・■
となり、!を中性子寿命、Sを炉心内の固定中性子源と
した次式に示す未臨界の深い状態での中性子束nと反応
度ρとの関係 n−−J2S/ρ         ・・・・・・■か
ら、 dt      n となり、中性子束の対数変化率はKlに等しくなり、す
なわち、いわゆるペリオド一定での臨界までの中性子束
増加が可能となる。
If the reactivity input amount is determined as in the above equation
Also, if there is no error in estimating the reactivity, then ρa-ρ, so ρ'a-Kl(-ρa) ・・・・・・■
Then,! The relationship between the neutron flux n and the reactivity ρ in a deep subcritical state is expressed by the following equation, where is the neutron lifetime and S is the fixed neutron source in the reactor core. dt n , and the logarithmic rate of change of the neutron flux becomes equal to Kl, that is, it becomes possible to increase the neutron flux up to criticality at a constant period.

したがって、Klを中性子束変化率のアラームレベル以
下に設定することにより、アラームを発生することなく
効率的に臨界近接操作ができる。
Therefore, by setting Kl below the alarm level of the neutron flux change rate, near-critical operation can be performed efficiently without generating an alarm.

実際の制御棒操作量ΔNは、投入反応度ρ゛aに制御棒
価値の補正をし、 ΔN−W(x・y、z  )  ρ゛a       
・・・・・・■として、求める。ここでWは、反応度の
制御棒操作量への変換係数であり、炉心内位置(x、y
、z )の関数である。制御棒価値は、オフラインでの
3次元中性子束分布計算より求めることができる。
The actual control rod operation amount ΔN is calculated by correcting the control rod value to the input reactivity ρ゛a, and is calculated as ΔN-W(x・y,z) ρ゛a
Find it as...■. Here, W is the conversion coefficient of reactivity to control rod operation amount, and W is the in-core position (x, y
, z). The control rod value can be determined by off-line three-dimensional neutron flux distribution calculation.

換言すればΔNは、単位時間あたりにρ°aの反応度変
化を変える制御棒操作量である。
In other words, ΔN is the control rod operation amount that changes the reactivity change of ρ°a per unit time.

また、この方法によれば、原子炉の臨界を判定する反応
度レベルをρC(ρC〈ρt)として、臨界達成までに
必要とする時間tcが、t c −(−1/ K I 
) In[(ρc−p t)ハp O−p t)]・・
・・・・■ より求められ、予め臨界達成の時刻を知ることができ、
運転員にとってわかりやすい制御棒自動操作が可能とな
る。ただし、ここでρ0は、制御棒引抜開始時の反応度
である。
Furthermore, according to this method, the time tc required to reach criticality is tc - (-1/K I
) In[(ρc-pt) HapO-pt)]...
...■ It is possible to know the time of criticality achievement in advance,
This enables automatic control rod operation that is easy for operators to understand. However, here, ρ0 is the reactivity at the start of control rod withdrawal.

臨界が達成された時に制御棒操作をホールドするとすれ
ば、臨界達成時の反応度はρCとなるが、臨界超過状態
では、安定な炉周期と反応度は、第2図のグラフに示す
ように1対1の関係にあり、従来の運転方法と整合性が
ある。
If control rod operation is held when criticality is achieved, the reactivity when criticality is achieved will be ρC, but in the supercritical state, the stable reactor period and reactivity are as shown in the graph in Figure 2. There is a one-to-one relationship and is consistent with conventional operating methods.

さらに、本発明の原子炉自動起動装置では、原子炉反応
度を推定しそれをフィードバックしているため制御棒操
作中にも反応度の挙動がわかり、外乱にも迅速に対応す
ることができる。
Further, in the automatic reactor startup system of the present invention, since the reactor reactivity is estimated and fed back, the behavior of the reactivity can be known even during control rod operation, and it is possible to quickly respond to disturbances.

第3図のグラフは、この実施例の原子炉自動起動装置に
より、制御棒自動操作を行い、臨界を達成した時の制御
棒引抜量、中性子束、炉周期、反応度の変化の例を示し
ている。なお、この例においては、K l −90J’
 (see−’ ) 、  p t = 0.03%で
ある。このグラフに示されるように、中性子束は、変化
率約90’ (see−’ )で滑らかに増加し、約1
0分後に臨界判定レベルρ−0,0%ΔKに達している
The graph in Figure 3 shows an example of changes in control rod withdrawal amount, neutron flux, reactor period, and reactivity when criticality is achieved by automatically operating the control rods using the automatic reactor startup system of this embodiment. ing. In addition, in this example, K l -90J'
(see-'), p t = 0.03%. As shown in this graph, the neutron flux increases smoothly with a rate of change of about 90'(see-') and about 1
After 0 minutes, the critical judgment level ρ-0.0% ΔK is reached.

臨界達成後は、目標反応度ρt −o、oa%に対応す
る炉周期250秒で中性子束が増加している。
After criticality is achieved, the neutron flux increases at a reactor period of 250 seconds corresponding to the target reactivity ρt -o, oa%.

以上は、制御棒の反応度価値の既知な場合について説明
してきたが、制御棒価値が既知でない場合は次のように
して制御棒を操作すればよい。
The above has explained the case where the reactivity value of the control rod is known, but if the control rod value is not known, the control rod may be operated as follows.

すなわち、■式の条件が成り立つよう制御棒を操作すれ
ばよいわけで、反応度の推定値からρ゛およびKl  
(ρを一ρ)を算出し、これらが各ステップごとに等し
くなるように制御棒を操作する。
In other words, it is only necessary to operate the control rods so that the condition of equation (2) is satisfied, and from the estimated value of reactivity, ρ゛ and Kl
(ρ equals ρ), and operate the control rod so that these become equal at each step.

例えばlステップあたりの制御棒操作ノッ千数ΔNは、 ΔN”−に″ [ρ(1)−ρ(t−Δt)そ −K i f、tCρt−ρ) dtl+ΔNrとして
、 ΔN  −1nt△N′ △Nr−ΔN′−ΔN で与えられる。ここでΔtは、制御のタイムステップで
あり、K′は制御棒操作のためのゲインであり、ΔN「
は、1ノツチ以下の操作量の残量、tntは整数化の関
数である。
For example, the number of control rod operation notches ΔN per l step is ΔN"-" [ρ(1)-ρ(t-Δt)-Kif, tCρt-ρ) dtl+ΔNr, ΔN-1ntΔN' It is given by ΔNr - ΔN' - ΔN. where Δt is the control time step, K′ is the gain for control rod operation, and ΔN′
is the remaining amount of the manipulated variable of one notch or less, and tnt is a function of integer conversion.

ここで、K−−−0,5、Δt−10秒としておけば、
十分である。第4図はこの方式で臨界近接を行ったとき
の結果である。このケースでは、制御棒価値を小さく見
積っているため、起動開始後8分までは、制御棒は連続
的に操作され、その後は、制御棒操作はノツチ単位の操
作となり、目標反応度0203%Δにすなわち目標ペリ
オド200秒(逆数で0.005 (秒−1))で臨界
を達成して中性子束上昇が行われていることがわかる。
Here, if we set K---0,5, Δt-10 seconds,
It is enough. FIG. 4 shows the results when critical proximity was performed using this method. In this case, the control rod value is estimated to be small, so the control rods are operated continuously until 8 minutes after the start of startup, and after that, the control rods are operated in notch units, and the target reactivity is 0203%Δ In other words, it can be seen that criticality is achieved and the neutron flux is increased at the target period of 200 seconds (reciprocal: 0.005 (seconds-1)).

[発明の効果] 以上説明したように本発明の原子炉自動起動装置によれ
ば、制御棒の自動操作を推定反応度と目標反応度との偏
差に比例させて行うことにより、臨界達成を中性子束変
化率一定で効率的かつ安全に行うことができ、また、炉
水温度等の反応度外乱に対して迅速に応答することがで
き、運転操作の安全性、安定性および効率を向上させる
ことができる。
[Effects of the Invention] As explained above, according to the automatic reactor startup system of the present invention, the automatic operation of the control rods is performed in proportion to the deviation between the estimated reactivity and the target reactivity, thereby achieving criticality using neutrons. It can be carried out efficiently and safely with a constant flux change rate, and can respond quickly to reactivity disturbances such as reactor water temperature, improving the safety, stability, and efficiency of operation. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の原子炉自動起動装置の構成
を示すブロック図、第2図は安定炉周期と反応度の関係
を示すグラフ、第3図は第1図に示す原子炉自動起動装
置で起動運転を行った場合の制御棒引抜量、中性子束、
炉周期、反応度の変化の例を示すグラフ、第4図は制御
棒価値が既知でない場合の第1図に示す原子炉自動起動
装置で起動運転を行った場合の中性子束、炉周期、反応
度の変化の例を示すグラフである。 1・・・・・・・・・・・・・・・炉心2・・・・・・
・・・・・・・・・中性子束検出器3・・・・・・・・
・・・・・・・核計装装置4・・・・・・・・・・・・
・・・反応度推定装置5・・・・・・・・・・・・・・
・制御棒操作量判定装置6・・・・・・・・・・・・・
・・反応度設定装置7・・・・・・・・・・・・・・・
制御棒シーケンス設定器8・・・・・・・・・・・・・
・・制御棒駆動制御装置9・・・・・・・・・・・・・
・・制御棒駆動装置10・・・・・・・・・・・・表示
装置11・・・・・・・・・・・・制御棒 出願人      日本原子力事業株式会社出願人  
    株式会社 東芝 代理人 弁理士  須 山 佐 − 第1図 第3図 Σ a 8 第4rgJ
FIG. 1 is a block diagram showing the configuration of an automatic reactor startup system according to an embodiment of the present invention, FIG. 2 is a graph showing the relationship between stable reactor period and reactivity, and FIG. 3 is a reactor reactor shown in FIG. 1. Control rod withdrawal amount, neutron flux, and
A graph showing an example of changes in reactor cycle and reactivity. Figure 4 shows the neutron flux, reactor cycle, and reaction when starting operation is performed using the reactor automatic startup system shown in Figure 1 when the control rod value is not known. It is a graph showing an example of a change in degree. 1・・・・・・・・・・・・・・・Core 2・・・・・・
・・・・・・・・・Neutron flux detector 3・・・・・・・・・
・・・・・・Nuclear instrumentation device 4・・・・・・・・・・・・
・・・Reactivity estimation device 5・・・・・・・・・・・・・・・
・Control rod operation amount determination device 6・・・・・・・・・・・・・・・
・Reactivity setting device 7・・・・・・・・・・・・・・・
Control rod sequence setter 8・・・・・・・・・・・・・・・
・・Control rod drive control device 9・・・・・・・・・・・・・
...Control rod drive device 10...Display device 11...Control rod applicant Japan Atomic Energy Corporation Applicant
Toshiba Corporation Representative Patent Attorney Satoshi Suyama - Figure 1 Figure 3 Σ a 8 4th rgJ

Claims (1)

【特許請求の範囲】[Claims] (1)制御棒操作によって反応度を投入し原子炉炉心の
臨界状態を達成し、中性子束を上昇させる原子炉自動起
動装置であって、前記原子炉炉心内に配置された中性子
束検出器からの情報によって前記原子炉炉心の推定反応
度を算出する反応度推定手段と、前記反応度推定手段に
よって算出された前記推定反応度と予め設定された目標
反応度との偏差に比例させて反応度投入量を決め、この
反応度投入量に応じて前記制御棒の操作を制御する制御
棒操作手段とを備えたことを特徴とする原子炉自動起動
装置。
(1) An automatic reactor startup device that increases neutron flux by injecting reactivity through control rod operation to achieve a critical state in the reactor core and increase neutron flux, from a neutron flux detector located in the reactor core. reactivity estimating means for calculating the estimated reactivity of the reactor core based on information on the reactivity; 1. An automatic nuclear reactor start-up device comprising control rod operating means for determining an input amount and controlling the operation of the control rods according to the reactivity input amount.
JP63089982A 1988-04-12 1988-04-12 Reactor automatic starter Expired - Fee Related JP2809639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089982A JP2809639B2 (en) 1988-04-12 1988-04-12 Reactor automatic starter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089982A JP2809639B2 (en) 1988-04-12 1988-04-12 Reactor automatic starter

Publications (2)

Publication Number Publication Date
JPH01262496A true JPH01262496A (en) 1989-10-19
JP2809639B2 JP2809639B2 (en) 1998-10-15

Family

ID=13985867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089982A Expired - Fee Related JP2809639B2 (en) 1988-04-12 1988-04-12 Reactor automatic starter

Country Status (1)

Country Link
JP (1) JP2809639B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1071098A1 (en) * 1999-07-23 2001-01-24 Westinghouse Electric Company LLC Method and apparatus for determining nearness to criticality of a nuclear fueled electric power generating unit
JP2008122094A (en) * 2006-11-08 2008-05-29 Toshiba Corp Nuclear reactor output control device, nuclear reactor system, and nuclear reactor output control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116293A (en) * 1985-11-15 1987-05-27 株式会社東芝 Method of operating nuclear reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116293A (en) * 1985-11-15 1987-05-27 株式会社東芝 Method of operating nuclear reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1071098A1 (en) * 1999-07-23 2001-01-24 Westinghouse Electric Company LLC Method and apparatus for determining nearness to criticality of a nuclear fueled electric power generating unit
JP2008122094A (en) * 2006-11-08 2008-05-29 Toshiba Corp Nuclear reactor output control device, nuclear reactor system, and nuclear reactor output control method

Also Published As

Publication number Publication date
JP2809639B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
KR910004191B1 (en) Method and apparatus for preventing inadvertent criticality in a nuclear fueled electric powering generating unit
EP2192592B1 (en) Axial direction output distribution control method and axial direction output distribution control system
JP2000019287A (en) Control system of nuclear power plant
JPH01262496A (en) Automatic start-up device for nuclear reactor
JP2008122094A (en) Nuclear reactor output control device, nuclear reactor system, and nuclear reactor output control method
JP3172653B2 (en) Control rod operating method and control rod operating device
US4781881A (en) Apparatus and method for closed-loop control of reactor power in minimum time
JPH10221476A (en) Reactor power control device
JP3275163B2 (en) Control rod control device and control rod operation method
JP3304856B2 (en) Control rod control method and control rod automatic controller
JPS6396595A (en) Starter for nuclear reactor
JP3501791B2 (en) Control rod control device
JP2005207944A (en) Reactor output control method and its system
JPH0697269B2 (en) How to operate a nuclear reactor
JPS623400B2 (en)
TW202347355A (en) Method for controlling a pressurized water reactor, computer program product and control system
JP2553152B2 (en) Reactor control rod automatic control method
JPH11142588A (en) Reactor automatic start device
JP4369772B2 (en) Reactor power control method and apparatus
JPS6338678B2 (en)
JP2875932B2 (en) Reactor control rod controller
JP2024514152A (en) Methods and assemblies for controlling nuclear reactors, nuclear reactors with such assemblies
JPS58124987A (en) Control rod operation guide device for atomic power plant
JPH0656431B2 (en) Nuclear plant condition evaluation support method and apparatus
JPH1184077A (en) Reactor operation monitor and reactor provided with the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees