JPS5812483B2 - Fluidized bed combustion equipment - Google Patents

Fluidized bed combustion equipment

Info

Publication number
JPS5812483B2
JPS5812483B2 JP8449077A JP8449077A JPS5812483B2 JP S5812483 B2 JPS5812483 B2 JP S5812483B2 JP 8449077 A JP8449077 A JP 8449077A JP 8449077 A JP8449077 A JP 8449077A JP S5812483 B2 JPS5812483 B2 JP S5812483B2
Authority
JP
Japan
Prior art keywords
air
fuel
distribution plate
air distribution
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8449077A
Other languages
Japanese (ja)
Other versions
JPS5419223A (en
Inventor
高橋恭郎
藤間幸久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8449077A priority Critical patent/JPS5812483B2/en
Publication of JPS5419223A publication Critical patent/JPS5419223A/en
Publication of JPS5812483B2 publication Critical patent/JPS5812483B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 本発明は流動床燃焼装置に関する。[Detailed description of the invention] The present invention relates to a fluidized bed combustion apparatus.

従来の流動床燃焼装置を第1図ないし第3図に基づいて
説明する。
A conventional fluidized bed combustion apparatus will be explained based on FIGS. 1 to 3.

流動床燃焼炉は最下部に風箱6、その上に空気分配板4
が設けられている。
The fluidized bed combustion furnace has a wind box 6 at the bottom and an air distribution plate 4 above it.
is provided.

燃料粒子(例えば石炭粒子)17はホツパ15に貯えら
れ、その下に接続されているシュート14内を落下し、
ロータ13、回転羽根21で構成されているロークリフ
イーダ22により一定の速さでシュート12内にかき落
されて、燃料供給管9に到る。
Fuel particles (for example, coal particles) 17 are stored in a hopper 15 and fall through a chute 14 connected below it,
The fuel is scraped down into the chute 12 at a constant speed by a raw cliff feeder 22 composed of a rotor 13 and rotating blades 21, and reaches the fuel supply pipe 9.

燃料供給管9に達した燃料11は搬送用空気10により
流動床1の最大部、空気分配板4の直上に吹き込まれる
The fuel 11 that has reached the fuel supply pipe 9 is blown into the largest part of the fluidized bed 1, directly above the air distribution plate 4, by the conveying air 10.

一方、空気の一部7は風箱6に導入され、空気分配板4
に設けられた多数の小孔41から吹き上げられる。
On the other hand, a part of the air 7 is introduced into the wind box 6 and the air distribution plate 4
It is blown up from a large number of small holes 41 provided in the.

空気の他の一部10は燃料供給管8に導かれ、燃料粒子
を流動床3内に吹き込む。
Another part of the air 10 is led into the fuel supply pipe 8 and blows fuel particles into the fluidized bed 3.

燃料供給管8は燃料を均一に配布するため一つの炉に多
数個設けられ、その噴出口18は空気分配板4上約1m
平方毎に1個の割合で設けられるのが普通である。
A large number of fuel supply pipes 8 are provided in one furnace in order to distribute fuel uniformly, and their jet ports 18 are located approximately 1 m above the air distribution plate 4.
It is common that one is provided for each square.

空気の供給圧力とフリーボード5の圧力の差は空気分配
板4を通過する際の圧力降下と流動床1を浮上させてお
く為の圧力の和であり、実用炉では風箱6内の圧力を1
000〜1500miAqを選んでいる。
The difference between the air supply pressure and the pressure of the free board 5 is the sum of the pressure drop when passing through the air distribution plate 4 and the pressure to keep the fluidized bed 1 floating.In a practical furnace, the difference is the pressure inside the wind box 6. 1
000 to 1500 miAq is selected.

炉内の圧力は、横軸に圧力、縦軸に炉の上下方向の位置
をとったグラフの第2図に示すようにフリーボード5の
圧力は零、流動床表面圧力104から分配板4上面の圧
力を示す点103まで圧力が上昇(圧力108で示す)
する。
The pressure inside the furnace is as shown in Figure 2, which is a graph in which the horizontal axis represents the pressure and the vertical axis represents the vertical position of the furnace. The pressure increases to point 103 (indicated by pressure 108)
do.

更に分配板4での圧力損失106が加わって風箱6内の
圧力は線105で示さえる圧力まで達する。
Furthermore, the pressure loss 106 at the distribution plate 4 is added, and the pressure inside the wind box 6 reaches the pressure shown by the line 105.

普通、炉に後続する設備の構造上、フリーボード5の圧
力は大気圧20に略等しくしてある。
Normally, the pressure of the freeboard 5 is set to be approximately equal to the atmospheric pressure 20 due to the structure of the equipment following the furnace.

一方、燃料供給管8に供給する空気圧は空気分配板4の
孔41より吹き上げる空気42の全圧105に均衡する
ものでなければならず、シュート12と燃料供給管8の
接続点19の点とホッパ上20の差圧は略線105で示
される圧力となる。
On the other hand, the air pressure supplied to the fuel supply pipe 8 must be balanced with the total pressure 105 of the air 42 blown up from the hole 41 of the air distribution plate 4, and the connection point 19 between the chute 12 and the fuel supply pipe 8 The differential pressure above the hopper 20 is the pressure indicated by the approximate line 105.

この差圧により燃料供給管8を空気が逆流し接続点19
からシュート12を経て上方に空気の流れが発生し、第
3図に示す如くロークリフイーダの羽根21とケーシン
グ23の間のギャップから空気が吹き抜け、シュート1
4から2枚の隣接する羽根21間への燃料粒子16の落
下が阻害され、極端な場合はシュート14を上方に流れ
る空気が同部の燃料の落下を阻止していた。
Due to this pressure difference, air flows back through the fuel supply pipe 8 at the connection point 19.
A flow of air is generated upward through the chute 12, and as shown in FIG.
4 to between two adjacent blades 21, and in extreme cases, air flowing upward through the chute 14 would prevent the fuel from falling in the same area.

燃料供給管8が炉内に深く入っており、何等かの事故に
より搬送空気10の量が低下すると同管内の温度が上昇
し、管内に詰っている燃料粒子9の着火燃焼及び管8の
焼損に至っていた。
The fuel supply pipe 8 is deep inside the furnace, and if the amount of conveying air 10 decreases due to some kind of accident, the temperature inside the pipe will rise, causing the fuel particles 9 stuck in the pipe to ignite and burn out, and the pipe 8 to burn out. It had reached this point.

1基の炉に設ける燃料供給管8の数が多く、保守制御が
複雑であり故障発生の頻度も高かった。
The number of fuel supply pipes 8 provided in one furnace is large, maintenance control is complicated, and failures occur frequently.

そこで本発明は上記の欠点を除くことを目的とし、ロー
タリーフイーダで分配された燃料粒子をサイクロンに導
き、粗大粒子と微粉とに分離し、粗大粒子は空気流に乗
せてフリーボード部の炉壁に設けた燃料ノズルまで導き
、同ノズルから空気流と共に噴出させ、微粉の方は、空
気流に乗せて空気分配板から炉内にのぞかせた微粉ノズ
ルまで導き、同ノズルから空気流とともに噴出させてそ
れぞれ燃焼させるようにし、空気流の圧力を適宜調整す
ることにより、炉内からの逆流を防止し、さらにはロー
タリーフイーダ中への空気の逆流を防止したものであり
、又、燃料は空気流とともに噴出されるので、燃料を供
給するノズルは空気で冷却されるのでノズルの焼損を防
止し、さらには、粗大粒子の燃料ノズルは空気流と燃料
を炉内に分散させる供給量の大きい分散ノズルを用いる
ことができるので、又、微粉の量は粗粒子に比べてわず
かな量であり、微粉ノズルは少なくてよいので、全体の
ノズルの数も少なく保守点検が容易であり、又、粗大粒
子とともに噴出される空気により、炉内は2段燃焼とな
り、窒素酸化物の発生量が少なくなった流動床燃焼装置
を提供している。
Therefore, the purpose of the present invention is to eliminate the above-mentioned drawbacks, and the fuel particles distributed by the rotary feeder are guided into a cyclone to be separated into coarse particles and fine particles, and the coarse particles are carried by the air flow to the furnace in the free board section. The fuel is guided to a fuel nozzle installed on the wall, and is ejected from the same nozzle along with the air flow.The fine powder is carried along with the air flow and guided from the air distribution plate to the fine powder nozzle that looks into the furnace, and is ejected from the same nozzle along with the air flow. By adjusting the pressure of the air flow appropriately, backflow from inside the furnace is prevented, and furthermore, backflow of air into the rotary leaf feeder is prevented. Since the fuel is ejected with the flow, the nozzle that supplies the fuel is cooled by air, which prevents nozzle burnout, and the coarse particle fuel nozzle has a large dispersion of the air flow and fuel that is distributed within the furnace. Since the amount of fine powder is small compared to coarse particles and fewer fine powder nozzles are required, the total number of nozzles is small and maintenance and inspection is easy. The air ejected together with the particles causes two-stage combustion in the furnace, providing a fluidized bed combustion device that generates fewer nitrogen oxides.

次に禾発明を第4図ないし第5図に示す1実施例に基づ
いて具体的に説明する。
Next, the invention will be specifically explained based on an embodiment shown in FIGS. 4 and 5.

燃料ノズル51は燃焼炉1の炉壁2に設けられていて、
燃料供給ダクト52の端部に、ピボット53で枢支され
ており、回転レバー軸54を回動することによって、燃
焼炉1内への噴出角度が調節可能となっており、風箱5
5が燃料ノズル51をとり囲んで設けられており空気ダ
クト56と連通し、燃料ノズル51から噴出される燃料
粒子の散布と燃焼空気とを司どっている0微粉ノズル5
7は燃焼炉1の下部にそなえられている空気分配板4上
に噴口がわずかに突出する程度に設けられ、風箱6内に
配設されたダクト58と連通している,燃料粒子を粗大
粒子と微粉とに分離するサイクロン59は、下部が粗大
粒子が通るダクト52により、燃料ノズル51と連通し
ており、他方上部は微粉が通るダクト58によって、微
粉ノズル57と連通している。
The fuel nozzle 51 is provided on the furnace wall 2 of the combustion furnace 1,
It is pivotally supported by a pivot 53 at the end of the fuel supply duct 52, and by rotating a rotary lever shaft 54, the injection angle into the combustion furnace 1 can be adjusted.
5 surrounds the fuel nozzle 51, communicates with the air duct 56, and controls the dispersion of fuel particles ejected from the fuel nozzle 51 and the combustion air.
Reference numeral 7 is provided on the air distribution plate 4 provided at the lower part of the combustion furnace 1 so that the nozzle slightly protrudes from the air distribution plate 4, and is in communication with a duct 58 arranged in the wind box 6. A cyclone 59 that separates particles and fine powder has a lower part communicating with a fuel nozzle 51 through a duct 52 through which coarse particles pass, and an upper part communicating with a fine powder nozzle 57 through a duct 58 through which fine powder passes.

ダクト58の途中にはブースタファン60が設けられて
いてダクト58内の圧力を昇圧する様になっている。
A booster fan 60 is provided in the middle of the duct 58 to increase the pressure inside the duct 58.

送風機62は途中に空気予熱器64が配置され吐出空気
の一部が通るダクト63によって、風箱6と連通されて
いるとともに空気予熱器64の上流部途中と吐出空気の
残りのうち1部が通過する途中に設けられたダンパ65
を介してダクト66によってサイクロン59とが連通し
、サイクロン59に近接したダクト66には燃料供給機
20のシュート12が接続されていて、シュート12内
を落下した燃料粒子を、ダクト66内の空気に乗せてサ
イクロン59に送り込んでいる。
The blower 62 is connected to the wind box 6 through a duct 63 through which an air preheater 64 is disposed and a part of the discharged air passes, and a part of the remaining discharged air is communicated with the upstream part of the air preheater 64. A damper 65 installed in the middle of passing
The chute 12 of the fuel supply device 20 is connected to the duct 66 adjacent to the cyclone 59, and the fuel particles falling in the chute 12 are transferred to the air in the duct 66. It was then sent to Cyclone 59.

吐出空気の残りは、ダクト66の途中から分岐したダク
ト68、ダンパ6Tを経てダクト52に連通しているダ
クト52は、サイクロン59のシュート59′と接続さ
れていて、シュート59′を落下した燃料の粗大粒子を
上記燃料ノズル51に送り込んでいる。
The remainder of the discharged air is transferred to a duct 52 which is connected to a duct 52 via a duct 68 branched from the middle of the duct 66 and a damper 6T, which is connected to a chute 59' of a cyclone 59, and the fuel that has fallen down the chute 59' is coarse particles are fed into the fuel nozzle 51.

ダクト68には、風箱55に連通したダクト56が接続
されている。
A duct 56 communicating with the wind box 55 is connected to the duct 68 .

燃料粒子をそれぞれのダクト61.59’,52.58
で搬送する際の空気は送風機62で1000〜1500
mmAq程度に加圧されダクト63に送り出され、その
大部分は、空気予熱器64を経て風箱6に送り込まれ空
気分配板4を経て流動床3に吹き込まれる。
Fuel particles are placed in each duct 61.59', 52.58
The air when conveyed by the blower 62 is 1000 to 1500
It is pressurized to about mmAq and sent out to the duct 63, and most of it is sent to the wind box 6 through the air preheater 64, and blown into the fluidized bed 3 through the air distribution plate 4.

残りの空気はダンパ65でそめ圧力を200〜300i
iAq程度に減圧され、ダクト66に導かれる。
The remaining air is removed by the damper 65 and the pressure is reduced to 200~300i.
The pressure is reduced to about iAq and guided to the duct 66.

その中の空気の1部は燃料供給機20に至る。A portion of the air therein reaches the fuel supply machine 20.

燃料粒子17はホッパ−15に貯へられており、シュー
ト14、ロータリフイーダ22、シュート12を落下し
て、ダクト61に至り、上述の空気により搬送されサイ
クロン59に送り込まれる。
The fuel particles 17 are stored in the hopper 15, fall through the chute 14, the rotary feeder 22, and the chute 12, reach the duct 61, and are transported by the above-mentioned air and fed into the cyclone 59.

サイクロン59では粗大粒子と微粉に分離される。In the cyclone 59, it is separated into coarse particles and fine powder.

粗大粒子はシュート59′に落下し、ダクト68、ダン
パ67を経て、適当に調圧された後の空気によって搬送
されダクト52を経て燃料ノズル51から噴出燃焼され
る。
The coarse particles fall into the chute 59', pass through a duct 68 and a damper 67, are conveyed by appropriately pressure-regulated air, pass through a duct 52, and are ejected from the fuel nozzle 51 and burned.

微粉はダクト58を経て、ブースタファン60で100
0mmAq程度に昇圧された後、ダクト58、微粉ノズ
ル57を経て、流動床下部に吹き込すれ燃焼される。
The fine powder passes through a duct 58 and is pumped to a booster fan 60.
After being pressurized to about 0 mmAq, it is blown into the lower part of the fluidized bed through a duct 58 and a fine powder nozzle 57, where it is combusted.

尚、燃料ノズル51は風箱55内に収容されており、同
風箱55にはダクト56により空気が導入されている。
The fuel nozzle 51 is housed in an air box 55, and air is introduced into the air box 55 through a duct 56.

粗大粒子の燃料を散布するノズル51についての構造の
1例としては、第5図、第6図に示す様な構造のものが
考えられ、ダクト52から送られて来た燃料は、ピボッ
ト53で枢支され、回転レバー軸54でその散布方向を
左右に変えることが出来る。
As an example of the structure of the nozzle 51 for spraying coarse particle fuel, a structure as shown in FIGS. It is pivotably supported, and the spraying direction can be changed to the left or right using a rotating lever shaft 54.

また、同ノズル51をとり囲んでいる風箱55にはダク
ト56から空気が供給されているので、燃料の散布を助
け燃焼用としても利用されている。
Further, since air is supplied from a duct 56 to the wind box 55 surrounding the nozzle 51, it is also used for fuel dispersion and combustion.

燃料ノズル51がフリーボード部5に開口しているから
燃料供給系の空気圧力は100〜300mmAqと低く
選ぶことが出来る。
Since the fuel nozzle 51 opens into the freeboard section 5, the air pressure of the fuel supply system can be selected as low as 100 to 300 mmAq.

従って燃料粒子のシュート12、ロータリーフイーダ2
2内の落下不良が回避できる。
Therefore, the fuel particle chute 12, the rotary feeder 2
It is possible to avoid falling failures within 2.

微粉系もサイクロン59、ダクト58にブースタファン
60を設けていて供給圧力を自由に高めることが出来る
ので、上記ダクト66内の空気圧力もやはり100〜3
00miAq程度で済む。
The fine powder system is also equipped with a cyclone 59 and a booster fan 60 in the duct 58, so that the supply pressure can be increased freely, so the air pressure in the duct 66 is also 100~3.
About 00 miAq is sufficient.

燃料ノズル51はフリーボード部5の壁2に取り付けて
あり、壁面から少し後退していると共に風箱55の空気
で冷却されるので、高温の燃焼熱からは、かなり隔離さ
れている。
The fuel nozzle 51 is attached to the wall 2 of the freeboard section 5, is slightly set back from the wall surface, and is cooled by the air of the wind box 55, so that it is considerably isolated from high-temperature combustion heat.

一方、微粉は粗粒子に比して空気輸速が容易でその供給
管58は炉底風箱6を経て空気分配板4よりやや上にの
ぞかせた程度のノズル57から供給されるからこの部分
も高熱から保護され焼損の危険性がない。
On the other hand, fine powder can be transported by air more easily than coarse particles, and its supply pipe 58 passes through the bottom air box 6 and is supplied from a nozzle 57 that is slightly above the air distribution plate 4, so this part is also used. Protected from high heat and there is no risk of burnout.

燃料ノズル51は炉壁2に取付けられているから第5,
6図に示すような分散ノズル機構が採用可能となり、そ
の取付個数は従来の20%程度でもよい。
Since the fuel nozzle 51 is attached to the furnace wall 2, the fifth,
A distributed nozzle mechanism as shown in Fig. 6 can be adopted, and the number of installed nozzles may be about 20% of the conventional number.

微粉の量は全体の50%以下であり、その供給ノズル5
7数も少なくてすむから保守点検制御が容易となる。
The amount of fine powder is less than 50% of the total, and the supply nozzle 5
Maintenance and inspection control is facilitated because the number of parts required is also less than 7.

粗粒子燃料供給用空気及び風箱55空気を、燃焼に要す
る燃焼炉1内に供給される全空気の15%内外に設定す
れば、いわゆる2段燃焼法(over FireAir
)としての作用も期待できるため、窒素酸化物抑制効果
も上げられる。
If the air for coarse particle fuel supply and the air in the wind box 55 are set at around 15% of the total air supplied into the combustion furnace 1 required for combustion, the so-called two-stage combustion method (over Fire Air
), it can also be expected to have a nitrogen oxide suppressing effect.

微粉を炉底に導入することによる微粉の炉内滞留時間は
従来のものとは変らず、未燃損失も従来同様維持できる
By introducing the fine powder into the furnace bottom, the residence time of the fine powder in the furnace remains the same as in the conventional method, and the unburned loss can also be maintained as in the conventional method.

なお、本実施例ではサイクロン59に導かれる空気は送
風機62からの送られる空気の1部であったが、これの
代りに第4図に示す併列点線で示すようにダンパ71を
備えたダクト72の別系路の低圧の送風機70を備えて
ダクト66へ接続してもよい。
In this embodiment, the air guided to the cyclone 59 was a part of the air sent from the blower 62, but instead of this, a duct 72 equipped with a damper 71 is used as shown by the parallel dotted line in FIG. A separate low-pressure blower 70 may be provided and connected to the duct 66.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流動層燃焼装置を示す図であり、第2図
は燃焼炉内の炉内位置と圧力の関係を示すグラフであり
、第3図は第1図中A部拡大図であり、第4図は本発明
の1実施例を示す図であり、第5図は第4図中B部拡大
図、第6図は第5図中■−■矢視図である。 1……燃焼炉、2……炉壁、3……流動床、4……空気
分配板、5……フリーボード部、6,55……風箱、1
2,14,59/……シュート、15……ホッパ、17
……燃料粒子、20……燃料供給機、51……燃料ノズ
ル、52.56.5B,6L63,66,68,72…
…ダクト、53……ピボット、54……回転レハー軸、
59……サイクロン、60……ブースタファン、62.
70……送風機、64……空気予熱器、65,67,7
1……ダンパ。
Figure 1 is a diagram showing a conventional fluidized bed combustion apparatus, Figure 2 is a graph showing the relationship between the position in the combustion furnace and the pressure, and Figure 3 is an enlarged view of section A in Figure 1. FIG. 4 is a diagram showing one embodiment of the present invention, FIG. 5 is an enlarged view of section B in FIG. 4, and FIG. 6 is a view taken along arrows -■ in FIG. 1... Combustion furnace, 2... Furnace wall, 3... Fluidized bed, 4... Air distribution plate, 5... Free board section, 6, 55... Wind box, 1
2,14,59/...Chute, 15...Hopper, 17
... Fuel particle, 20 ... Fuel supply machine, 51 ... Fuel nozzle, 52.56.5B, 6L63, 66, 68, 72 ...
...Duct, 53...Pivot, 54...Rotating Leher shaft,
59...Cyclone, 60...Booster fan, 62.
70...Blower, 64...Air preheater, 65,67,7
1...Damper.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼炉内の下部に多数の貫通孔のある空気分配板を
配置し、同空気分配板の上方にフリーボード部、下方に
風箱を形成し、固形燃料粒子を前記空気分配板上に供給
して前記風箱から前記フリーボード部へ前記空気分配板
の貫通孔を介して噴出する空気によって浮上燃焼させる
流動床燃焼装置において、前記フリーボード部の炉壁、
および、前記空気分配板の下方より同空気分配板上に臨
ませた燃料ノズルをそれぞれ複数個設け、サイクロンで
分離された前記固形燃料粒子のうち、粗粉燃料は前記炉
壁の燃料ノズルへ、微粉燃料は前記空気分配板上の燃料
ノズルへそれぞれ空気流に乗せて管路で輸送する手段を
設けたことを特徴とする流動床燃焼装置。
1. An air distribution plate with a large number of through holes is arranged in the lower part of the combustion furnace, a freeboard part is formed above the air distribution plate, and a wind box is formed below, and solid fuel particles are supplied onto the air distribution plate. In the fluidized bed combustion apparatus, the furnace wall of the freeboard section is provided, in which floating combustion is carried out by air ejected from the wind box to the freeboard section through the through hole of the air distribution plate.
and a plurality of fuel nozzles are each provided facing onto the air distribution plate from below the air distribution plate, and among the solid fuel particles separated by the cyclone, coarse fuel is directed to the fuel nozzle on the furnace wall; A fluidized bed combustion apparatus characterized in that means is provided for transporting the pulverized fuel to the fuel nozzles on the air distribution plate through pipes in air flow.
JP8449077A 1977-07-14 1977-07-14 Fluidized bed combustion equipment Expired JPS5812483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8449077A JPS5812483B2 (en) 1977-07-14 1977-07-14 Fluidized bed combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8449077A JPS5812483B2 (en) 1977-07-14 1977-07-14 Fluidized bed combustion equipment

Publications (2)

Publication Number Publication Date
JPS5419223A JPS5419223A (en) 1979-02-13
JPS5812483B2 true JPS5812483B2 (en) 1983-03-08

Family

ID=13832086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8449077A Expired JPS5812483B2 (en) 1977-07-14 1977-07-14 Fluidized bed combustion equipment

Country Status (1)

Country Link
JP (1) JPS5812483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179297A (en) * 1984-02-27 1985-09-13 ぺんてる株式会社 Pen point made of ceramic

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656508A (en) * 1979-10-15 1981-05-18 Babcock Hitachi Kk Fuel supplying method of fluid layer boiler
JPS57139207A (en) * 1981-02-23 1982-08-28 Babcock Hitachi Kk Load controlling method for fluidized bed boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179297A (en) * 1984-02-27 1985-09-13 ぺんてる株式会社 Pen point made of ceramic

Also Published As

Publication number Publication date
JPS5419223A (en) 1979-02-13

Similar Documents

Publication Publication Date Title
CA1207598A (en) Fluidized reinjection of carryover in a fluidized bed combustor
US6811358B2 (en) Adjustable flow vectoring splitter
BG60359B2 (en) Group concentric tangential firing system and method for its operation
JP5888726B2 (en) Solid fuel boiler system and solid fuel burner
US4532872A (en) Char reinjection system for bark fired furnace
EP0056709B1 (en) Fuel burners
CS708588A3 (en) Process and apparatus for combined combustion of coal
EP0050519B1 (en) Fluidized bed combustor
JPS6335887B2 (en)
JPS5812483B2 (en) Fluidized bed combustion equipment
US4640204A (en) Fluidized bed combustion apparatus and method of operating same
US4798342A (en) Fuel processing system for control of nitrous oxide emissions
CN111050917B (en) Pulverizer and application method thereof
JP7258581B2 (en) Crusher, boiler system and method of operating the crusher
EP0028458A2 (en) Fluidised-bed boilers
JP2020190374A (en) Incinerator and control method of incinerator
JPS58148307A (en) Coal feeder for fluidized bed boiler
JP2543447B2 (en) Waste combustion boiler
JPS58108306A (en) Method for low nox combustion of pulverized coal
JPS6363803B2 (en)
KR100808765B1 (en) Solid fuel feeding chute in a circulating fluidized bed combustor
US2730999A (en) Furnace and boiler plant
JPH0226651A (en) Crushed material sorting apparatus
JPS632745Y2 (en)
KR840001719Y1 (en) Providing supplemental pulverized coal for load regain