JP5888726B2 - Solid fuel boiler system and solid fuel burner - Google Patents

Solid fuel boiler system and solid fuel burner Download PDF

Info

Publication number
JP5888726B2
JP5888726B2 JP2011251744A JP2011251744A JP5888726B2 JP 5888726 B2 JP5888726 B2 JP 5888726B2 JP 2011251744 A JP2011251744 A JP 2011251744A JP 2011251744 A JP2011251744 A JP 2011251744A JP 5888726 B2 JP5888726 B2 JP 5888726B2
Authority
JP
Japan
Prior art keywords
carrier gas
coarse powder
gas pipe
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011251744A
Other languages
Japanese (ja)
Other versions
JP2013108640A5 (en
JP2013108640A (en
Inventor
貢 菅澤
貢 菅澤
秀久 吉廻
秀久 吉廻
善憲 田岡
善憲 田岡
隆宏 岡田
隆宏 岡田
佐藤 俊一
俊一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2011251744A priority Critical patent/JP5888726B2/en
Publication of JP2013108640A publication Critical patent/JP2013108640A/en
Publication of JP2013108640A5 publication Critical patent/JP2013108640A5/ja
Application granted granted Critical
Publication of JP5888726B2 publication Critical patent/JP5888726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固体燃料を燃焼させるボイラに係り、特に泥炭、褐炭、亜瀝青炭など燃料比が低い低品位炭で、水分量が多く燃焼前に乾燥処理を要する固体燃料を効率良く燃焼させることができ、主に火力発電プラントに用いられる固体燃料ボイラシステムと固体燃料用バーナに関する。   The present invention relates to a boiler that burns solid fuel, particularly low-grade coal with a low fuel ratio such as peat, lignite, subbituminous coal, and the like, which can efficiently burn solid fuel that has a high water content and needs to be dried before combustion. The present invention relates to a solid fuel boiler system and a solid fuel burner mainly used in a thermal power plant.

褐炭は資源量が豊富で安価な燃料であるが、水分が重量比で40〜60%程度と非常に多く、そのままでは輸送に適さない。そこで褐炭を脱水・乾燥して利用するための技術が種々開発されているが、経済性等の面で広く普及するには至っていない。このようなことから、火力発電プラント用ボイラの燃料としての褐炭は、産炭地付近のプラントで特に脱水・乾燥処理を行うことなく、直接燃料としてボイラに供給されることも多い。しかし、この場合、発生した熱の多くが水分の蒸発に消費されるため、最終的な発電効率が低くなることが避けられない。   Brown coal is an inexpensive fuel with abundant resources, but its moisture content is very high at about 40 to 60% by weight, and it is not suitable for transportation as it is. Accordingly, various techniques for dehydrating and drying lignite have been developed, but they have not been widely used in terms of economy and the like. For this reason, lignite as a fuel for a boiler for a thermal power plant is often supplied directly to the boiler as a fuel without performing a dehydration / drying process in a plant near the coal-producing area. However, in this case, since much of the generated heat is consumed for the evaporation of moisture, it is inevitable that the final power generation efficiency is lowered.

特許文献1(特開昭59−97408号公報)には、理論燃焼空気量以下の空気量で搬送される微粉炭と理論燃焼空気量以上の空気量で搬送される粗粉炭を混合しないように同一の燃焼バーナから火炉内に噴射して微粉燃焼ガスと粗粉燃焼ガスからそれぞれ微粉火炎と粗粉火炎を炉内で形成させ、炉内で微粉燃焼ガスと粗粉燃焼ガスを十分に混合させることで微粉燃焼ガス中のNH及びHCNを粗粉燃焼ガス中のNOxと反応させてNOxをNに還元させ、また微粉燃焼ガス中の未燃分を粗粉燃焼ガス中の余剰酸素と反応させることで、石炭中の未燃分の発生が減り、排ガス中のNOx濃度も減少することができると記載されている。 In Patent Document 1 (Japanese Patent Application Laid-Open No. 59-97408), pulverized coal conveyed with an air amount less than the theoretical combustion air amount and coarse pulverized coal conveyed with an air amount greater than the theoretical combustion air amount are not mixed. Inject into the furnace from the same combustion burner to form fine powder flame and coarse powder flame from the fine powder combustion gas and coarse powder combustion gas, respectively, and thoroughly mix the fine powder combustion gas and coarse powder combustion gas in the furnace By reacting NH 3 and HCN in the fine powder combustion gas with NOx in the coarse powder combustion gas, NOx is reduced to N 2, and unburned content in the fine powder combustion gas is reduced with excess oxygen in the coarse powder combustion gas. It is described that, by reacting, the generation of unburned coal in coal is reduced and the NOx concentration in exhaust gas can also be reduced.

特許文献2(特開平1−217110号公報)には、微粉炭と粗粉炭をバーナノズルに接続する石炭搬送管内を搬送中に、該石炭搬送管内に設けたルーバ型粗粉分離器で微粉炭をバーナノズルの出口部の内壁側に集めてバーナノズルの出口部に設けた保炎器により微粉炭を捕捉させて微粉炭の着火を促進する構成が開示されている。   In Patent Document 2 (JP-A-1-217110), pulverized coal and pulverized coal are transported through a coal transport pipe connected to a burner nozzle, and pulverized coal is removed by a louver type coarse powder separator provided in the coal transport pipe. A configuration is disclosed in which pulverized coal is captured by a flame holder provided on the inner wall side of the outlet portion of the burner nozzle and provided at the outlet portion of the burner nozzle to promote ignition of the pulverized coal.

特許文献3(特開平5−237413号公報)には、石炭粉砕用ミル内で粉砕した微粉炭を、該ミルの出口部からバーナノズルに供給する際に、ミルの出口部にある回転式分級器に設けた固定羽根の取り付け角度を調整することで20ミリミクロン以下の微粉炭を一定量以上バーナノズルに供給できるようにして、低負荷時にもバーナノズル出口での石炭の着火性、保炎性を保つことができるようにした構成が開示されている。   Patent Document 3 (Japanese Patent Application Laid-Open No. 5-237413) discloses a rotary classifier at the outlet of a mill when supplying pulverized coal pulverized in a coal pulverizing mill to a burner nozzle from the outlet of the mill. By adjusting the mounting angle of the fixed blades provided in the pulverized coal, it is possible to supply more than a certain amount of pulverized coal to the burner nozzle at a certain amount or more, so that the ignitability and flame holding performance of the coal at the burner nozzle outlet is maintained even at low load. A configuration that can be used is disclosed.

特開昭59−97408号公報JP 59-97408 A 特開平1−217110号公報JP-A-1-217110 特開平5−237413号公報JP-A-5-237413

上記特許文献記載の発明には褐炭などの低品位炭の燃焼性については触れられていない。褐炭は炭化されていない木質分の割合が多く、繊維質の木質分は微粉砕されずに微粉砕機内部に滞留して粉砕動力を過剰に消費する。そのため、火力発電プラントとしての効率を低めるという問題点があった。   The invention described in the above patent document does not mention the combustibility of low-grade coal such as lignite. Brown coal has a large proportion of wood that is not carbonized, and fibrous wood remains in the pulverizer without being finely pulverized and consumes excessive pulverization power. For this reason, there is a problem that the efficiency as a thermal power plant is lowered.

本発明の課題は、泥炭や褐炭のように高水分の石炭を燃料とする固体燃料ボイラにおいて、低コストで効率良く燃料中の水分を低減し、設備費や粉砕動力の増大を抑制して、火力発電プラントの効率(発電端効率)向上に寄与する固体燃料ボイラシステムと該システムに使用し得る固体燃料バーナを提供することである。   The subject of the present invention is a solid fuel boiler that uses high-moisture coal as fuel, such as peat and lignite, to reduce moisture in the fuel efficiently at low cost, and to suppress an increase in equipment costs and grinding power, To provide a solid fuel boiler system that contributes to improving the efficiency (power generation end efficiency) of a thermal power plant and a solid fuel burner that can be used in the system.

本発明の上記課題は次の解決手段で解決される。
請求項1記載の発明は、2以上の固体燃料バーナ(15,15,・・・)からなるバーナグループを複数グループ備えた固体燃料ボイラ(124)と、該ボイラ(124)からの排ガスと燃焼用ガス及び搬送ガスとを熱交換するガス予熱器(18)とを有する固体燃料ボイラシステムであって、各固体燃料バーナ(15)には、固体燃料の粗粉と微粉とをそれぞれ別系統で導入して燃焼させるための、粗粉供給系統と微粉供給系統とが接続されており、前記粗粉供給系統は、前記ガス予熱器(18)を経由して固体燃料搬送ガスを前記固体燃料バーナ(15)に導入する第1の粗粉用高温搬送ガス配管(105)と、前記ガス予熱器(18)の前流側で前記第1の粗粉用高温搬送ガス配管(105)から分岐した第1の粗粉用低温搬送ガス配管(106)と、前記ガス予熱器(18)の後流側で前記第1の粗粉用高温搬送ガス配管(105)から分岐して前記第1の粗粉用低温搬送ガス配管(106)に接続される第2の粗粉用高温搬送ガス配管(109)と、該第2の粗粉用高温搬送ガス配管(109)を前記第1の粗粉用低温搬送ガス配管(106)に接続した接続部の後流側に設けられる固体燃料の粗粉を混合するための粗粉混合器(5)と、該粗粉混合器(5)から固体燃料バーナ(15)に粗粉を供給する第3、4の粗粉用高温搬送ガス配管(107,108)とを備え、前記微粉供給系統は、前記ガス予熱器(18)を経由して固体燃料搬送ガスを前記固体燃料バーナ(15)に導入する第1の微粉用高温搬送ガス配管(105’)と、前記ガス予熱器(18)の前流側で前記第1の微粉用高温搬送ガス配管(105’)から分岐した第1の微粉用低温搬送ガス配管(106’)と、前記ガス予熱器(18)の後流側で前記第1の微粉用高温搬送ガス配管(105’)から分岐して前記第1の微粉用低温搬送ガス配管(106’)に接続される第2の微粉用高温搬送ガス配管(109’)と、該第2の微粉用高温搬送ガス配管(109’)を前記第1の微粉用低温搬送ガス配管(106’)に接続した接続部の後流側の第1の微粉用低温搬送ガス配管(106’)に設けられる搬送ガスファン(23)と、搬送ガスファン(23)の後流側の前記第1の微粉用低温搬送ガス配管(106’)に接続した固体燃料の粗粉を微粉砕して前記固体燃料の微粉を生成し、搬送ガス流に供給する微粉砕機(24)と、該微粉砕機(24)から固体燃料バーナ(15)に微粉を供給する第の微粉用高温搬送ガス配管(107’)とを備え、前記粗粉供給系統は、前記粗粉混合器(5)が前記複数のバーナグループ(15,15,・・・)それぞれに対応して複数個設けられ、前記微粉供給系統は、前記微粉砕機(24)が前記複数のバーナグループ(15,15,・・・)に対して少なくとも1機設けられていることを特徴とする固体燃料ボイラシステムである。
The above-mentioned problem of the present invention is solved by the following means.
The invention according to claim 1 is a solid fuel boiler (124) provided with a plurality of burner groups composed of two or more solid fuel burners (15, 15,...), And exhaust gas and combustion from the boiler (124). The solid fuel boiler system has a gas preheater (18) for exchanging heat between the working gas and the carrier gas, and each solid fuel burner (15) has coarse powder and fine powder of solid fuel in separate systems. A coarse powder supply system and a fine powder supply system for introducing and burning are connected, and the coarse powder supply system passes the solid fuel carrier gas through the gas preheater (18) to the solid fuel burner. The first high-temperature carrier gas pipe (105) for coarse powder introduced into (15) and the first high-temperature carrier gas pipe (105) for coarse powder branched from the upstream side of the gas preheater (18). First low-temperature carrier gas distribution for coarse powder (106) and branched from the first coarse powder high temperature carrier gas pipe (105) on the downstream side of the gas preheater (18) to the first coarse powder cold carrier gas pipe (106). The second coarse powder high-temperature carrier gas pipe (109) to be connected and the second coarse powder high-temperature carrier gas pipe (109) were connected to the first coarse powder low-temperature carrier gas pipe (106). A coarse powder mixer (5) for mixing coarse powder of solid fuel provided on the downstream side of the connecting portion, and a coarse powder mixer (5) for supplying coarse powder to the solid fuel burner (15) 3 and 4 high-temperature carrier gas pipes (107, 108) for coarse powder, and the fine powder supply system passes the solid fuel carrier gas to the solid fuel burner (15) via the gas preheater (18). First high-temperature carrier gas pipe (105 ′) for fine powder to be introduced and the upstream side of the gas preheater (18) The first fine powder low-temperature carrier gas pipe (106 ') branched from the first fine powder high-temperature carrier gas pipe (105') and the gas preheater (18) on the downstream side of the first fine powder A second fine powder high temperature carrier gas pipe (109 ') branched from the high temperature carrier gas pipe (105') and connected to the first fine powder low temperature carrier gas pipe (106 '); and the second fine powder The first high-temperature carrier gas pipe (106 ') on the downstream side of the connecting portion where the high-temperature carrier gas pipe (109') is connected to the first low-temperature carrier gas pipe (106 ') for fine powder. The solid fuel coarse powder connected to the carrier gas fan (23) and the first low-temperature carrier gas pipe (106 ′) for the fine powder on the downstream side of the carrier gas fan (23) is finely pulverized to pulverize the solid fuel. A fine pulverizer (24) for generating fine powder and supplying it to the carrier gas stream; And a solid fuel burner (15) Third fine powder for hot carrier gas pipe for supplying fines (107 ') from the coarse powder supply system, the coarse powder mixer (5) of the plurality of burners groups (15, 15,...) Are provided corresponding to each, and the fine powder supply system is configured such that the fine pulverizer (24) has a plurality of burner groups (15, 15,...). It is a solid fuel boiler system provided with at least one machine.

請求項2記載の発明は、所定の間隔をおいて配置された一組の駆動用軸体(72,73)と、該一組の駆動用軸体(72,73)間に架設されて、前記駆動用軸体(72,73)周りに周回させて被搬送物を収容して搬送し、かつその底部に乾燥用気体を噴出させる気体噴出部(79)を設けた被搬送物の流動層形成用の搬送部材(75)を備え、該搬送部材(75)の下方から搬送部材(75)内に向けて前記乾燥用気体を供給する風箱(85)を設けたコンベア装置(39)を、固体燃料を粗粉砕して得た粗粉の水分量を低減用のコンベア装置として前記複数の粗粉混合器(5)及び前記微粉炭機(24)ごとに備えたことを特徴とする請求項1記載の固体燃料ボイラシステムである。   The invention according to claim 2 is constructed between a set of drive shaft bodies (72, 73) arranged at a predetermined interval and the set of drive shaft bodies (72, 73), A fluidized bed of a transported object provided with a gas jetting part (79) that circulates around the drive shaft (72, 73) to receive and transport the transported object, and jets a drying gas at the bottom thereof. A conveyor device (39) provided with a forming conveying member (75) and provided with an air box (85) for supplying the drying gas from below the conveying member (75) into the conveying member (75). A plurality of coarse powder mixers (5) and pulverized coal machines (24) are provided as conveyor devices for reducing the water content of coarse powder obtained by coarsely pulverizing solid fuel. The solid fuel boiler system according to Item 1.

請求項3記載の発明は、第3、4の粗粉用高温搬送ガス配管(107,108)は熱風混合器(13)を介して接続する第3の粗粉用高温搬送ガス配管(107)と第4の粗粉用高温搬送ガス配管(108)からなり、熱風混合器(13)には前記第2の粗粉用高温搬送ガス配管(109)から分岐した第5の粗粉用高温搬送ガス配管(112)が接続されたことを特徴とする請求項1記載の固体燃料ボイラシステムである。 According to the third aspect of the present invention, the third and fourth high-temperature carrier gas pipes for coarse powder (107, 108) are connected via a hot-air mixer (13). And a fourth coarse powder high-temperature carrier gas pipe (108), and the hot air mixer (13) branches from the second coarse powder high-temperature carrier gas pipe (109) to the fifth coarse powder high-temperature carrier. 2. The solid fuel boiler system according to claim 1, wherein a gas pipe (112) is connected.

請求項4記載の発明は、前記微粉供給系統の設置を省略して、第の粗粉用高温搬送ガス配管(107)と熱風混合器(13)の間に微粉を分離するサイクロンセパレータ(41)を設け、サイクロンセパレータ(41)で分離された微粉を直接固体燃料バーナ(15)に搬送する微粉圧調整ダンパ(47)を有する微粉搬送配管(46)をサイクロンセパレータ(41)と固体燃料バーナ(15)の間に設けたことを特徴とする請求項3記載の固体燃料ボイラシステムである。 The invention according to claim 4 omits the installation of the fine powder supply system and separates the fine powder between the third high-temperature carrier gas pipe for coarse powder (107) and the hot air mixer (13) (41 ), And a fine powder conveying pipe (46) having a fine powder pressure adjusting damper (47) for conveying fine powder separated by the cyclone separator (41) directly to the solid fuel burner (15) is connected to the cyclone separator (41) and the solid fuel burner. The solid fuel boiler system according to claim 3, wherein the solid fuel boiler system is provided between (15).

請求項5記載の発明は、前記第5の粗粉用高温搬送ガス配管(112)には熱風混合ダンパ(42)を設け、前記第5の粗粉用高温搬送ガス配管(112)との接続部より後流側の第2の粗粉用高温搬送ガス配管(109)に搬送空気温度調節ダンパ(8)を設け、該第2の粗粉用高温搬送ガス配管(109)との接続部より前流側の前記第1の粗粉用低温搬送ガス配管(106)に搬送空気流量調整ダンパ(7)を設け、該第2の粗粉用高温搬送ガス配管(109)との接続部より後流側の前記第1の粗粉用低温搬送ガス配管(106)に搬送空気流量を計測する搬送空気流量計(9)を設け、前記熱風混合ダンパ(42)より後流側の第5の粗粉用高温搬送ガス配管(112)に第5の粗粉用高温搬送ガス配管(112)内の熱空気流量を計測する熱空気流量計(12)を設け、粗粉混合器(5)の出口側にある第3の粗粉用高温搬送ガス配管(107)に粗粉混合器出口温度を計測する粗粉混合器出口温度計(11)を設け、第4の粗粉用高温搬送ガス配管(108)にバーナ入口温度を計測するバーナ入口温度計(14)を設け、前記搬送空気温度調節ダンパ(8)の開度を前記粗粉混合器出口温度計(11)の計測値に基づき制御し、前記熱風混合ダンパ(42)の開度を給炭量指令値と最低空気流量との偏差値(119)に基づき算出される熱風量指令値(123)と前記バーナ入口温度計(14)の計測値の積算値(120)に基づき制御し、搬送空気流量調整ダンパ(7)の開度を(イ)搬送熱空気流量計(12)の計測値と空気流量計(9)の計測値の積算値(116)と給炭量指令値(115)との偏差値である第1の偏差信号(117)により算出される指令信号値(118)及び(ロ)空気流量計(9)の計測値と最低空気流量との偏差である第2の偏差信号(119)により算出される指令信号値(118)に基づき、最低空気量を下限として必要空気量が得られるように制御する御機構を備えたことを特徴とする請求項1記載の固体燃料ボイラシステムである。 According to a fifth aspect of the present invention, a hot air mixing damper (42) is provided in the fifth high-temperature carrier gas pipe (112) for coarse powder, and is connected to the fifth high-temperature carrier gas pipe (112) for coarse powder. The second coarse powder high-temperature carrier gas pipe (109) on the downstream side of the section is provided with a carrier air temperature adjustment damper (8), and connected to the second coarse powder high-temperature carrier gas pipe (109). A carrier air flow rate adjusting damper (7) is provided in the first coarse powder low-temperature carrier gas pipe (106) on the upstream side, and is connected to the second coarse powder high-temperature carrier gas pipe (109). The first coarse powder low temperature carrier gas pipe (106) on the flow side is provided with a carrier air flow meter (9) for measuring the flow rate of the carrier air, and the fifth coarser on the downstream side from the hot air mixing damper (42). Hot air flow rate in the fifth high-temperature carrier gas pipe (112) for coarse powder to the high-temperature carrier gas pipe (112) for powder Coarse powder mixing provided with a hot air flow meter (12) to measure and measuring the coarse powder mixer outlet temperature in the third high-temperature carrier gas pipe (107) for coarse powder on the outlet side of the coarse powder mixer (5) Provided with a burner inlet thermometer (11) for measuring the burner inlet temperature in the fourth high-temperature carrier gas pipe (108) for coarse powder, and the carrier air temperature adjusting damper (8). The opening degree is controlled based on the measured value of the coarse powder mixer outlet thermometer (11), and the opening degree of the hot air mixing damper (42) is set to a deviation value (119) between the coal supply command value and the minimum air flow rate. Based on the hot air flow rate command value (123) calculated based on this and the integrated value (120) of the measured value of the burner inlet thermometer (14), the opening degree of the conveying air flow rate adjustment damper (7) is (i) conveyed. Integrated value of the measured value of the hot air flow meter (12) and the measured value of the air flow meter (9) ( 16) and the command value (118) calculated from the first deviation signal (117) which is a deviation value between the coal supply command value (115) and (b) the measured value of the air flow meter (9) and the lowest based on the command signal value calculated by the second deviation signal which is a deviation of the air flow (119) (118), comprising a control mechanism for controlling such required air amount is obtained a minimum amount of air as the lower limit The solid fuel boiler system according to claim 1.

請求項6記載の発明は、請求項1記載の固体燃料ボイラシステムに用いる固体燃料用バーナであって、中央部に粗粉炭と一次空気の混合物が流れ、内壁部に前記混合流に絞りを入れるためのベンチュリ(29)を有する一次燃料ノズル(45)を設け、該一次燃料ノズル(45)の外周に微粉炭と一次空気の混合流が流れる二次燃料ノズル(49)を設け、前記一次燃料ノズル(45)の出口部先端より先に二次燃料ノズル(49)の出口部先端を配置し、該二次燃料ノズル(49)の出口部先端の外周に保炎器(35)を設け、前記二次燃料ノズル(49)の外周には内部に二次ベーン(31)を有し、出口部が順次拡大するガイドスリーブを有する二次空気ノズル(50)を設け、該二次空気ノズル(50)の外周には三次レジスタを有する三次空気ノズル(51)を設けたことを特徴とする固体燃料用バーナである。 A sixth aspect of the present invention is a solid fuel burner used in the solid fuel boiler system according to the first aspect, wherein a mixture of coarse coal and primary air flows in a central portion, and the mixed flow is narrowed in an inner wall portion. A primary fuel nozzle (45) having a venturi (29) is provided, and a secondary fuel nozzle (49) through which a mixed flow of pulverized coal and primary air flows is provided on the outer periphery of the primary fuel nozzle (45), and the primary fuel Disposing the tip of the outlet of the secondary fuel nozzle (49) ahead of the tip of the outlet of the nozzle (45), providing a flame holder (35) on the outer periphery of the tip of the outlet of the secondary fuel nozzle (49), The secondary fuel nozzle (49) is provided with a secondary air nozzle (50) having a secondary vane (31) in the outer periphery thereof and a guide sleeve having an outlet portion that sequentially expands. 50) has a tertiary register on the outer periphery That is a solid fuel burner, characterized in that a tertiary air nozzle (51).

(作用)
本発明は主に石炭(褐炭)を平均粒径で2mm程度に粗粉化して乾燥させてバーナに供給する。その際に石炭(褐炭)の燃焼を継続させるために、40μm粒子が数十%含まれる微粉炭が必要であり、燃焼継続に必要な量の微粉炭を微粉砕機で作りバーナに供給する。 また、粗粉の粒径が大きく、燃焼炉底部に落下するが、石炭は炉底部で置き火燃焼させて、熱回収を行うものである。
(Function)
In the present invention, coal (brown coal) is mainly coarsened to an average particle size of about 2 mm, dried, and supplied to the burner. At that time, in order to continue the combustion of the coal (brown coal), pulverized coal containing several tens of% of 40 μm particles is necessary, and an amount of pulverized coal necessary for continuing combustion is made by a pulverizer and supplied to the burner. Moreover, although the particle size of the coarse powder is large and falls to the bottom of the combustion furnace, the coal is placed and burned at the bottom of the furnace for heat recovery.

高水分炭である褐炭を燃焼させる褐炭焚ボイラにおいて、粉砕動力低減による効率向上を図るため、同一燃料について微粉砕した微粉と粗粉砕した粗粉を別系統で一つのバーナに導き燃焼させる。   In a lignite coal fired boiler that burns lignite, which is a high-moisture coal, in order to improve efficiency by reducing pulverization power, finely pulverized fine powder and coarsely pulverized coarse powder are guided to one burner and burned by different systems.

また、揮発分の多い褐炭で自然発火の問題がなく、かつ高効率とするため、褐炭の搬送系統の高温/低温ガス(空気予熱器(A/H)による予熱の有無)の混合量を調整して微粉と粗粉で個別に温度調節する。ここで、微粉についてはミル出口温度を70℃とし、粗粉については、混合器(燃料搬送系への導入部)で150℃、バーナ手前で250℃となるようにする。   In addition, the amount of high-temperature / low-temperature gas (pre-heated by air preheater (A / H)) in the lignite transport system is adjusted in order to improve the efficiency of lignite-rich lignite without causing spontaneous ignition. Then adjust the temperature separately for fine powder and coarse powder. Here, the mill exit temperature is set to 70 ° C. for fine powder, and the coarse powder is set to 150 ° C. in the mixer (introduction section to the fuel conveyance system) and 250 ° C. in front of the burner.

以下の説明では、燃焼用ガス及び搬送ガスとして空気を用いる場合を記しているが、空気のみに限らず、ボイラの燃焼排ガスや富酸素ガス等、それらの混合ガスあるいは空気が混合したもの等でも良い。燃料種も褐炭に限らず、水分が多く、粉砕動力が大きい固体燃料に広く適用できる。   In the following description, the case where air is used as the combustion gas and the carrier gas is described. However, the present invention is not limited to only air, but also a combustion exhaust gas of a boiler, an oxygen-rich gas, etc. good. The fuel type is not limited to lignite, but can be widely applied to solid fuels that have a lot of moisture and a large pulverization power.

平均粒径2mm程度に粗粉砕された粗粉を主体とする褐炭をバーナで着火しやすくするためには、粒径40μm以下の微粉を20%程度は混合させることが必要である。
本発明は、乾燥処理されることで乾燥処理前の状態に比べて微粉砕し易くなった粗粉の一部を微粉炭機(ミル)で粉砕し、これを低温の搬送ガスでバーナまで搬送して着火させることで、搬送系統上での燃料の自然発火に対する安全性とバーナでの燃料の着火性とを確保する。
In order to easily ignite lignite mainly composed of coarse powder coarsely pulverized to an average particle diameter of about 2 mm with a burner, it is necessary to mix about 20% of fine powder with a particle diameter of 40 μm or less.
In the present invention, a part of the coarse powder that has been easily pulverized compared to the state before the drying process is pulverized by a pulverized coal machine (mill) and transferred to the burner with a low-temperature carrier gas. By igniting, the safety against the spontaneous ignition of the fuel on the transport system and the ignitability of the fuel in the burner are ensured.

また本発明は、多大な動力と高価でメンテナンス費用もかかる微粉砕機を必要とする粗粒を微粉砕するための設備及び工程は最小限に留め、粗粉を主とする固体燃料を微粉と同じバーナへ主燃料として供給し、その供給直前で搬送ガス温度を高温にすることで燃焼促進と、ボイラ効率の向上を図るものである。   In addition, the present invention minimizes equipment and processes for pulverizing coarse particles that require a fine pulverizer that requires a large amount of power, cost, and maintenance costs. The fuel is supplied to the same burner as the main fuel, and the carrier gas temperature is increased immediately before the supply to promote combustion and improve boiler efficiency.

通常、粗粒を微粉化する動力(微粉砕機の動力)に対して1/2から1/10で粗粒を粗粉とすることが可能であり、それを効率良く燃焼できれば、動力差分の発電端効率が向上できる。   Usually, it is possible to make coarse particles into coarse powder at 1/2 to 1/10 of the power for finely pulverizing coarse particles (power of fine pulverizer), and if it can be burned efficiently, Power generation efficiency can be improved.

本発明の固体燃料用バーナのベンチュリ29で粗粉炭と一次空気の混合物に絞りを入れることで均一化された石炭粗粉がバーナ15の先端へ供給される。一方、微粉と一次空気の混合流は一次燃料ノズル45の外周部に設けられた二次燃料ノズル49に供給され、保炎リング35の直前でバーナ15の先端部に微粉と一次空気の混合流が噴出され、微粉は保炎リング35で巻き返し、安定した火炎を形成し 微粉より内側にある粗粉を蒸し焼きにすることで粗粉子もガス化し、燃焼され易くなる。   The coal coarse powder homogenized by squeezing the mixture of coarse coal and primary air with the venturi 29 of the burner for solid fuel of the present invention is supplied to the tip of the burner 15. On the other hand, the mixed flow of fine powder and primary air is supplied to the secondary fuel nozzle 49 provided on the outer peripheral portion of the primary fuel nozzle 45, and the mixed flow of fine powder and primary air at the tip of the burner 15 immediately before the flame holding ring 35. The fine powder is rolled back by the flame holding ring 35 to form a stable flame, and the coarse powder inside the fine powder is steamed and burned, whereby the coarse powder is also gasified and easily burned.

また、バーナ15へ供給する空気は二次燃料ノズル49の外側に配置され、二次空気ノズル50内を流れる二次空気流30と三次空気ノズル51内を流れる三次空気流32とにそれぞれ分けられ、二次空気ノズル50内の二次ベーン31と三次空気ノズル51内に配置される三次レジスタ33などによる調整で炉内での燃料の保炎性、燃焼排ガス中のNOx濃度、酸素分布などの調整が可能になっている。
バーナ15の先端は空気が燃焼の初期段階で過剰に供給されるとNOx濃度の上昇を招くことから、ガイドスリーブ34で空気が燃焼の過剰供給を抑制している。
The air supplied to the burner 15 is arranged outside the secondary fuel nozzle 49 and is divided into a secondary air flow 30 flowing in the secondary air nozzle 50 and a tertiary air flow 32 flowing in the tertiary air nozzle 51. The adjustment by the secondary vane 31 in the secondary air nozzle 50 and the tertiary register 33 arranged in the tertiary air nozzle 51 etc. adjust the flame holding property of the fuel in the furnace, the NOx concentration in the combustion exhaust gas, the oxygen distribution, etc. Adjustment is possible.
Since the tip of the burner 15 causes an increase in NOx concentration when air is supplied excessively in the initial stage of combustion, air is suppressed by the guide sleeve 34 from excessive supply of combustion.

請求項1記載の発明によれば、高水分炭である褐炭を燃焼させる褐炭焚ボイラにおいて、粉砕動力低減による効率向上を図るため、同一燃料について微粉砕した微粉と粗粉砕した粗粉を別系統で一つのバーナに導き燃焼させることができ、また、揮発分の多い褐炭で自然発火の問題がなく、かつ高効率とするため、褐炭の搬送系統の高温/低温ガス(空気予熱器による予熱の有無)の混合量を調整して微粉と粗粉で個別に温度調節することができる。   According to the first aspect of the present invention, in the lignite coal fired boiler that burns lignite that is high moisture coal, in order to improve efficiency by reducing pulverization power, finely pulverized fine powder and coarsely pulverized coarse powder are separated from each other. In order to improve the efficiency of lignite with a high volatility, there is no problem of spontaneous ignition and high efficiency, the hot / cold gas of the lignite transport system (preheating by the air preheater) It is possible to adjust the temperature separately for fine powder and coarse powder by adjusting the mixing amount.

本発明は、乾燥処理されることで乾燥処理前の状態に比べて微粉砕し易くなった粗粉の一部を微粉炭機(ミル)で粉砕し、これを低温の搬送ガスでバーナまで搬送して着火させることで、搬送系統上での燃料の自然発火に対する安全性とバーナでの燃料の着火性とを確保する。   In the present invention, a part of the coarse powder that has been easily pulverized compared to the state before the drying process is pulverized by a pulverized coal machine (mill) and transferred to the burner with a low-temperature carrier gas. By igniting, the safety against the spontaneous ignition of the fuel on the transport system and the ignitability of the fuel in the burner are ensured.

また本発明は、多大な動力と高価でメンテナンス費用もかかる微粉砕機を必要とする粗粒を微粉砕するための設備及び工程は最小限に留め、粗粉を主とする固体燃料を微粉と同じバーナへ主燃料として供給し、その供給直前で搬送ガス温度を高温にすることで燃焼促進とボイラ効率の向上を図るものである。   In addition, the present invention minimizes equipment and processes for pulverizing coarse particles that require a fine pulverizer that requires a large amount of power, cost, and maintenance costs. The fuel is supplied to the same burner as the main fuel, and the carrier gas temperature is increased immediately before the supply, thereby promoting combustion and improving boiler efficiency.

通常、粗粒を微粉化する動力(微粉砕機の動力)に対して1/2から1/10で粗粒を粗粉とすることが可能であり、それを効率良く燃焼できれば、動力差分の発電端効率が向上できる。   Usually, it is possible to make coarse particles into coarse powder at 1/2 to 1/10 of the power for finely pulverizing coarse particles (power of fine pulverizer), and if it can be burned efficiently, Power generation efficiency can be improved.

例えば1000MWプラントの発電端効率でミル(微粉炭機)と一次空気ファンの動力が占める割合は0.5%であり、ミル(微粉炭機)と一次空気ファンの数を1/5程度に減らせるので、前記発電炭効率でミル(微粉炭機)と一次空気ファンの動力が占める割合は0.1%で済み、0.4%の改善となる。従って、送電端効率が40%の発電プラントであれば、プラントとして1%の効率改善が見込まれる。また、ミル(微粉炭機)台数の低減により、設備の簡素化(低コスト化)やメンテナンス費用の低減も図れる。
また、本発明は、燃料種も褐炭に限らず、水分が多く、粉砕動力が大きい固体燃料に広く適用できる。
For example, the power generation efficiency of a 1000 MW plant accounts for 0.5% of the power of the mill (pulverized coal machine) and primary air fan, and the number of mills (pulverized coal machine) and primary air fans can be reduced to about 1/5. Therefore, the ratio of the power of the mill (pulverized coal machine) and the primary air fan to the power generation efficiency is only 0.1%, which is an improvement of 0.4%. Therefore, if the power transmission end efficiency is 40%, the plant is expected to improve efficiency by 1%. In addition, by reducing the number of mills (pulverized coal machines), facilities can be simplified (lower cost) and maintenance costs can be reduced.
In addition, the present invention is not limited to brown coal, and can be widely applied to solid fuels that have a high water content and a high pulverization power.

請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、被搬送物の流動層形成用の搬送部材の下方から搬送部材内に向けて前記乾燥用気体を供給する風箱を設けたコンベア装置を用いることで流動層の形成により粗粒炭の乾燥が効率的に、かつ均等に行える。   According to the second aspect of the present invention, in addition to the effect of the first aspect of the invention, the wind for supplying the drying gas from below the conveying member for forming the fluidized bed of the conveyed object into the conveying member. By using a conveyor device provided with boxes, the coarse coal can be efficiently and evenly dried by forming a fluidized bed.

請求項3記載の発明によれば、請求項1記載の発明の効果に加えて、第2の粗粉用高温搬送ガス配管を熱風混合器を介して接続する第3の粗粉用高温搬送ガス配管と第4の粗粉用高温搬送ガス配管から構成し、さらに熱風混合器には前記第2の粗粉用高温搬送ガス配管から分岐した第5の粗粉用高温搬送ガス配管を接続することで、バーナへ達する粗粉炭中の揮発分が放散されて燃焼し易くなる。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1, the third high-temperature carrier gas for coarse powder connecting the second high-temperature carrier gas pipe for coarse powder via a hot air mixer. A pipe and a fourth high-temperature carrier gas pipe for coarse powder; and a hot air mixer connected to the fifth high-temperature carrier gas pipe for coarse powder branched from the second high-temperature carrier gas pipe for coarse powder. Thus, the volatile matter in the coarse coal reaching the burner is diffused and becomes easy to burn.

請求項4記載の発明によれば、石炭の粗粉中に微粉が多く含まれている場合には、前記微粉供給系統の設置を省略して、第の粗粉用高温搬送ガス配管(107)と熱風混合器(13)の間に設けた微粉を分離するサイクロンセパレータ(41)で微粉を分離して、得られた微粉は微粉搬送配管(46)を経由して直接固体燃料バーナ(15)に搬送することができる。 According to invention of Claim 4, when many fine powder is contained in the coarse powder of coal, installation of the said fine powder supply system is abbreviate | omitted, and 3rd high-temperature carrier gas piping for coarse powder (107 ) And a hot air mixer (13), the fine powder is separated by a cyclone separator (41) for separating the fine powder, and the obtained fine powder is directly passed through the fine powder conveyance pipe (46) to the solid fuel burner (15 ).

請求項5記載の発明によれば、請求項1記載の発明の効果に加えて、粗粉炭と微粉炭のそれぞれに対して、バーナへの搬送流路内での搬送量を搬送ガス(空気)温度と給炭量指令値に応じて適切に制御でき、搬送ガス(空気)量を余分にバーナ内に送ることがなく石炭濃度を必要以上に低下させることなく、さらに石炭搬送流路内では石炭が停滞しない最低流速を確保することができる。   According to the invention described in claim 5, in addition to the effect of the invention described in claim 1, the transfer amount in the transfer channel to the burner is set to the transfer gas (air) for each of the coarse coal and pulverized coal. It can be controlled appropriately according to the temperature and the coal supply command value, does not send the amount of carrier gas (air) excessively into the burner, and does not reduce the coal concentration more than necessary. It is possible to secure a minimum flow velocity that does not stagnate.

請求項6記載の発明によれば、請求項1記載の発明における固体燃料バーナの先端部に噴出される微粉は保炎リングの後方で巻き返し、安定した火炎を形成し微粉より内側にある粗粉を蒸し焼きにすることで粗粉子もガス化し、燃焼され易くなる。 According to the sixth aspect of the present invention, the fine powder ejected to the tip of the solid fuel burner in the first aspect of the invention is rolled up behind the flame holding ring to form a stable flame, and the coarse powder is inside the fine powder. By steaming and baking, the coarse powder is also gasified and easily burned.

本発明の一実施例の粗粉と微粉からなる全体の燃焼系統の主要な構成図を示す。The main block diagram of the whole combustion system which consists of the coarse powder and fine powder of one Example of this invention is shown. 本発明の一実施例の粗粉の燃焼系統図を示す。The combustion system figure of the coarse powder of one example of the present invention is shown. 本発明の一実施例の微粉の燃焼系統図を示す。The combustion system figure of the fine powder of one example of the present invention is shown. 本発明の一実施例の粗粉燃焼用バーナの側断面図を示す。The side sectional view of the burner for coarse powder combustion of one example of the present invention is shown. 本発明の他の実施例の粗粉子の燃焼系統図を示す。The combustion system figure of the coarse powder of other examples of the present invention is shown. 本発明の実施例に係る乾燥コンベア装置全体の系統図である。It is a systematic diagram of the whole drying conveyor apparatus which concerns on the Example of this invention. 本発明の実施例に係る乾燥コンベア装置本体の概略構成図である。It is a schematic block diagram of the drying conveyor apparatus main body which concerns on the Example of this invention. 図7の乾燥コンベア装置本体に用いるエプロンの斜視図である。It is a perspective view of the apron used for the drying conveyor apparatus main body of FIG. 図7のA−A線上の拡大断面図である。It is an expanded sectional view on the AA line of FIG. 図7のB−B線上の拡大断面図である。It is an expanded sectional view on the BB line of FIG. 図8のエプロンの配置状態を示す概略側面図である。It is a schematic side view which shows the arrangement | positioning state of the apron of FIG.

本発明の実施例を図面と共に説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1に本発明の実施例の粗粉と微粉からなる全体の燃焼系統の主要な構成図を示す。
石炭バンカ37内の50mmアンダーの褐炭は2段の粗粉砕機38で平均粒径数ミリ(例えば、2mm程度)に粉砕され、粗粉となる(詳細は図6参照)。その後、乾燥機39で10〜20%の水分含有量になるまで乾燥され、粗粉ホッパ1に貯留される。
粗粉の系統は粗粉ホッパ1の出口配管に設けられるロータリーバルブ2と燃料遮断弁3があり、それらを通過した粗粉は粗粉混合器5で空気と混合されてボイラ124のバーナ15へと運ばれる。
FIG. 1 shows a main configuration diagram of an entire combustion system composed of coarse powder and fine powder according to an embodiment of the present invention.
The lignite under 50 mm in the coal bunker 37 is pulverized to an average particle size of several millimeters (for example, about 2 mm) by a two-stage coarse pulverizer 38 to become coarse powder (see FIG. 6 for details). Then, it is dried until the moisture content becomes 10 to 20% in the dryer 39 and stored in the coarse powder hopper 1.
The coarse powder system includes a rotary valve 2 and a fuel shut-off valve 3 provided in an outlet pipe of the coarse powder hopper 1. The coarse powder that has passed through them is mixed with air by the coarse powder mixer 5 and then sent to the burner 15 of the boiler 124. It is carried.

一方、粗粒混合器5に代えてミル24を設置し、該ミル24で粗粉ホッパ1内の2mm程度に粉砕される褐炭を微粉炭に粉砕して、ミル出口配管に設けられるロータリーバルブ2と燃料遮断弁3を経由してバーナ15に微粉を送る微粉部があり、同一バーナ15内で粗粉炭と微粉炭を同時に燃焼させる。なお、前記ミル24を常用機として、予備のミル24も設けている。   On the other hand, instead of the coarse particle mixer 5, a mill 24 is installed, and the pulverized coal pulverized to about 2 mm in the coarse hopper 1 is crushed into pulverized coal by the mill 24, and the rotary valve 2 provided in the mill outlet pipe And there is a fine powder part for sending fine powder to the burner 15 via the fuel shut-off valve 3, and the coarse coal and the fine coal are burned simultaneously in the same burner 15. A spare mill 24 is also provided with the mill 24 as a regular machine.

また、図1では表示を省略しているが、石炭バンカ37、粗粉砕機38、乾燥機39の構成を各粗粉ホッパ1ごとに設けている。但し、複数の粗粉ホッパ1で石炭バンカ37、粗粉砕機38及び乾燥機39の構成を共用しても良い。   Although not shown in FIG. 1, the configuration of the coal bunker 37, the coarse pulverizer 38, and the dryer 39 is provided for each coarse hopper 1. However, the configurations of the coal bunker 37, the coarse pulverizer 38, and the dryer 39 may be shared by the plurality of coarse powder hoppers 1.

なお、粗粉砕されて乾燥された粗粉のままの褐炭を燃焼させようとすると、固体燃料バーナ15での着火性が低く、継続的に燃焼させることが困難であり、また燃え残りが生じてボイラ124の炉底に落下する燃料の割合が増大するという問題があるが、本発明はそのような問題を解決することもできる。   In addition, when trying to burn the coarsely pulverized and dried coarse lignite, the solid fuel burner 15 has low ignitability, it is difficult to continuously burn, and unburned residue is generated. Although there is a problem that the ratio of fuel falling to the furnace bottom of the boiler 124 increases, the present invention can also solve such a problem.

図2は図1で示す粗粉の燃焼系統の詳細な構成図である。ボイラ124にはFDF(押込送風機)6から出た主搬送ガス配管(第1の粗粉用高温搬送ガス配管ともいう)105中の空気をガス予熱器(ボイラ排ガスと燃焼用ガス及び燃料搬送ガスを予熱するもので、一般には空気予熱器:エアヒータと呼ばれる。以下、空気予熱器又はAHと記すこともある。)18を経由してボイラ124のバーナ15とアフターエアポート(AAP)16に予熱空気として供給されて石炭の燃焼に使用される。なお、バーナ15へ通じる主搬送ガス配管105とアフターエアポート(AAP)16へ通じる主搬送ガス配管105にはそれぞれバーナ空気比例制御弁43とアフターエアの酸素制御弁44が設けられている。バーナ空気比例制御弁43と酸素制御弁44の開度は負荷と燃料流量の検出値に基づき制御される。 FIG. 2 is a detailed configuration diagram of the coarse powder combustion system shown in FIG. In the boiler 124, the main carrier gas pipe (also referred to as a first high-temperature carrier gas pipe for coarse powder) 105 exiting from the FDF (push-in fan) 6 is used as a gas preheater (boiler exhaust gas, combustion gas, and fuel carrier gas). In general, this is called an air preheater: an air heater.Hereinafter, it may be referred to as an air preheater or AH.) 18 is supplied to the burner 15 of the boiler 124 and the after air port (AAP) 16 via the preheated air. Supplied as coal for combustion. The main carrier gas pipe 105 leading to the burner 15 and the main carrier gas pipe 105 leading to the after air port (AAP) 16 are provided with a burner air proportional control valve 43 and an after air oxygen control valve 44, respectively. The opening degree of the burner air proportional control valve 43 and the oxygen control valve 44 is controlled based on the detected values of the load and the fuel flow rate.

また、ボイラ124から排出する排ガスは排ガスライン111を通り、ガス予熱器18でFDF6からの空気と熱交換して外部に排出される。空気予熱器18で予熱された空気はバーナ15とアフターエアポート(AAP)16へ供給される石炭燃焼用空気を温める。
また、FDF6の出口の主搬送ガス配管105の冷空気は、空気予熱器18に入る前に分岐して第1の粗粉用低温搬送ガス配管106を通り、第1の粗粉用低温搬送ガス配管106に設けられた搬送用空気流量計9により空気流量を実測し、該実測値と後述する第の粗粉用高温搬送ガス配管112の熱空気流量を計測する熱空気流量計12の測定値との合計を積算器116で積算し、該積算値とボイラ制御より発信される給炭量要求値(給炭量指令信号)115からの設定空気流量値との偏差を偏差器117で算出し、前記搬送用空気流量計9により計測された実測値が設定空気流量値となるように高値選択器118により第1の粗粉用低温搬送ガス配管106に設けられた搬送用空気流量調整ダンパ7を調整する。
Further, the exhaust gas discharged from the boiler 124 passes through the exhaust gas line 111 and is exchanged with the air from the FDF 6 by the gas preheater 18 and discharged to the outside. The air preheated by the air preheater 18 warms the coal combustion air supplied to the burner 15 and the after-air port (AAP) 16.
Further, the cold air in the main carrier gas pipe 105 at the outlet of the FDF 6 branches before entering the air preheater 18, passes through the first coarse powder low temperature carrier gas pipe 106, and passes through the first coarse powder low temperature carrier gas. Measurement of the hot air flow meter 12 that measures the air flow rate by the transfer air flow meter 9 provided in the pipe 106, and measures the measured value and the hot air flow rate of the fifth coarse powder high-temperature transfer gas pipe 112 described later. The sum of the values is integrated by an integrator 116, and a deviation between the integrated value and the set air flow rate value from the coal supply request value (coal supply command signal) 115 transmitted from the boiler control is calculated by a deviator 117. The high air pressure selector 118 provided in the first coarse powder low temperature carrier gas pipe 106 by the high value selector 118 so that the actual measurement value measured by the carrier air flow meter 9 becomes the set air flow rate value. Adjust 7

一方、AH(空気予熱器)18から出た空気の一部は主搬送ガス配管105から分岐した第の粗粉用高温搬送ガス配管109に設けられた搬送用空気温度調整ダンパ8で粗粉混合器5の出口温度が一定になるよう供給量が制御される。搬送用空気温度調整ダンパ8の開度は温度計11で計測された粗粉混合器5の出口温度に基づき制御される。 On the other hand, a part of the air that has exited from the AH (air preheater) 18 is coarsely powdered by the transfer air temperature adjustment damper 8 provided in the second high-temperature carrier gas pipe 109 for coarse powder branched from the main carrier gas pipe 105. The supply amount is controlled so that the outlet temperature of the mixer 5 becomes constant. The opening degree of the conveying air temperature adjusting damper 8 is controlled based on the outlet temperature of the coarse powder mixer 5 measured by the thermometer 11.

また、第1の粗粉用低温搬送ガス配管106中の空気は空気遮断弁10を通過して粗粉混合器5に入る。第の粗粉用高温搬送ガス配管109の出口は、搬送空気流量調整ダンパ7の設置部より後流側の第1の粗粉用低温搬送ガス配管106に接続している。そして第の粗粉用高温搬送ガス配管109と第1の粗粉用低温搬送ガス配管106との接続部より後流側の空気流量は搬送空気流量計9で測定される。また搬送空気流量計9より後流側の第1の粗粉用低温搬送ガス配管106にはバーナ15への空気の供給を停止する場合に必要な空気遮断弁10が設けられている。 The air in the first coarse powder low-temperature carrier gas pipe 106 passes through the air shutoff valve 10 and enters the coarse powder mixer 5. The outlet of the second high-temperature carrier gas pipe 109 for coarse powder is connected to the first low-temperature carrier gas pipe 106 for coarse powder downstream from the installation portion of the carrier air flow rate adjustment damper 7. Then, the air flow rate downstream of the connecting portion between the second coarse powder high-temperature carrier gas pipe 109 and the first coarse powder low-temperature carrier gas pipe 106 is measured by the carrier air flow meter 9. The first coarse powder low temperature carrier gas pipe 106 on the downstream side of the carrier air flow meter 9 is provided with an air shut-off valve 10 necessary for stopping the supply of air to the burner 15.

また、空気遮断弁10の後流側の第1の粗粉用低温搬送ガス配管106には緊急時に空気の供給を停止する緊急パージ蒸気遮断弁22を備えた緊急パージ蒸気供給配管110が接続している。第1の粗粉用低温搬送ガス配管106の緊急パージ蒸気供給配管110との接続部より後流部に粗粉混合器5が配置され、該粗粉混合器5の後流側には第の粗粉用高温搬送ガス配管107が設けられ、該第の粗粉用高温搬送ガス配管107内には約150℃の空気が流れ、熱風混合器13に供給される。該熱風混合器13で加熱されて約250℃となった空気は第の粗粉用高温搬送ガス配管108を通り、粗粉炭と共にバーナ15に供給される。
なお、粗粉混合器5には粗粉ホッパ1からロータリーバルブ2と燃料遮断弁3を経由して粗粉が供給されることは図1で説明した通りである。
Further, an emergency purge steam supply pipe 110 having an emergency purge steam cutoff valve 22 for stopping air supply in an emergency is connected to the first coarse powder low temperature carrier gas pipe 106 on the downstream side of the air cutoff valve 10. ing. The coarse powder mixer 5 is disposed in the downstream portion from the connection portion of the first coarse powder low-temperature carrier gas pipe 106 with the emergency purge steam supply pipe 110, and the third coarse powder mixer 5 is disposed on the downstream side of the third coarse powder mixer 5. coarse powder for hot carrier gas pipe 107 is provided with, the coarse powder for high temperature carrier gas pipe 107 of the third to about 0.99 ° C. air flow supplied to the hot air mixer 13. The air heated to about 250 ° C. by the hot air mixer 13 passes through the fourth high-temperature carrier gas pipe 108 for coarse powder, and is supplied to the burner 15 together with the coarse coal.
The coarse powder is supplied from the coarse powder hopper 1 via the rotary valve 2 and the fuel cutoff valve 3 to the coarse powder mixer 5 as described with reference to FIG.

また、搬送用空気温度調整ダンパ8の設置部より前流側の第の粗粉用高温搬送ガス配管109から分岐した第の粗粉用高温搬送ガス配管112が熱風混合器13に接続しているので、第の粗粉用高温搬送ガス配管112から前記熱風混合器13に向けて、該第の粗粉用高温搬送ガス配管112に設けられた熱風混合ダンパ42の開度を制御しながら高温搬送ガス(空気)が送られる。なお、熱風混合ダンパ42の開度は第の粗粉用高温搬送ガス配管108に設けられたバーナ入口温度計14で計測された熱風温度の測定値と熱風量指令器123での熱風量指令信号に基づき制御される。また、後述する偏差算出器119で算出される最低空気流量信号と搬送空気流量計9の測定値との偏差を熱風量指令器123にも送信して熱風量指令信号の算出に利用する。 Also, a fifth coarse powder high temperature carrier gas pipe 112 branched from the second coarse powder high temperature carrier gas pipe 109 on the upstream side from the installation portion of the carrier air temperature adjustment damper 8 is connected to the hot air mixer 13. since it is, toward the hot air mixer 13 from the fifth coarse powder for high temperature carrier gas pipe 112, the opening degree of the hot-air mixing damper 42 provided in the coarse powder for high temperature carrier gas pipe 112 of the fifth control The high temperature carrier gas (air) is sent. The opening degree of the hot air mixing damper 42 is determined by the measured value of the hot air temperature measured by the burner inlet thermometer 14 provided in the fourth high-temperature carrier gas pipe 108 for coarse powder and the hot air amount command by the hot air amount commander 123. Control is based on the signal. Further, a deviation between a minimum air flow signal calculated by a deviation calculator 119 (to be described later) and a measured value of the carrier air flow meter 9 is also transmitted to the hot air flow command unit 123 to be used for calculation of the hot air flow command signal.

ここで、第1の粗粉用低温搬送ガス配管106に配置される空気遮断弁10は、MFT(主燃料遮断)でプラントがトリップした場合に、すばやく閉止して粗粉混合器5とバーナ15との間に残った粗粉を、緊急パージ蒸気遮断弁22を開にして緊急パージ蒸気21をボイラ124の炉内に送り、該緊急パージ蒸気21で炉内をパージすると共に万一、前記粗粉混合器5とバーナ15との間に残った石炭があっても蒸気により酸素濃度を下げることで石炭の発火を抑制する。   Here, the air shut-off valve 10 disposed in the first coarse powder low-temperature carrier gas pipe 106 closes quickly when the plant trips due to MFT (main fuel cut-off), and the coarse powder mixer 5 and the burner 15 are closed. The emergency purge steam shut-off valve 22 is opened and the emergency purge steam 21 is sent into the furnace of the boiler 124 to purge the inside of the furnace with the emergency purge steam 21 and, in the unlikely event, the coarse powder remaining between Even if there is coal remaining between the powder mixer 5 and the burner 15, the ignition of the coal is suppressed by reducing the oxygen concentration with steam.

粗粉ホッパ1に貯留された粗粉炭は、粗粉供給配管114に設けられたロータリーバルブ2と燃料遮断弁3を経由して粗粉混合器5に供給される。そしてボイラ124で要求される給炭量に見合うようなロータリーバルブ2の回転数で、その供給量が制御される。燃料遮断弁3はMFT発生時に閉止して燃料を遮断する。一方、粗粉混合器5へ落下する石炭の分だけ粗粉混合器5内の温風が上部に上がってきて、ロータリーバルブ2などの温度が上昇し 石炭が発火する可能性があることからシール空気4を粗粉供給配管114に導入して温風の上昇を抑制する。褐炭中の揮発分は約180℃程度で放散量が急増するので、これより低く保つためにシール空気4の温度を、例えば、150℃程度にする。   Coarse coal stored in the coarse powder hopper 1 is supplied to the coarse powder mixer 5 via the rotary valve 2 and the fuel cutoff valve 3 provided in the coarse powder supply pipe 114. Then, the supply amount is controlled by the rotational speed of the rotary valve 2 that matches the amount of coal supply required by the boiler 124. The fuel cutoff valve 3 is closed when MFT occurs to shut off the fuel. On the other hand, the hot air in the coarse powder mixer 5 rises upward by the amount of coal falling into the coarse powder mixer 5, and the temperature of the rotary valve 2 and the like rises, which may cause the coal to ignite. Air 4 is introduced into the coarse powder supply pipe 114 to suppress the rise of warm air. Since the amount of volatile matter in lignite is about 180 ° C. and the amount of emission rapidly increases, the temperature of the seal air 4 is set to about 150 ° C., for example, in order to keep it lower than this.

粗粉混合器5を出た粗粉と温風は第の粗粉用高温搬送ガス配管107を経由して熱風混合器13に入り、さらに温度が上昇する。また、熱風混合器13から第の粗粉用高温搬送ガス配管108を経由してバーナ15に空気を搬送する。 The coarse powder and hot air that have exited the coarse powder mixer 5 enter the hot air mixer 13 via the third high-temperature carrier gas pipe 107 for coarse powder, and the temperature further rises. Further, air is conveyed from the hot air mixer 13 to the burner 15 via the fourth coarse powder high-temperature carrier gas pipe 108.

熱風混合器13には第の粗粉用高温搬送ガス配管109から送られた空気予熱器18の出口空気を第の粗粉用高温搬送ガス配管112に設けた熱風混合ダンパ42の開度を制御して流す。このとき第の粗粉用高温搬送ガス配管108に設けられたバーナ入口温度測定器14で計測される熱風混合器13からバーナ15に搬送される搬送空気の温度と、熱風量指令信号123の積算値を積算器120で積算して、熱風混合ダンパ42の開度を制御し、バーナ入口温度測定器14で計測したバーナ入口温度が規定温度となるように、第の粗粉用高温搬送ガス配管112中の分岐空気流量を制御する。なお、熱風量指令器123には最低空気流量信号と搬送空気流量計9の測定値との偏差を算出する偏差算出器119からの信号が送られる。例えば、第の粗粉用高温搬送ガス配管108内の250℃の熱風が1〜2秒でバーナ15に達する程度の前記配管108の長さを、例えば15〜30mとすることで、褐炭中の揮発分が丁度放散されてきて燃焼しやすくなる。 In the hot air mixer 13, the opening degree of the hot air mixing damper 42 in which the outlet air of the air preheater 18 sent from the second high-temperature carrier gas pipe 109 for coarse powder is provided in the fifth high-temperature carrier gas pipe 112 for coarse powder. Control the flow. At this time, the temperature of the carrier air conveyed from the hot air mixer 13 to the burner 15 measured by the burner inlet temperature measuring device 14 provided in the fourth coarse powder high-temperature carrier gas pipe 108 and the hot air amount command signal 123 The accumulated value is accumulated by the accumulator 120, the opening degree of the hot air mixing damper 42 is controlled, and the fifth high-temperature conveying for coarse powder is performed so that the burner inlet temperature measured by the burner inlet temperature measuring device 14 becomes the specified temperature. The branch air flow rate in the gas pipe 112 is controlled. Note that a signal from a deviation calculator 119 for calculating a deviation between the minimum air flow signal and the measured value of the carrier air flow meter 9 is sent to the hot air flow command device 123. For example, the length of the pipe 108 to the extent that the hot air at 250 ° C. in the fourth high-temperature carrier gas pipe 108 for coarse powder reaches the burner 15 in 1 to 2 seconds is set to 15 to 30 m, for example, in lignite The volatile matter is just released and becomes easy to burn.

また、第1の粗粉用低温搬送ガス配管106にある搬送空気流量調整ダンパ7は、給炭量要求値に対して熱風混合器13に投入される空気量と粗粉混合器5に入る空気の合計量を制御するが、熱風混合器13に入る空気量が多量となっても最低限、粗粉搬送に必要な空気は確保するように、粗粉混合器5出口の搬送空気温度を温度計11で計測し、その結果に基づき搬送空気温度調整ダンパ8の開度を制御して粗粉混合器5に流入する粗粉用低温搬送ガス(空気)流量を制御する。   Further, the carrier air flow rate adjustment damper 7 in the first coarse powder low-temperature carrier gas pipe 106 is configured so that the amount of air supplied to the hot air mixer 13 and the air entering the coarse powder mixer 5 with respect to the required amount of coal supply. However, even if the amount of air entering the hot air mixer 13 becomes large, the temperature of the conveying air at the outlet of the coarse powder mixer 5 is set so that the air necessary for conveying the coarse powder is secured at a minimum. Based on the result, the opening degree of the carrier air temperature adjusting damper 8 is controlled, and the flow rate of the low-temperature carrier gas (air) for coarse powder flowing into the coarse powder mixer 5 is controlled.

また、実空気量が前記粗粉搬送に最低限必要な空気量に近づくと、熱風混合ダンパ42の開度を下げるようにバーナ入口温度計14の設定温度を下げてバーナ15の石炭濃度が必要以上低下しないよう制御する。
すなわち、搬送する石炭の量が低下すると空気もそれに見合って低下するが、石炭の搬送配管内での停滞を防止するために最低流量の空気を投入する必要がある。この場合、バーナ15へ入る前の空気温度設定が高いままだと、さらに空気を混合器13より投入することとなり、石炭に対する空気の比率が増すことで石炭濃度が低下し(薄くなり)、最悪失火することから、これを防止するために温度設定を下げ熱風混合器13への熱空気投入量を制限する。
Further, when the actual air amount approaches the minimum air amount necessary for the coarse powder conveyance, the set temperature of the burner inlet thermometer 14 is lowered so that the opening degree of the hot air mixing damper 42 is lowered, and the coal concentration of the burner 15 is required. Control so as not to decrease any more.
That is, when the amount of coal to be transported decreases, the air also correspondingly decreases. However, in order to prevent stagnation of the coal in the transport piping, it is necessary to introduce air at the minimum flow rate. In this case, if the air temperature setting before entering the burner 15 remains high, more air is supplied from the mixer 13, and the ratio of air to coal increases, resulting in a decrease (thinning) in the coal concentration. In order to prevent this from occurring due to misfire, the temperature setting is lowered and the amount of hot air supplied to the hot air mixer 13 is limited.

バーナ15に投入された粗粉は高温でガス化し、燃焼し易い状態となるが粒径の大きい(数ミリの)粒子の一部はボイラ124の炉底に落下する。炉底に落下した石炭は置き火燃焼用コンベア17で燃焼しつつ灰と共に系外に運ばれる。   The coarse powder charged into the burner 15 is gasified at a high temperature and is easily combusted, but some of the particles having a large particle size (several millimeters) fall to the furnace bottom of the boiler 124. The coal that has fallen to the bottom of the furnace is carried out of the system together with the ash while being burned on the flame-fired conveyor 17.

ボイラ124の炉内に入った粗粉子はAAP16で完全燃焼してボイラ124内で熱交換した後、空気予熱器18と電気集塵機19を通り、IDF(誘引送風機)20で煙突(図示せず)に運ばれる。   The coarse powder particles that enter the furnace of the boiler 124 are completely combusted by the AAP 16 and heat exchanged in the boiler 124, and then pass through the air preheater 18 and the electric dust collector 19, and a chimney (not shown) by the IDF (attracting fan) 20. ).

図3は微粉の燃焼系統図を示す。
前述した図2の粗粉の燃焼系統と異なるのは、図2の粗粉混合器5の代わりに粗粉を微粉にするためのミル(微粉砕機)24を設置したこと、及び前記ミル24での圧力損失分を補うために第1の粉用低温搬送ガス配管106’の空気遮断弁10’の前流側に一次空気ファン23を設置したこと、及び図2の熱風混合器13が設置されておらず、また熱風混合器13に熱風を送る第の粗粉用高温搬送ガス配管112及びそれに関連する機器は設置していないことである。
図3の微粉の燃焼系統図で図2の熱風混合器13が設置されていない理由は、ミル24によって微粉炭が得られるので熱混合器13を設置しなくてもバーナ15の保炎性には問題がないためである。
FIG. 3 shows a combustion system diagram of fine powder.
2 differs from the coarse powder combustion system of FIG. 2 described above in that instead of the coarse powder mixer 5 of FIG. first to set up a primary air fan 23 in the upstream side of the 'air shutoff valve 10' finely powdered low-temperature carrier gas pipe 106, and a hot air mixer 13 of FIG. 2 in order to compensate for the pressure loss in the It is not installed, and the fifth high-temperature carrier gas pipe 112 for coarse powder that sends hot air to the hot air mixer 13 and related equipment are not installed.
The reason why the hot air mixer 13 of FIG. 2 is not installed in the combustion system diagram of the fine powder of FIG. 3 is that the pulverized coal is obtained by the mill 24, so that the flame holding property of the burner 15 can be improved without installing the heat mixer 13. This is because there is no problem.

なお、図2の粗粉の燃焼系統図の搬送ガス配管に対応する図3の微粉の燃焼系統図の搬送ガス配管にはそれぞれ対応する数字にダッシュ符号を付し、説明を省略することがある。例えば、図2の第1の粗粉用低温搬送ガス配管106又は主搬送ガス配管105と類似した図3の微粉の燃焼系統図の第1の粉用低温搬送ガス配管106’又は主搬送ガス配管(第1の微粉用高温搬送ガス配管ともいう)105’には数字にダッシュ符号を付している。
また、粗粉はバーナ15ごとに供給するのに対して微粉は一台のミル24で全てのバーナ15に供給することができる。ただし、予備のミル24を設置し、合わせて2台のミル24としても良い。
The carrier gas piping in the combustion system diagram of fine powder in FIG. 3 corresponding to the carrier gas piping in the combustion system diagram of coarse powder in FIG. . For example, a first coarse powder for the low-temperature carrier gas pipe 106 or the main carrier gas pipe 105 similar to that Figure 3 of the first fine powder for the low-temperature carrier gas pipe 106 'or the main carrier gas combustion system diagram of fines FIG Piping (also referred to as the first high-temperature carrier gas piping for fine powder) 105 'is given a dash symbol.
The coarse powder is supplied for each burner 15, while the fine powder can be supplied to all the burners 15 by one mill 24. However, a spare mill 24 may be installed, and two mills 24 may be combined.

ガス予熱器(AH)18の入口の主搬送ガス配管105’中の一部の空気を微粉炭の搬送用空気として第1の粉用低温搬送ガス配管106’に分岐して供給し、搬送空気流量調整ダンパ7’で一次空気流量計9’の値が給炭指令に見合う空気量となるよう制御される。すなわち第1の粉用低温搬送ガス配管106’に設けられた搬送用空気流量調整ダンパ7’と搬送用空気流量計9’により空気流量を実測し、該実測値とボイラ制御より発信される給炭量要求値(給炭量指令信号)115’からの設定空気流量値の偏差を偏差器117’で算出し、前記実測値が設定空気流量値となるように高値選択器118’により搬送用空気流量調整ダンパ7’を調整する。 Gas preheater (AH) 18 inlet of supply branches 'part of the air in the first fine powder for the low-temperature carrier gas pipe 106 as conveying air for the pulverized coal' main carrier gas pipe 105 to the, transport The air flow adjustment damper 7 ′ controls the value of the primary air flow meter 9 ′ to be an air amount commensurate with the coal supply command. That actually measured air flow rate by the first 'conveying air flow control damper 7 provided in the' fine flour for the low-temperature carrier gas pipe 106 and conveying air flow meter 9 ', is transmitted from the measured value and the boiler control Deviation of the set air flow rate value from the requested coal feed amount (coal feed amount command signal) 115 ′ is calculated by the deviator 117 ′ and conveyed by the high value selector 118 ′ so that the measured value becomes the set air flow rate value. Adjust the air flow adjusting damper 7 '.

一方、ガス予熱器18の出口の主搬送ガス配管105’中の温風は主搬送ガス配管105’から分岐して設けられる第粉用高温搬送ガス配管109’から第1の粉用低温搬送ガス配管106’を経由してミル24に供給されるが、ミル24の出口温度計27で測定される出口温度が設定値となるように、第粉用高温搬送ガス配管109’の搬送空気温度調整ダンパ8’で第粉用高温搬送ガス配管109’中の空気(温風)量を制御する。ミル24入口の第1の粉用低温搬送ガス配管106’中の空気温度は温度計28で測定されるが、ミル24の入口の空気温度が必要以上に高くならないように、該温度計28で測定されるミル入口温度で制御温度にバイアスを掛ける機能を有している。
すなわち、ミル24の入口温度を高くし過ぎると、石炭中の揮発分がガス化して可燃性ガスとなり危険な状態となるため、入口温度が150℃を超える場合はミル出口温度にバイアスを設けて150℃を超えないようにする。
On the other hand, the first fine powder from and a second fine powder for high temperature carrier gas pipe 109 which is provided 'branch' hot air main carrier gas pipe 105 'in the main carrier gas pipe 105 at the outlet of the gas preheater 18 Although via the use cold carrier gas pipe 106 'is supplied to the mill 24, so the outlet temperature measured at an outlet temperature gauge 27 of mill 24 is the set value, the hot conveying gas piping for a second fine powder controlling the air (warm air) of the second in the fine powder for high temperature carrier gas pipe 109 '' conveying air temperature control damper 8 of the '109. Although the first air temperature during the fine powder for the low-temperature carrier gas pipe 106 'of the mill 24 the inlet is measured by a temperature gauge 28, so that the air temperature at the inlet of the mill 24 is not higher than necessary, the temperature gauge 28 It has a function of biasing the control temperature with the mill inlet temperature measured in (1).
That is, if the inlet temperature of the mill 24 is too high, the volatile matter in the coal is gasified and becomes a flammable gas, which is in a dangerous state. Therefore, if the inlet temperature exceeds 150 ° C, a bias is provided at the mill outlet temperature. Do not exceed 150 ° C.

これは第1の粉用低温搬送ガス配管106’の空気遮断弁10’の前流側に設けられる一次空気ファン23の前流側の第1の粉用低温搬送ガス配管106’の空気温度をミル入口温度計28で計測し、該ミル入口温度計測値が150℃以下の温度設定指令器121の指令値とミル出口温度計27の測定値の合計値を積算器122で算出して搬送空気温度調節ダンパ8’の開度を制御する。
また第1の粉用低温搬送ガス配管106’中の搬送用空気は一次空気ファン23に入り、昇圧されて空気遮断弁10の通過後にミル24に供給される。
Air This first fine powder for the low-temperature carrier gas pipe 106 of the upstream side of the first fine powder for the low-temperature carrier gas pipe 106 'of the air shutoff valve 10' of the upstream primary disposed on the side of the air fan 23 ' The temperature is measured by the mill inlet thermometer 28, and the total value of the command value of the temperature setting command device 121 and the measured value of the mill outlet thermometer 27 when the measured value of the mill inlet temperature is 150 ° C. or less is calculated by the integrator 122. The opening degree of the carrier air temperature adjustment damper 8 'is controlled.
The conveying air in the first in the fine powder for the low-temperature carrier gas pipe 106 'enters the primary air fan 23, is supplied to the mill 24 is boosted after passage of air shutoff valve 10.

粗粉ホッパ1から要求量に見合う量が粗粉供給配管114に配置されるロータリーバルブ2の回転制御によりミル24内に供給された粗粉石炭はミル24の粉砕部で微粉化されて第粉用高温搬送ガス配管107’を経由して各バーナ15へ供給される。各段のバーナ15の直前の第粉用高温搬送ガス配管107’にはミル出口ダンパ40が設置され、バーナ段ごとのオン/オフを可能にしている。 Coarse coal supplied into the mill 24 by the rotation control of the rotary valve 2 disposed in the coarse powder supply pipe 114 from the coarse powder hopper 1 in an amount corresponding to the required amount is pulverized by the pulverization unit of the mill 24 and third. It is supplied to each burner 15 via the fine powder for high temperature carrier gas pipe 107 'of. Mill outlet damper 40 is installed in the third fine powder for high temperature carrier gas pipe 107 'immediately before the burner 15 at each stage, allowing the on / off each burner stage.

粉用高温搬送ガス配管107’に設けられるミル出口ダンパ40の閉止時からバーナ15までに存在する微粉は第1の粉用低温搬送ガス配管106’から分岐された分岐低温搬送ガス配管113に設けられたパージ弁26により空気予熱器18の前流側の冷空気を供給してパージする。また、図1の丸枠内にバーナ15の手前の第の微粉用高温搬送ガス配管107’と分岐低温搬送ガス配管113との合流部の一部を拡大図で示したように、分岐低温搬送ガス配管113内の低温搬送ガス(冷空気)を第の微粉用高温搬送ガス配管107’内の高温ガスに投入可能な流路構成ができている。 Third fine powder for high temperature carrier gas pipe 107 'fines present in up to the burner 15 from the time of closure of the mill outlet damper 40 provided in the first fine powder for the low-temperature carrier gas pipe 106' branches cold conveyance branched from The purge valve 26 provided in the gas pipe 113 supplies and purges the cold air on the upstream side of the air preheater 18. In addition, as shown in an enlarged view, a part of the junction between the third high-temperature carrier gas pipe 107 ′ for fine powder and the branch low-temperature carrier gas pipe 113 in front of the burner 15 is shown in an enlarged view in the round frame of FIG. A flow path configuration is provided in which the low temperature carrier gas (cold air) in the carrier gas pipe 113 can be introduced into the high temperature gas in the third high temperature carrier gas pipe 107 ′ for fine powder.

図4は粗粉燃焼バーナの一例を示すバーナ断面図である。
バーナ15の中央の一次燃料ノズル45に粗粉と一次空気(搬送空気)の混合流が入り、ベンチュリ29で前記混合流に絞りを入れることで均一化された石炭粗粉がバーナ15の先端へ供給される。一方、微粉と一次空気の混合流は前記一次燃料ノズル45の外周部に設けられた二次燃料ノズル49に供給され、保炎リング35の直前でバーナ15の先端部に噴出される。微粉は保炎リング35の後方で巻き返し、安定した火炎を形成し、微粉より内側にある粗粉を蒸し焼きにすることで粗粉子もガス化し、燃焼され易くなる。
FIG. 4 is a burner cross-sectional view showing an example of a coarse powder combustion burner.
A mixed flow of coarse powder and primary air (carrier air) enters the primary fuel nozzle 45 in the center of the burner 15, and the coarse coal powder homogenized by constricting the mixed flow with the venturi 29 is fed to the tip of the burner 15. Supplied. On the other hand, the mixed flow of fine powder and primary air is supplied to the secondary fuel nozzle 49 provided on the outer peripheral portion of the primary fuel nozzle 45 and is jetted to the tip of the burner 15 immediately before the flame holding ring 35. The fine powder is rolled back behind the flame-holding ring 35 to form a stable flame, and the coarse powder inside the fine powder is steamed and burned, whereby the coarse powder is also gasified and easily burned.

バーナ15へ供給する空気は二次燃料ノズル49の外側に配置される二次空気ノズル50内を流れる二次空気流30と二次空気ノズル50の外側に配置される三次空気ノズル51内を流れる三次空気流32とにそれぞれ分けられ、二次空気ノズル50内の二次ベーン31と三次空気ノズル51内に配置される三次レジスタ33などによる調整で炉内での燃料の保炎性、燃焼排ガス中のNOx濃度、酸素分布などの調整が可能になっている。
空気が燃焼の初期段階で過剰に供給されるとNOx濃度の上昇を招くことからバーナ15の先端部は燃焼用空気を外向きに拡大して流すガイドスリーブ34を設けて空気が固体燃料燃焼時に過剰に供給されるのを抑制している。
また、バーナ15の中央には起動時及び非常時用の油バーナ36を設置可能にしている。
The air supplied to the burner 15 flows in the secondary air flow 30 flowing in the secondary air nozzle 50 disposed outside the secondary fuel nozzle 49 and in the tertiary air nozzle 51 disposed outside the secondary air nozzle 50. It is divided into the tertiary air flow 32 and adjusted by the secondary vane 31 in the secondary air nozzle 50 and the tertiary register 33 arranged in the tertiary air nozzle 51, and the like, the flame holding property of the fuel in the furnace, the combustion exhaust gas It is possible to adjust the NOx concentration and oxygen distribution in the inside.
If air is excessively supplied at the initial stage of combustion, the NOx concentration is increased. Therefore, the tip of the burner 15 is provided with a guide sleeve 34 for enlarging and flowing combustion air outward, so that the air is burned during solid fuel combustion. Suppressing excessive supply.
An oil burner 36 for starting and emergency can be installed in the center of the burner 15.

なお、粗粉用の低温の搬送ガス配管である第1の粗粉用低温搬送ガス配管106と微粉用の低温搬送ガス配管である第1の粉用低温搬送ガス配管106’は、それぞれ粗粉混合器5と一次空気ファン23の手前のいずれかの部位まで共通するものであっても良い。 同様に第の粗粉用高温搬送ガス配管108に接続するまでの第の粗粉用高温搬送ガス配管107と第の微粉用高温搬送ガス配管107’は粗粉用と微粉用とで共用しても良い。 Incidentally, a cold carrier gas piping for coarse powder first coarse powder for the low-temperature carrier gas pipe 106 and the first fine powder for the low-temperature carrier gas pipe 106 is cold carrier gas piping for fines' are each crude It may be common to any part before the powder mixer 5 and the primary air fan 23. Similarly, the third high-temperature carrier gas pipe 107 for coarse powder and the third high-temperature carrier gas pipe 107 ′ for fine powder until they are connected to the fourth high-temperature carrier gas pipe for coarse powder 108 are used for coarse powder and fine powder. You may share.

要するに微粉用の搬送ガス系統(微粉供給系統)においては、微粉が第の微粉用高温搬送ガス配管107’から系内に導入された後のガス温度が揮発分の多い褐炭の自然発火を防いで安全に気流搬送させる観点から、例えば70℃程度を上限として制御されれば良い。 In short, in the carrier gas system for fine powder (fine powder supply system), the gas temperature after the fine powder is introduced into the system from the third high-temperature carrier gas pipe 107 'for fine powder prevents spontaneous combustion of lignite with a high volatile content. For example, from the viewpoint of safely carrying the air current, the upper limit may be controlled, for example, at about 70 ° C.

同じく、粗粉用の搬送ガス系統においては、粗粉が第の粗粉用高温搬送ガス配管107から系内に導入された直後のガス温度は、同様の観点から、例えば150℃に抑制され、燃焼させるバーナ15の直前において250℃に昇温されることで、安全性を確保しながら、ボイラ効率を高めることができる。 Similarly, in the carrier gas system for coarse powder, the gas temperature immediately after the coarse powder is introduced into the system from the third high-temperature carrier gas pipe 107 for coarse powder is suppressed to, for example, 150 ° C. from the same viewpoint. The boiler efficiency can be increased while ensuring safety by raising the temperature to 250 ° C. immediately before the burner 15 to be burned.

図5は、粗粉中に微粉が多く含まれている場合に適用できる燃焼系統図を示す。
粗粉中に微粉が多い場合は微粉の燃焼系統に配置する微粉炭機24の設置を省略して、サイクロンセパレータ41で分離した微粉を使用しても良い。
FIG. 5 shows a combustion system diagram applicable when coarse powder contains a lot of fine powder.
If the coarse powder contains a lot of fine powder, the fine powder separated by the cyclone separator 41 may be used by omitting the installation of the pulverized coal machine 24 arranged in the fine powder combustion system.

粗粉混合器5から出た粗粉と空気はサイクロンセパレータ41で分離され軽い微粉はサイクロンセパレータ41の上部に移動し、微粉搬送配管46に設けられた微粉圧調整ダンパ47を、同じく微粉搬送配管46の微粉圧調整ダンパ47より後流側に設けられた微粉圧力計48で計測される圧力に基づいて開度が調整される。また微粉圧調整ダンパ42で必要量が取り出されて図示しない配管を経由して保炎リング35(図4)近傍に送られる。
一方、粗粉はサイクロンセパレータ41の下部より抜出されて熱風混合器13に送られる。
Coarse powder and air discharged from the coarse powder mixer 5 are separated by the cyclone separator 41, and the light fine powder moves to the upper part of the cyclone separator 41, and the fine powder pressure adjusting damper 47 provided in the fine powder conveyance pipe 46 is also finely conveyed. The opening degree is adjusted based on the pressure measured by the fine powder pressure gauge 48 provided on the downstream side of the fine powder pressure adjusting damper 47 of the pipe 46. Further, a necessary amount is taken out by the fine powder pressure adjusting damper 42 and sent to the vicinity of the flame holding ring 35 (FIG. 4) via a pipe (not shown).
On the other hand, the coarse powder is extracted from the lower part of the cyclone separator 41 and sent to the hot air mixer 13.

次に本発明の前記実施例に使用される実施形態を図面と共に説明する。先ず、乾燥コンベア装置の構成について説明する。
(乾燥コンベア装置の構成)
図6は、本発明の実施形態に係る乾燥コンベア装置全体の系統図である。
この乾燥コンベア装置は同図に示すように、乾燥コンベア装置本体39と、その乾燥コンベア装置本体39に、例えば石炭(褐炭)などの未乾燥の粗粒子52を供給する粗粒子供給手段53と、乾燥コンベア装置本体39に乾燥用の温風を供給する温風供給手段54と、飛散した乾燥済みの微粒子を捕集する飛散粒子捕集手段55とから主に構成されている。
前記乾燥コンベア装置本体39の構成などについては、後で説明する。
Next, an embodiment used in the above-described embodiment of the present invention will be described with reference to the drawings. First, the configuration of the drying conveyor device will be described.
(Configuration of drying conveyor)
FIG. 6 is a system diagram of the entire drying conveyor apparatus according to the embodiment of the present invention.
As shown in the figure, the drying conveyor device includes a drying conveyor device main body 39, and coarse particle supply means 53 for supplying undried coarse particles 52 such as coal (brown coal) to the drying conveyor device main body 39; It mainly comprises a hot air supply means 54 for supplying hot air for drying to the drying conveyor apparatus main body 39 and a scattered particle collecting means 55 for collecting the scattered and dried fine particles.
The configuration of the drying conveyor device main body 39 will be described later.

前記粗粒子供給手段53は、粗粒子52に粉砕する前の原料56を貯留する原料サイロ37と、その下に設けられて前記原料56を所定の大きさに粉砕する粉砕機38と、粉砕されて生成した粗粒子52を貯留する乾燥前ホッパ59と、その下に設けられた第1のゲート弁60と、その下に設けられた第2のゲート弁61と、前記第1のゲート弁60と第2のゲート弁61の間に設けられた計量管部62(図7参照)とを備えている。   The coarse particle supply means 53 includes a raw material silo 37 for storing the raw material 56 before being pulverized into the coarse particles 52, a pulverizer 38 provided under the raw material silo 37, and pulverizing the raw material 56 into a predetermined size. The pre-drying hopper 59 for storing the coarse particles 52 produced in this manner, the first gate valve 60 provided thereunder, the second gate valve 61 provided therebelow, and the first gate valve 60 And a measuring pipe portion 62 (see FIG. 7) provided between the second gate valve 61 and the second gate valve 61.

図7に示すように、前記第1のゲート弁60ならびに第2のゲート弁61は、それぞれシリンダ63で個別に駆動できるようになっている。また、前記計量管部62の下端部は、乾燥コンベア装置本体39(後述のハウジング70)内に挿入されている(図7参照)。   As shown in FIG. 7, the first gate valve 60 and the second gate valve 61 can be individually driven by a cylinder 63. Moreover, the lower end part of the said measuring pipe part 62 is inserted in the drying conveyor apparatus main body 39 (housing 70 mentioned later) (refer FIG. 7).

前記温風供給手段54は、吸引ダンパ64と送風機65と熱交換器66とを備え、熱交換器66に供給された空気は例えば蒸気タービン(図示せず)から抽気した蒸気などによって加熱される。
前記飛散粒子捕集手段55は、サイクロンセパレータ68と、その下に設けられたロータリーシール69を有している。
The hot air supply means 54 includes a suction damper 64, a blower 65, and a heat exchanger 66, and the air supplied to the heat exchanger 66 is heated by, for example, steam extracted from a steam turbine (not shown). .
The scattered particle collecting means 55 has a cyclone separator 68 and a rotary seal 69 provided therebelow.

図7は前記乾燥コンベア装置本体39の概略構成図、図8はその乾燥コンベア装置本体39に用いるエプロンの斜視図、図9は図7のA−A線上の拡大断面図、図10は図7のB−B線上の拡大断面図、図11はエプロンの配置状態を示す概略側面図である。   7 is a schematic configuration diagram of the drying conveyor apparatus main body 39, FIG. 8 is a perspective view of an apron used in the drying conveyor apparatus main body 39, FIG. 9 is an enlarged cross-sectional view taken along line AA in FIG. 7, and FIG. FIG. 11 is an enlarged cross-sectional view taken along line B-B of FIG.

この乾燥コンベア装置本体39は、粗粒子52の搬送方向に沿って延びたハウジング70の内側の高さ方向の略中間位置に、エプロンコンベア71が配置されている。このハウジング70は、エプロンコンベア71を格納して外気と遮断されている。前記エプロンコンベア71は、所定の間隔をおいて配置された駆動プーリ72とテンションプーリ(従動プーリ)73の間に張架されている。エプロンコンベア71の張力はテンションプーリ73に付設されたテンション設定器74によって設定でき、これによってエプロンコンベア71の伸びや蛇行の調整ができる。   In the drying conveyor device main body 39, an apron conveyor 71 is disposed at a substantially intermediate position in the height direction inside the housing 70 extending along the conveying direction of the coarse particles 52. The housing 70 stores an apron conveyor 71 and is cut off from outside air. The apron conveyor 71 is stretched between a driving pulley 72 and a tension pulley (driven pulley) 73 arranged at a predetermined interval. The tension of the apron conveyor 71 can be set by a tension setting device 74 attached to the tension pulley 73, whereby the apron conveyor 71 can be adjusted in elongation and meandering.

エプロンコンベア71はチェーンコンベアから構成されており、その上には多数のエプロン75が整列して、回動可能に取り付けられている。このエプロン75は図8に示すように、底板76と、その底板76のエプロン75の移動方向下流側端部から立設した背面板77と、補強のために底板76と背面板77を両側面から連結した側面形状が略三角形をした補強板78a,78bを有している。   The apron conveyor 71 is composed of a chain conveyor, on which a large number of aprons 75 are aligned and rotatably mounted. As shown in FIG. 8, the apron 75 includes a bottom plate 76, a back plate 77 erected from the downstream end of the apron 75 in the moving direction of the apron 75, and the bottom plate 76 and the back plate 77 for both sides. Reinforcing plates 78a and 78b having side surfaces connected to each other having a substantially triangular shape are provided.

このエプロン75の移動方向上流側と、左右側面の大半と、上方が解放されている。図8〜図11に示すように、前記エプロン75の移動方向上流側は、隣接する1つ前のエプロン75の背面板77で塞がれる。エプロン75の左右側面は、その左右側面に対応するようにハウジング70内に設けられた板状の吹き抜け防止部材91a,91bによって覆われている。この吹き抜け防止部材91は図7や図11に示すように、駆動プーリ72とテンションプーリ73の間隔と略同じ長さ延びている。なお、図8では図面が複雑になるため、手前側の吹き抜け防止部材91bの図示を省略している。   The upstream side of the apron 75 in the moving direction, most of the left and right side surfaces, and the upper side are released. As shown in FIGS. 8 to 11, the upstream side of the apron 75 in the moving direction is closed by the back plate 77 of the adjacent apron 75 adjacent to the apron 75. The left and right side surfaces of the apron 75 are covered with plate-shaped blow-off preventing members 91a and 91b provided in the housing 70 so as to correspond to the left and right side surfaces. As shown in FIGS. 7 and 11, the blow-by preventing member 91 extends substantially the same length as the distance between the drive pulley 72 and the tension pulley 73. In addition, in FIG. 8, since drawing becomes complicated, illustration of the blow-out prevention member 91b on the near side is omitted.

前記底板76と、その底板76から立設した背面板77と、隣接する1つ前のエプロン75の背面板77と、吹き抜け防止部材91a,91bによって、エプロン75の内側に粗粒子52を収容する収容空間82(図9)が形成される。図9や図10に示すように、吹き抜け防止部材91a,91bの上端部は開放状態になっている。   Coarse particles 52 are accommodated inside the apron 75 by the bottom plate 76, the back plate 77 standing from the bottom plate 76, the back plate 77 of the adjacent apron 75, and the blow-off preventing members 91a and 91b. A storage space 82 (FIG. 9) is formed. As shown in FIGS. 9 and 10, the upper end portions of the blow-by prevention members 91a and 91b are in an open state.

前記底板76には、多数の温風吹き出し孔79が形成されている。本実施形態では底板76として、多数の温風吹き出し孔79を形成したパンチングプレートを使用したが、金網などでもよい。さらに図9に示すように各エプロン75の左側の補強板78aの下端部近くには、エプロン75の到来を検出するための被検出部81が設けられている。また、エプロン75が計量管部62の下に来たことを検出するための位置センサー93が、エプロン75(被検出部81)の近くに固定されている。   A large number of hot air blowing holes 79 are formed in the bottom plate 76. In this embodiment, a punching plate in which a large number of hot air blowing holes 79 are formed is used as the bottom plate 76, but a metal mesh or the like may be used. Further, as shown in FIG. 9, a detected portion 81 for detecting the arrival of the apron 75 is provided near the lower end portion of the left reinforcing plate 78a of each apron 75. Further, a position sensor 93 for detecting that the apron 75 has come under the measuring pipe portion 62 is fixed near the apron 75 (detected portion 81).

本実施形態の場合、テンションプーリ73が配置されている側が粗粒子52の供給側、駆動プーリ72が配置されている側が粗粒子52の排出側となっており、粗粒子52はテンションプーリ73から駆動プーリ72の方向に間欠的に搬送され、矢印Xがその搬送方向を示している。   In the present embodiment, the side on which the tension pulley 73 is disposed is the coarse particle 52 supply side, and the side on which the drive pulley 72 is disposed is the coarse particle 52 discharge side. It is intermittently conveyed in the direction of the drive pulley 72, and an arrow X indicates the conveying direction.

そのため図7に示すように、テンションプーリ73の上方のハウジング部分では、前記粗粒子供給手段53の計量管部62の下端部が貫通して、エプロン75近くまで延びている。一方、駆動プーリ72の下方のハウジング部分には、乾燥済みの粗粒子52の排出口83が形成されている。   Therefore, as shown in FIG. 7, in the housing portion above the tension pulley 73, the lower end portion of the measuring tube portion 62 of the coarse particle supply means 53 passes through and extends to the vicinity of the apron 75. On the other hand, a discharge port 83 for dried coarse particles 52 is formed in the housing portion below the drive pulley 72.

後述するように前記計量管部62の下端部から粗粒子52を落下して、前記エプロン75の収容空間82に収容するとき、粗粒子52の一部がエプロン75の温風吹き出し孔79からエプロンコンベア71内に落下することがある。これを防止するため、図7ならびに図9に示すように、計量管部62の下側に来たエプロン75の温風吹き出し孔79を塞ぐための供給側閉塞板84aが、エプロン75の下に設置されている。また、駆動プーリ72の近傍にも、粗粒子52が温風吹き出し孔79から落下するのを防止するための排出側閉塞板84bが設置されている。   As will be described later, when the coarse particles 52 are dropped from the lower end portion of the metering tube portion 62 and are accommodated in the accommodating space 82 of the apron 75, a part of the coarse particles 52 is passed through the hot air blowing holes 79 of the apron 75. It may fall into the conveyor 71. In order to prevent this, as shown in FIGS. 7 and 9, a supply side blocking plate 84 a for closing the hot air blowing hole 79 of the apron 75 that has come to the lower side of the measuring pipe portion 62 is provided below the apron 75. is set up. A discharge side blocking plate 84 b for preventing the coarse particles 52 from falling from the hot air blowing holes 79 is also installed in the vicinity of the drive pulley 72.

図7に示すように、供給側閉塞板84aと排出側閉塞板84bの間には、粗粒子52の搬送方向Xに沿って複数個の風箱85がエプロン75の下側に連続して設置されている。風箱85は図10に示すように、一方の端に向けて低く傾斜した底板86と、その底板86から立設した両側板87a,87bと、短い方の側板87aに取り付けられた温風導入管88を有し、風箱85の上方開口部はエプロン75の底板76と対向している。   As shown in FIG. 7, a plurality of wind boxes 85 are continuously installed below the apron 75 along the conveying direction X of the coarse particles 52 between the supply-side blocking plate 84 a and the discharge-side blocking plate 84 b. Has been. As shown in FIG. 10, the wind box 85 has a bottom plate 86 that is inclined downward toward one end, both side plates 87 a and 87 b erected from the bottom plate 86, and hot air introduced to the shorter side plate 87 a. A tube 88 is provided, and the upper opening of the wind box 85 faces the bottom plate 76 of the apron 75.

前記温風導入管88を有する短い方の側板87aとは反対側の長い方の側板87bの下端部付近あるいは底板86の低い方の端部には、落下粒子排出孔89が設けられている。また、図6に示すように、各風箱85の温風導入管88には前記温風供給手段54から延びた温風供給管90がそれぞれ接続されている。   Falling particle discharge holes 89 are provided in the vicinity of the lower end of the longer side plate 87 b opposite to the shorter side plate 87 a having the hot air introduction pipe 88 or at the lower end of the bottom plate 86. Further, as shown in FIG. 6, hot air supply pipes 90 extending from the hot air supply means 54 are connected to the hot air introduction pipes 88 of the respective wind boxes 85.

さらにハウジング70の内側底面上には、清掃用チェーンコンベア94がハウジング70の長手方向に沿って配置されている。この清掃用チェーンコンベア94は駆動プーリ95と従動プーリ96によって、ハウジング70の内側底面を掃くように常時あるいは所定の時間間隔で矢印Y方向に回転駆動される。   Further, on the inner bottom surface of the housing 70, a cleaning chain conveyor 94 is disposed along the longitudinal direction of the housing 70. The cleaning chain conveyor 94 is driven to rotate in the direction of the arrow Y by a driving pulley 95 and a driven pulley 96 at all times or at predetermined time intervals so as to sweep the inner bottom surface of the housing 70.

本実施形態では、ハウジング70の内側底面が水平状態になっているが、ハウジング70の内側底面を排出口83側に向けて若干低く傾斜するように設けると、前記清掃用チェーンコンベア94による清掃効率が良好になる。   In the present embodiment, the inner bottom surface of the housing 70 is in a horizontal state. However, if the inner bottom surface of the housing 70 is inclined slightly toward the discharge port 83 side, the cleaning efficiency by the cleaning chain conveyor 94 is improved. Will be better.

図7に示すように、ハウジング70の上面部には、サイクロンセパレータ68側に延びる微粒子捕集配管97が接続されている。一方、ロータリーシール69から延びた微粒子送り配管98は、ハウジング70の外から排出口83側に延びている。   As shown in FIG. 7, a fine particle collecting pipe 97 extending to the cyclone separator 68 side is connected to the upper surface portion of the housing 70. On the other hand, the particulate feed pipe 98 extending from the rotary seal 69 extends from the outside of the housing 70 to the discharge port 83 side.

次にこの乾燥コンベア装置の動作について説明する。
(乾燥コンベア装置の動作)
図6に示すように、原料サイロ37に貯留されている例えば水分含有率が40〜50重量%程度の褐炭からなる原料56が粉砕機38で粉砕されて、粒子の大きさが1mm程度の粗粒子52となり、乾燥前ホッパ59に貯留されている。そして、下側の第2のゲート弁61を閉じた状態で上側の第1のゲート弁60を開けると、乾燥前ホッパ59内の粗粒子52の一部が第1のゲート弁60を通り、計量管部62(図7参照)内に充填され、計量管部62の容積に相当する粗粒子52の計量がなされる。計量管部62内に粗粒子52を充填した後、第1のゲート弁60を閉じる。これらゲート弁60,61の開閉動作は、個別に付設されたシリンダ63(図7参照)によってなされる。
Next, operation | movement of this drying conveyor apparatus is demonstrated.
(Operation of drying conveyor)
As shown in FIG. 6, a raw material 56 made of lignite having a water content of about 40 to 50% by weight, for example, stored in the raw material silo 37 is pulverized by a pulverizer 38, and the particle size is about 1 mm. The particles 52 are stored in the hopper 59 before drying. When the upper first gate valve 60 is opened with the lower second gate valve 61 closed, a part of the coarse particles 52 in the pre-drying hopper 59 passes through the first gate valve 60, The measuring tube portion 62 (see FIG. 7) is filled, and the coarse particles 52 corresponding to the volume of the measuring tube portion 62 are measured. After the coarse particle 52 is filled in the measuring pipe portion 62, the first gate valve 60 is closed. The gate valves 60 and 61 are opened and closed by cylinders 63 (see FIG. 7) provided separately.

エプロンコンベア71は図7に示すように、搬送方向Xに間欠的若しくは連続的に周回移動しており、図9に示すように、計量管部62の下側にエプロン75が来たことをエプロン75に付設された被検出部81と位置センサー93の共働で検出する。エプロン75が計量管部62の下側に来たときには、図9に示すように当該エプロン75の全ての温風吹き出し孔79は供給側閉塞板84で塞がれている。   As shown in FIG. 7, the apron conveyor 71 moves intermittently or continuously in the conveying direction X, and as shown in FIG. 9, the apron 75 has arrived at the lower side of the measuring pipe portion 62. Detected by the joint action of the detected portion 81 attached to 75 and the position sensor 93. When the apron 75 comes to the lower side of the measuring pipe portion 62, all the hot air blowing holes 79 of the apron 75 are closed by the supply side blocking plate 84 as shown in FIG.

この状態で前記第2のゲート弁61を開くと、計量管部62内に貯留されていた粗粒子52がエプロン75の収容空間82内に落下する。粗粒子62の落下後、第2のゲート弁61は自動的に閉じ、次の計量に備えられる。前述のようにエプロン75の温風吹き出し孔79は閉塞板84で塞がれているから、投入された粗粒子52が温風吹き出し孔79から落ちることはなく、計測量が適正に維持されている。   When the second gate valve 61 is opened in this state, the coarse particles 52 stored in the measuring pipe portion 62 fall into the accommodating space 82 of the apron 75. After the coarse particles 62 fall, the second gate valve 61 automatically closes and is ready for the next metering. As described above, since the hot air blowing hole 79 of the apron 75 is blocked by the closing plate 84, the charged coarse particles 52 do not fall from the hot air blowing hole 79, and the measurement amount is properly maintained. Yes.

図9は、このように計量して切り出された粗粒子52をエプロン75内に収容した状態を示しており、この時点ではエプロン75内には後述する温風99は吹き込まれていないので、粗粒子52によって形成された層は静止層になっており、収容空間82の上部には十分な空間部100が残っている。   FIG. 9 shows a state in which the coarse particles 52 thus weighed and cut out are accommodated in the apron 75. At this time, since the hot air 99 described later is not blown into the apron 75, the coarse particles 52 are coarse. The layer formed by the particles 52 is a stationary layer, and a sufficient space portion 100 remains in the upper portion of the accommodation space 82.

図6ならびに図10に示すように、温風供給手段54(図6参照)によって生成、供給された温風99は各風箱85に吹き込まれている(図10参照)。一方、前記エプロン75の移動に伴ってそれの底板76に形成されている温風吹き出し孔79が閉塞板84を通過すると風箱85内で温風吹き出し孔79が開放され、風箱85内に導入された温風99がエプロン75の底部から吹き込み、粗粒子52が流動化状態(矢印101とする)となり始める。単純に温風99が粗粒子52の間を通過するだけでは粗粒子52の一面だけしか乾燥されないが、本実施形態のように粗粒子52を浮かせて無方向、不規則状に流動化状態(矢印101)とすることにより、粗粒子52の全面を均一にかつ迅速に乾燥させることができる。
流動化して吹き上がった粗粒子52がエプロン75から吹き出ないように、前記吹き抜け防止部材91a,91bが設けられている。
As shown in FIGS. 6 and 10, the hot air 99 generated and supplied by the hot air supply means 54 (see FIG. 6) is blown into each wind box 85 (see FIG. 10). On the other hand, when the hot air blowing hole 79 formed in the bottom plate 76 of the apron 75 passes through the closing plate 84 with the movement of the apron 75, the hot air blowing hole 79 is opened in the wind box 85, and the wind box 85 is opened. The introduced warm air 99 blows in from the bottom of the apron 75, and the coarse particles 52 begin to be in a fluidized state (referred to as arrow 101). If only the warm air 99 passes between the coarse particles 52, only one surface of the coarse particles 52 is dried, but the coarse particles 52 are floated and fluidized in a non-directional and irregular manner as in this embodiment ( By using the arrow 101), the entire surface of the coarse particles 52 can be dried uniformly and rapidly.
The blow-through preventing members 91a and 91b are provided so that the coarse particles 52 that have been fluidized and blown up are not blown out from the apron 75.

乾燥する過程で粗粒子52は比重が徐々に低下して軽くなるので、図7に示すように風箱85は粗粒子52の搬送方向Xに沿って複数に分割され、粗粒子52の比重に見合って温風99の風量の調整がなされている。この温風99の調整をしないと、乾燥途中で粗粒子52の一部が風箱85から吹き出して落下したり、自然発火の危険があるため好ましくない。   Since the specific gravity of the coarse particles 52 gradually decreases during the drying process, the wind box 85 is divided into a plurality of portions along the conveying direction X of the coarse particles 52 as shown in FIG. The air volume of warm air 99 has been adjusted accordingly. If the warm air 99 is not adjusted, a part of the coarse particles 52 blows out of the wind box 85 and falls or is spontaneously ignited during drying, which is not preferable.

粗粒子52は複数の風箱85の上を通過することにより所望の水分含有率(本実施例に係る褐炭の場合は、5〜10重量%程度)まで乾燥され、図7に示すようにエプロン75が駆動プーリ72の周囲を上側から下側に回るときに自動的に傾倒されて、最終的には逆さまの状態になるので、乾燥された粗粒子52は排出口83側に落下して、ハウジング70から取り出される。   The coarse particles 52 are dried to a desired moisture content (in the case of lignite according to the present embodiment, about 5 to 10% by weight) by passing over a plurality of wind boxes 85, and as shown in FIG. Since 75 is automatically tilted when turning around the drive pulley 72 from the upper side to the lower side, and finally becomes an upside down state, the dried coarse particles 52 fall to the discharge port 83 side, It is taken out from the housing 70.

図7に示すように、駆動プーリ72の斜め下方には、エプロン75に残っている粗粒子52があるとそれを強制的に吹き落とすための複数本の空気噴出ノズル92が設けられている。そして逆さになったエプロン75がこの空気噴出ノズル92の下を通過するようになっており、空気噴出ノズル92から高速噴射された空気は、エプロン75の底板76に形成されている温風吹き出し孔79を通って、エプロン75内に付着している粗粒子52を吹き落とす。この空気の高速噴射は、温風吹き出し孔79ならびにエプロン75の内面の清掃も兼ねており、エプロン75内での粗粒子52の適正な流動化状態を常に維持することができる。   As shown in FIG. 7, a plurality of air ejection nozzles 92 for forcibly blowing coarse particles 52 remaining in the apron 75 are provided obliquely below the drive pulley 72. The inverted apron 75 passes under the air ejection nozzle 92, and the air jetted from the air ejection nozzle 92 is a hot air blowing hole formed in the bottom plate 76 of the apron 75. Through 79, the coarse particles 52 adhering in the apron 75 are blown off. This high-speed jet of air also serves to clean the hot air blowing hole 79 and the inner surface of the apron 75, so that the proper fluidized state of the coarse particles 52 in the apron 75 can always be maintained.

このようにしてハウジング70の底面に落ちた粗粒子52、あるいは風箱85の落下粒子排出孔89からハウジング70の底面に落ちた粗粒子52は、清掃用チェーンコンベア94により排出口83側に掃き出される。前記風箱85の落下粒子排出孔89からハウジング70の底面に落ちる粗粒子52も温風99と十分に接触して乾燥しているため、他の乾燥した粗粒子52と一緒に排出口83から排出しても構わない。   The coarse particles 52 that have fallen to the bottom surface of the housing 70 in this way, or the coarse particles 52 that have fallen to the bottom surface of the housing 70 from the falling particle discharge hole 89 of the wind box 85 are swept to the discharge port 83 side by the cleaning chain conveyor 94. Is issued. Since the coarse particles 52 falling to the bottom surface of the housing 70 from the falling particle discharge hole 89 of the wind box 85 are also sufficiently in contact with the hot air 99 and dried, the coarse particles 52 are discharged from the discharge port 83 together with other dry coarse particles 52. It can be discharged.

一方、温風99により舞い上がった微粒子は微粒子捕集配管97を通ってサイクロンセパレータ68で捕集され、ロータリーシール69を経て、微粒子送り配管98によりハウジング70の排出口83側に送られる。なお、温風99により舞い上がった微粒子は粗粒子52に比べて乾燥時間が速いため、サイクロンセパレータ68へ搬送される過程で乾燥は完了しているので、微粒子送り配管98から直接排出して、他の乾燥した粗粒子52と混合しても支障はない。   On the other hand, the fine particles soared by the hot air 99 are collected by the cyclone separator 68 through the fine particle collecting pipe 97, passed through the rotary seal 69, and sent to the discharge port 83 side of the housing 70 by the fine particle feed pipe 98. Since the fine particles soared by the hot air 99 have a faster drying time than the coarse particles 52, the drying is completed in the process of being conveyed to the cyclone separator 68. There is no problem even if it is mixed with the dried coarse particles 52.

図7に示すように、最終の風箱85(図7において右端の風箱85)を駆動プーリ72に隣接することは構造上難しいため、最終の風箱85と駆動プーリ72の間には必然的に隙間ができる。そのため本実施形態では、最終の風箱85と駆動プーリ72の間に排出側閉塞板84bを設置して、その間を通るエプロン75の温風吹き出し孔79を塞ぐことにより、乾燥された粗粒子52が駆動プーリ72の近辺に落下することを防止している。   As shown in FIG. 7, it is structurally difficult to place the final wind box 85 (the rightmost wind box 85 in FIG. 7) adjacent to the drive pulley 72. Gaps are created. Therefore, in the present embodiment, the discharge side blocking plate 84b is installed between the final wind box 85 and the drive pulley 72, and the hot air blowing holes 79 of the apron 75 passing there between are closed, thereby drying the coarse particles 52 dried. Is prevented from falling near the drive pulley 72.

1 粗粒ホッパ 2 ロータリーバルブ
3 燃料遮断弁 4 シール空気
5 粗粉混合器 6 FDF(押込送風機)
7,7’ 搬送空気流量調整ダンパ 8,8’ 搬送空気温度調整ダンパ
9,9’ 搬送空気流量 10,10’ 空気遮断弁
11 混合器出口温度 12 熱空気流量計
13 熱風混合器 14 バーナ入口温度
15 バーナ 16 AAP(アフターエアポート)
17 置き火燃焼用コンベア 18 ガス予熱器(エアヒータ;AH)
19 EP(電気集塵機) 20 IDF(誘引送風機)
21 緊急パージ蒸気 22 緊急パージ蒸気遮断弁
23 一次空気ファン 24 ミル(微粉砕機)
26 パージ弁 27 ミル出口温度
28 ミル入口温度 29 ベンチュリ
30 二次空気 31 二次ベーン
32 三次空気 33 三次レジスタ
34 ガイドスリーブ 35 保炎リング
36 油バーナ 37 石炭バンカ
38 粗粉砕機 39 乾燥機
40 ミル出口ダンパ 41 サイクロンセパレータ
42 熱風混合ダンパ 43 バーナ空気比例制御弁
44 酸素制御弁 45 一次燃料ノズル
46 微粉搬送配管 47 微粉圧調整ダンパ
48 微粉圧力計 49 二次燃料ノズル
50 二次空気ノズル 51 三次空気ノズル
52 粗粒子 53 粗粒子供給手段
54 温風供給手段 55 飛散粒子捕集手段
56 原料 59 乾燥前ホッパ
60 第1のゲート弁 61 第2のゲート弁
62 計量管部 63 シリンダ
64 吸引ダンパ 65 送風機
66 熱交換器 68 サイクロンセパレータ
69 ロータリーシール 70 ハウジング
71 エプロンコンベア 72 駆動プーリ
73 テンションプーリ(従動プーリ) 74 設定器
75 エプロン 76 底板
77 背面板 78a,78b 補強板
79 温風吹き出し孔 81 被検出部
82 収容空間 83 排出口
84a 供給側閉塞板 84b 排出側閉塞板
85,85a,85b,85c,85d 風箱
86 底板 87a,87b 側板
88 温風導入管 89 落下粒子排出孔
90 温風供給管 91a,91b 吹き抜け防止部材
92 空気噴出ノズル 93 位置センサー
94 清掃用チェーンコンベア 95 駆動プーリ
96 従動プーリ 97 微粒子捕集配管
98 微粒子戻し配管 99 温風
100 空間部
105,105’ 主搬送ガス配管(第1の粗粉、微粉用高温搬送ガス配管)
106,106’ 第1の粗粉、微粉用低温搬送ガス配管
107,107’ 第の粗粉、微粉用高温搬送ガス配管
108 第の粗粉用高温搬送ガス配管
109,109’ 第の粗粉、微粉用高温搬送ガス配管
110,110’ 緊急パージ蒸気配管
111,111’ 排ガスライン
112 第の粗粉用高温搬送ガス配管
113 分岐低温搬送ガス配管 114 粗粉供給配管
115,115’ 給炭量要求値(給炭量指令信号)
116 積算器 117,117’ 偏差器
118,118’ 高値選択器又はその信号
119,119’ 偏差算出器 120 積算器
121 温度設定指令器 122 積算器
123 熱風量指令器 124 ボイラ
DESCRIPTION OF SYMBOLS 1 Coarse grain hopper 2 Rotary valve 3 Fuel shut-off valve 4 Seal air 5 Coarse powder mixer 6 FDF (push-in fan)
7, 7 'Conveyance air flow rate adjustment damper 8, 8' Conveyance air temperature adjustment damper 9, 9 'Conveyance air flow rate 10, 10' Air shut-off valve 11 Mixer outlet temperature 12 Hot air flow meter 13 Hot air mixer 14 Burner inlet temperature 15 Burner 16 AAP (After Airport)
17 Conveyor for open flame combustion 18 Gas preheater (Air heater; AH)
19 EP (electric dust collector) 20 IDF (attracting blower)
21 Emergency purge steam 22 Emergency purge steam cutoff valve
23 Primary air fan 24 mil (fine grinding machine)
26 Purge valve 27 Mill outlet temperature 28 Mill inlet temperature 29 Venturi 30 Secondary air 31 Secondary vane 32 Tertiary air 33 Tertiary resistor 34 Guide sleeve 35 Flame holding ring 36 Oil burner 37 Coal bunker 38 Coarse grinder 39 Dryer 40 Mill outlet Damper 41 Cyclone Separator 42 Hot Air Mixing Damper 43 Burner Air Proportional Control Valve 44 Oxygen Control Valve 45 Primary Fuel Nozzle 46 Fine Powder Transfer Piping 47 Fine Powder Pressure Adjustment Damper 48 Fine Powder Pressure Gauge 49 Secondary Fuel Nozzle 50 Secondary Air Nozzle 51 Secondary Air Nozzle 52 Coarse particles 53 Coarse particle supply means 54 Hot air supply means 55 Scattered particle collection means 56 Raw material 59 Pre-drying hopper 60 First gate valve 61 Second gate valve 62 Metering pipe section 63 Cylinder 64 Suction damper 65 Blower 66 Heat exchange 68 cyclone separator 69 b -Tally seal 70 Housing 71 Apron conveyor 72 Drive pulley 73 Tension pulley (driven pulley) 74 Setting device 75 Apron 76 Bottom plate 77 Back plate 78a, 78b Reinforcement plate 79 Hot air blowing hole 81 Detected portion 82 Storage space 83 Discharge port 84a Supply side blockage Plate 84b Discharge side blocking plates 85, 85a, 85b, 85c, 85d Wind box 86 Bottom plate 87a, 87b Side plate 88 Hot air introduction pipe 89 Falling particle discharge hole 90 Hot air supply pipe 91a, 91b Blow-through prevention member 92 Air jet nozzle 93 Position Sensor 94 Cleaning chain conveyor 95 Drive pulley 96 Driven pulley 97 Particulate collection pipe 98 Particulate return pipe 99 Hot air 100 Space
105, 105 'main carrier gas piping (first coarse powder, high temperature carrier gas piping for fine powder)
106, 106 ′ first coarse powder , fine powder low temperature carrier gas pipe 107, 107 ′ third coarse powder , fine powder high temperature carrier gas pipe 108 fourth coarse powder high temperature carrier gas pipe 109, 109 ′ second Coarse and fine high-temperature carrier gas piping 110, 110 'Emergency purge steam piping 111, 111' Exhaust gas line 112 Fifth coarse powder high-temperature carrier gas piping 113 Branched low-temperature carrier gas piping 114 Coarse powder supply piping 115, 115 ' Coal amount request value (coal supply command signal)
116 Accumulator 117, 117 ′ Deviation device 118, 118 ′ High value selector or its signal 119, 119 ′ Deviation calculator 120 Accumulator 121 Temperature setting command device 122 Accumulator 123 Hot air flow command device 124 Boiler

Claims (6)

2以上の固体燃料バーナ(15,15,・・・)からなるバーナグループを複数グループ備えた固体燃料ボイラ(124)と、該ボイラ(124)からの排ガスと燃焼用ガス及び搬送ガスとを熱交換するガス予熱器(18)とを有する固体燃料ボイラシステムであって、
各固体燃料バーナ(15)には、固体燃料の粗粉と微粉とをそれぞれ別系統で導入して燃焼させるための、粗粉供給系統と微粉供給系統とが接続されており、
前記粗粉供給系統は、
前記ガス予熱器(18)を経由して固体燃料搬送ガスを前記固体燃料バーナ(15)に導入する第1の粗粉用高温搬送ガス配管(105)と、
前記ガス予熱器(18)の前流側で前記第1の粗粉用高温搬送ガス配管(105)から分岐した第1の粗粉用低温搬送ガス配管(106)と、
前記ガス予熱器(18)の後流側で前記第1の粗粉用高温搬送ガス配管(105)から分岐して前記第1の粗粉用低温搬送ガス配管(106)に接続される第2の粗粉用高温搬送ガス配管(109)と、
該第2の粗粉用高温搬送ガス配管(109)を前記第1の粗粉用低温搬送ガス配管(106)に接続した接続部の後流側に設けられる固体燃料の粗粉を混合するための粗粉混合器(5)と、
該粗粉混合器(5)から固体燃料バーナ(15)に粗粉を供給する第3、4の粗粉用高温搬送ガス配管(107,108)とを備え、
前記微粉供給系統は、
前記ガス予熱器(18)を経由して固体燃料搬送ガスを前記固体燃料バーナ(15)に導入する第1の微粉用高温搬送ガス配管(105’)と、
前記ガス予熱器(18)の前流側で前記第1の微粉用高温搬送ガス配管(105’)から分岐した第1の微粉用低温搬送ガス配管(106’)と、
前記ガス予熱器(18)の後流側で前記第1の微粉用高温搬送ガス配管(105’)から分岐して前記第1の微粉用低温搬送ガス配管(106’)に接続される第2の微粉用高温搬送ガス配管(109’)と、
該第2の微粉用高温搬送ガス配管(109’)を前記第1の微粉用低温搬送ガス配管(106’)に接続した接続部の後流側の第1の微粉用低温搬送ガス配管(106’)に設けられる搬送ガスファン(23)と、
搬送ガスファン(23)の後流側の前記第1の微粉用低温搬送ガス配管(106’)に接続した固体燃料の粗粉を微粉砕して前記固体燃料の微粉を生成し、搬送ガス流に供給する微粉砕機(24)と、
該微粉砕機(24)から固体燃料バーナ(15)に微粉を供給する第の微粉用高温搬送ガス配管(107’)と
を備え、
前記粗粉供給系統は、前記粗粉混合器(5)が前記複数のバーナグループ(15,15,・・・)それぞれに対応して複数個設けられ、前記微粉供給系統は、前記微粉砕機(24)が前記複数のバーナグループ(15,15,・・・)に対して少なくとも1機設けられていることを特徴とする固体燃料ボイラシステム。
The solid fuel boiler (124) having a plurality of burner groups each including two or more solid fuel burners (15, 15,...), And the exhaust gas, combustion gas, and carrier gas from the boiler (124) are heated. A solid fuel boiler system having a gas preheater (18) to be replaced,
Each solid fuel burner (15) is connected with a coarse powder supply system and a fine powder supply system for introducing and burning solid fuel coarse powder and fine powder in separate systems.
The coarse powder supply system is
A first coarse powder high-temperature carrier gas pipe (105) for introducing a solid fuel carrier gas into the solid fuel burner (15) via the gas preheater (18);
A first coarse powder low temperature carrier gas pipe (106) branched from the first coarse powder high temperature carrier gas pipe (105) on the upstream side of the gas preheater (18);
A second branch branched from the first coarse powder high temperature carrier gas pipe (105) on the downstream side of the gas preheater (18) and connected to the first coarse powder cold carrier gas pipe (106). High-temperature carrier gas pipe (109) for coarse powder,
In order to mix the coarse powder of solid fuel provided on the downstream side of the connecting portion where the second coarse powder high temperature carrier gas pipe (109) is connected to the first coarse powder low temperature carrier gas pipe (106). Coarse powder mixer (5),
Third and fourth coarse powder high-temperature carrier gas pipes (107, 108) for supplying coarse powder from the coarse powder mixer (5) to the solid fuel burner (15),
The fine powder supply system is
A first high-temperature carrier gas pipe for fine powder (105 ′) for introducing a solid fuel carrier gas into the solid fuel burner (15) via the gas preheater (18);
A first fine powder low temperature carrier gas pipe (106 ′) branched from the first fine powder high temperature carrier gas pipe (105 ′) on the upstream side of the gas preheater (18);
A second branch branched from the first high-temperature carrier gas pipe (105 ′) for fine powder and connected to the first low-temperature carrier gas pipe (106 ′) for fine powder on the downstream side of the gas preheater (18). High-temperature carrier gas pipe (109 ') for fine powder,
The first low-temperature carrier gas pipe for the fine powder (106 on the downstream side of the connecting portion where the second high-temperature carrier gas pipe for the fine powder (109 ′) is connected to the first low-temperature carrier gas pipe (106 ′) for the fine powder. A carrier gas fan (23) provided in ');
The solid fuel coarse powder connected to the first low-temperature carrier gas pipe (106 ′) for the fine powder on the downstream side of the carrier gas fan (23) is finely pulverized to produce the fine powder of the solid fuel. A fine pulverizer (24) to be supplied to
A third high-temperature carrier gas pipe (107 ′) for supplying fine powder from the fine grinder (24) to the solid fuel burner (15),
The coarse powder supply system includes a plurality of the coarse powder mixers (5) corresponding to the plurality of burner groups (15, 15,...), And the fine powder supply system includes the fine pulverizer. (24) is provided with at least one unit for the plurality of burner groups (15, 15,...).
所定の間隔をおいて配置された一組の駆動用軸体(72,73)と、該一組の駆動用軸体(72,73)間に架設されて、前記駆動用軸体(72,73)周りに周回させて被搬送物を収容して搬送し、かつその底部に乾燥用気体を噴出させる気体噴出部(79)を設けた被搬送物の流動層形成用の搬送部材(75)を備え、該搬送部材(75)の下方から搬送部材(75)内に向けて前記乾燥用気体を供給する風箱(85)を設けたコンベア装置(39)を、固体燃料を粗粉砕して得た粗粉の水分量を低減用のコンベア装置として前記複数の粗粉混合器(5)及び前記微粉炭機(24)ごとに備えたことを特徴とする請求項1記載の固体燃料ボイラシステム。   A set of drive shafts (72, 73) arranged at a predetermined interval and a set of drive shafts (72, 73) are installed between the set of drive shafts (72, 73). 73) A transport member (75) for forming a fluidized bed of a transported object provided with a gas jetting part (79) that circulates around and accommodates and transports the transported object, and jets a drying gas at the bottom thereof. A conveyor device (39) provided with an air box (85) for supplying the drying gas from below the conveying member (75) into the conveying member (75) by roughly pulverizing solid fuel 2. The solid fuel boiler system according to claim 1, wherein each of the plurality of coarse powder mixers (5) and the pulverized coal machine (24) is provided as a conveyor device for reducing the moisture content of the coarse powder obtained. . 3、4の粗粉用高温搬送ガス配管(107,108)は熱風混合器(13)を介して接続する第3の粗粉用高温搬送ガス配管(107)と第4の粗粉用高温搬送ガス配管(108)からなり、熱風混合器(13)には前記第2の粗粉用高温搬送ガス配管(109)から分岐した第5の粗粉用高温搬送ガス配管(112)が接続されたことを特徴とする請求項1記載の固体燃料ボイラシステム。 The third and fourth high-temperature carrier gas pipes (107, 108) for coarse powder are connected to the third high-temperature carrier gas pipe (107) for coarse powder and the fourth high-temperature for coarse powder connected via a hot air mixer (13). The hot gas mixer (13) is composed of a carrier gas pipe (108), and a fifth coarse powder high temperature carrier gas pipe (112) branched from the second coarse powder high temperature carrier gas pipe (109) is connected to the hot air mixer (13). The solid fuel boiler system according to claim 1, wherein: 前記微粉供給系統の設置を省略して、第の粗粉用高温搬送ガス配管(107)と熱風混合器(13)の間に微粉を分離するサイクロンセパレータ(41)を設け、サイクロンセパレータ(41)で分離された微粉を直接固体燃料バーナ(15)に搬送する微粉圧調整ダンパ(47)を有する微粉搬送配管(46)をサイクロンセパレータ(41)と固体燃料バーナ(15)の間に設けたことを特徴とする請求項3記載の固体燃料ボイラシステム。 The installation of the fine powder supply system is omitted, and a cyclone separator (41) for separating fine powder is provided between the third coarse powder high-temperature carrier gas pipe (107) and the hot air mixer (13), and a cyclone separator (41 ) A fine powder transfer pipe (46) having a fine powder pressure adjusting damper (47) for directly transferring the fine powder separated in step) to the solid fuel burner (15) is provided between the cyclone separator (41) and the solid fuel burner (15). The solid fuel boiler system according to claim 3. 前記第5の粗粉用高温搬送ガス配管(112)には熱風混合ダンパ(42)を設け、前記第5の粗粉用高温搬送ガス配管(112)との接続部より後流側の第2の粗粉用高温搬送ガス配管(109)に搬送空気温度調節ダンパ(8)を設け、該第2の粗粉用高温搬送ガス配管(109)との接続部より前流側の前記第1の粗粉用低温搬送ガス配管(106)に搬送空気流量調整ダンパ(7)を設け、
該第2の粗粉用高温搬送ガス配管(109)との接続部より後流側の前記第1の粗粉用低温搬送ガス配管(106)に搬送空気流量を計測する搬送空気流量計(9)を設け、
前記熱風混合ダンパ(42)より後流側の第5の粗粉用高温搬送ガス配管(112)に第5の粗粉用高温搬送ガス配管(112)内の熱空気流量を計測する熱空気流量計(12)を設け、
粗粉混合器(5)の出口側にある第3の粗粉用高温搬送ガス配管(107)に粗粉混合器出口温度を計測する粗粉混合器出口温度計(11)を設け、
第4の粗粉用高温搬送ガス配管(108)にバーナ入口温度を計測するバーナ入口温度計(14)を設け、
前記搬送空気温度調節ダンパ(8)の開度を前記粗粉混合器出口温度計(11)の計測値に基づき制御し、
前記熱風混合ダンパ(42)の開度を給炭量指令値と最低空気流量との偏差値(119)に基づき算出される熱風量指令値(123)と前記バーナ入口温度計(14)の計測値の積算値(120)に基づき制御し、
搬送空気流量調整ダンパ(7)の開度を
(イ)搬送熱空気流量計(12)の計測値と空気流量計(9)の計測値の積算値(116)と給炭量指令値(115)との偏差値である第1の偏差信号(117)により算出される指令信号値(118)及び
(ロ)空気流量計(9)の計測値と最低空気流量との偏差である第2の偏差信号(119)により算出される指令信号値(118)に基づき、最低空気量を下限として必要空気量が得られるように制御する制御機構を備えた
ことを特徴とする請求項1記載の固体燃料ボイラシステム。
The fifth coarse powder high-temperature carrier gas pipe (112) is provided with a hot-air mixing damper (42), and is connected to the second coarse powder high-temperature carrier gas pipe (112) at the second downstream side. The coarse air high-temperature carrier gas pipe (109) is provided with a carrier air temperature adjusting damper (8), and the first upstream side of the first coarse powder carrier gas pipe (109) is connected to the first upstream side. A low-temperature carrier gas pipe (106) for coarse powder is provided with a carrier air flow rate adjustment damper (7),
A carrier air flow meter (9) for measuring the carrier air flow rate to the first coarse powder low-temperature carrier gas pipe (106) downstream from the connecting portion with the second coarse powder high-temperature carrier gas pipe (109). )
The hot air flow rate for measuring the flow rate of hot air in the fifth high-temperature carrier gas pipe (112) for coarse powder to the fifth high-temperature carrier gas pipe (112) for coarse powder downstream from the hot air mixing damper (42) A total (12) is provided,
A coarse powder mixer outlet thermometer (11) for measuring the coarse powder mixer outlet temperature is provided in the third high-temperature carrier gas pipe (107) for coarse powder on the outlet side of the coarse powder mixer (5),
The fourth coarse powder high-temperature carrier gas pipe (108) is provided with a burner inlet thermometer (14) for measuring the burner inlet temperature,
Controlling the opening of the carrier air temperature adjusting damper (8) based on the measured value of the coarse powder mixer outlet thermometer (11),
The hot air mixing damper (42) opening degree is calculated based on a deviation value (119) between the coal supply command value and the minimum air flow rate and measured by the hot air command value (123) and the burner inlet thermometer (14). Control based on the integrated value (120),
The opening degree of the carrier air flow rate adjustment damper (7) is set to (i) the measured value of the carrier hot air flow meter (12), the integrated value (116) of the measured value of the air flow meter (9), and the coal supply command value (115 ) And a command signal value (118) calculated by a first deviation signal (117) which is a deviation value from (2) and a second value which is a deviation between the measured value of the air flow meter (9) and the minimum air flow rate. The solid according to claim 1, further comprising a control mechanism for controlling so that a required air amount can be obtained with a minimum air amount as a lower limit based on a command signal value (118) calculated from the deviation signal (119). Fuel boiler system.
請求項1記載の固体燃料ボイラシステムに用いる固体燃料用バーナであって、
中央部に粗粉炭と一次空気の混合物が流れ、内壁部に前記混合流に絞りを入れるためのベンチュリ(29)を有する一次燃料ノズル(45)を設け、
該一次燃料ノズル(45)の外周に微粉炭と一次空気の混合流が流れる二次燃料ノズル(49)を設け、
前記一次燃料ノズル(45)の出口部先端より先に二次燃料ノズル(49)の出口部先端を配置し、
該二次燃料ノズル(49)の出口部先端の外周に保炎器(35)を設け、
前記二次燃料ノズル(49)の外周には内部に二次ベーン(31)を有し、出口部が順次拡大するガイドスリーブを有する二次空気ノズル(50)を設け、
該二次空気ノズル(50)の外周には三次レジスタを有する三次空気ノズル(51)を設けた
ことを特徴とする固体燃料用バーナ。
A burner for solid fuel used in the solid fuel boiler system according to claim 1,
A primary fuel nozzle (45) having a venturi (29) for allowing the mixture of coarse pulverized coal and primary air to flow in the central portion and constricting the mixed flow to the inner wall portion is provided,
A secondary fuel nozzle (49) through which a mixed flow of pulverized coal and primary air flows is provided on the outer periphery of the primary fuel nozzle (45),
Disposing the front end of the outlet of the secondary fuel nozzle (49) ahead of the front end of the outlet of the primary fuel nozzle (45),
A flame holder (35) is provided on the outer periphery of the tip of the outlet of the secondary fuel nozzle (49),
A secondary air nozzle (50) having a secondary vane (31) in the outer periphery of the secondary fuel nozzle (49) and having a guide sleeve in which an outlet portion sequentially expands is provided,
A solid fuel burner characterized in that a tertiary air nozzle (51) having a tertiary resistor is provided on the outer periphery of the secondary air nozzle (50).
JP2011251744A 2011-11-17 2011-11-17 Solid fuel boiler system and solid fuel burner Expired - Fee Related JP5888726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011251744A JP5888726B2 (en) 2011-11-17 2011-11-17 Solid fuel boiler system and solid fuel burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011251744A JP5888726B2 (en) 2011-11-17 2011-11-17 Solid fuel boiler system and solid fuel burner

Publications (3)

Publication Number Publication Date
JP2013108640A JP2013108640A (en) 2013-06-06
JP2013108640A5 JP2013108640A5 (en) 2014-12-18
JP5888726B2 true JP5888726B2 (en) 2016-03-22

Family

ID=48705578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011251744A Expired - Fee Related JP5888726B2 (en) 2011-11-17 2011-11-17 Solid fuel boiler system and solid fuel burner

Country Status (1)

Country Link
JP (1) JP5888726B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861012A (en) * 2016-06-16 2016-08-17 北京神雾环境能源科技集团股份有限公司 Coal-pyrolysis-device and pulverized-coal-boiler combination system and method for treating coal
CN106439892A (en) * 2016-09-30 2017-02-22 上海垒锦环境科技中心 Mixed powder preparation system with coal and sludge coupling combustion power generation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201470B2 (en) * 2013-07-12 2017-09-27 株式会社Ihi Boiler equipment
CN104848243B (en) * 2015-05-04 2018-06-01 浙江大学 A kind of half transporting pulverized coal with exhaust gas method and boiler using intermediate storage-type pulverized coal preparation system
JP6841597B2 (en) * 2016-02-01 2021-03-10 三菱パワー株式会社 Boiler and fuel supply method to boiler
CN107420933B (en) * 2017-08-30 2023-07-25 西安西热锅炉环保工程有限公司 Exhaust-heat primary air heat exchanger system for hot air powder feeding system of ball mill
CN108757944B (en) * 2018-08-07 2023-12-19 深圳众诚联合能源科技有限公司 Rotary air preheater sealing device based on airflow movement posture adjustment technology
CN114811556A (en) * 2021-01-22 2022-07-29 周腊梅 Energy-saving and environment-friendly boiler and boiler combustion method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997408A (en) * 1982-11-26 1984-06-05 Hitachi Ltd Coal combustion method and burner therefor
JPH07260106A (en) * 1994-03-18 1995-10-13 Hitachi Ltd Pulverized coal firing burner and pulverized coal
JPH09170714A (en) * 1995-12-18 1997-06-30 Babcock Hitachi Kk Fine coal powder burning burner
JP4374798B2 (en) * 2001-05-01 2009-12-02 株式会社Ihi Mill primary air flow controller for pulverized coal fired boiler equipment
JP4791701B2 (en) * 2004-03-31 2011-10-12 バブコック日立株式会社 Biomass fuel combustion apparatus and method
JP4864053B2 (en) * 2008-08-04 2012-01-25 大陽日酸株式会社 Method for producing inorganic spheroidized particles
WO2011047446A1 (en) * 2010-01-04 2011-04-28 Rodolfo Antonio M Gomez Advanced coal upgrading process for a power station

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861012A (en) * 2016-06-16 2016-08-17 北京神雾环境能源科技集团股份有限公司 Coal-pyrolysis-device and pulverized-coal-boiler combination system and method for treating coal
CN106439892A (en) * 2016-09-30 2017-02-22 上海垒锦环境科技中心 Mixed powder preparation system with coal and sludge coupling combustion power generation

Also Published As

Publication number Publication date
JP2013108640A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5888726B2 (en) Solid fuel boiler system and solid fuel burner
JP5905463B2 (en) Drying conveyor device and thermal power generation system including the same
CN203116003U (en) Special biomass burner and biomass mixed burning boiler
JP5594941B2 (en) Biomass crusher and control method of the apparatus
JP5014044B2 (en) Solid fuel pulverization supply apparatus and method
JP6180218B2 (en) Solid fuel combustion equipment
KR20100014491A (en) Plant and method for dry extracting / cooling heavy ashes and for controlling the combustion of high unburnt content residues
JP5682252B2 (en) Coal / biomass co-firing equipment
EA015721B1 (en) Extraction and air/water cooling system for large quantities of heavy ashes
JP7362253B2 (en) Solid fuel pulverizer, power plant equipped with the same, and method for controlling the solid fuel pulverizer
JPH0814531A (en) Supplying device for solid substance to be burnt
US2925055A (en) Apparatus for burning refuse fuel
JP2001246276A (en) Installation for pulverizing coal
CN112138776B (en) Grinding device, boiler system and method for operating grinding device
CN111219730B (en) Solid fuel supply device and method, pulverizer and boiler
JP7258581B2 (en) Crusher, boiler system and method of operating the crusher
JP2021121424A (en) Discharge device, solid fuel crushing device and boiler system, and operation method of discharge device
JP2014141619A (en) Manufacturing apparatus of modified coal and fire power power-generating plant with the same
CN104781606B (en) Method for running steam generator
JP7316074B2 (en) Pulverized fuel-fired boiler
CN212092538U (en) Pulverizer, and solid fuel pulverizer and boiler system provided with same
JP7266998B2 (en) Ash processing apparatus and method and boiler
JP7224810B2 (en) SOLID FUEL CRUSHING DEVICE, POWER PLANT INCLUDING THE SAME, AND CONTROL METHOD FOR SOLID FUEL CRUSHING
US20230098621A1 (en) Apparatus and method for drying material and asphalt mixing facility having such an apparatus
JP2023095072A (en) Discharge device, solid fuel crushing device and control method of discharge device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R150 Certificate of patent or registration of utility model

Ref document number: 5888726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees