JPS58123393A - Controller for induction machine - Google Patents

Controller for induction machine

Info

Publication number
JPS58123393A
JPS58123393A JP57003621A JP362182A JPS58123393A JP S58123393 A JPS58123393 A JP S58123393A JP 57003621 A JP57003621 A JP 57003621A JP 362182 A JP362182 A JP 362182A JP S58123393 A JPS58123393 A JP S58123393A
Authority
JP
Japan
Prior art keywords
vector
magnetic flux
induction machine
current command
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57003621A
Other languages
Japanese (ja)
Other versions
JPH0343862B2 (en
Inventor
Yoshinori Kamiya
神谷 嘉則
Toshio Matsumoto
敏雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP57003621A priority Critical patent/JPS58123393A/en
Publication of JPS58123393A publication Critical patent/JPS58123393A/en
Publication of JPH0343862B2 publication Critical patent/JPH0343862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To improve the controlling efficiency of an induction machine by calculating the secondary interlinkage magnetic flux vector from the output voltage of an inverter and the secondary current, and enabling the orientation control of the magnetic field while utilizes as an oscillator the induction machine itself. CONSTITUTION:An induction machine speed NM is negatively fed back from a tachometer generator 10 to a speed instruction NS via a secondary interlinkage magnetic flux vector operation amplifier OP for calculating the secondary interlinkage magnetic flux phi2 of an induction machine 9 from the primary voltage E1 and the secondary current command I2S, and a circuit for controlling the magnetic flux to a rated value by negatively feeding back the absolute value¦phi2¦ of the secondary interlinkage magnetic flux phi2 to the magnetic flux instruction phiS as a center, thereby constructing the orientation control of the magnetic field with the output of a speed amplifier AN as a torque current command I .

Description

【発明の詳細な説明】 本発明は、磁束演算による誘導機の磁界オリエント制御
を行なう装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that performs magnetic field orientation control of an induction machine using magnetic flux calculation.

従来、磁界メリエント制御ではモータ埋込みの磁気セン
サによってギャップ磁束を検出するが、このリップル除
去のために、発振器内蔵のベクトルフィルタを必要とす
る。
Conventionally, in magnetic field meridian control, the gap magnetic flux is detected by a magnetic sensor embedded in the motor, but in order to remove this ripple, a vector filter with a built-in oscillator is required.

これは性能上問題ではないが、賽用上の制約がある。This is not a performance problem, but it does impose a usage restriction.

ここにおいて、本発明は、インバータ出力電圧と二次電
流から二次鎖交磁束ベクトルを演算し、かつ誘導次自身
を発振器として利用する磁界ベクトルつまり磁界オリエ
ント制御が可能な装置を提供することを、その目的とす
る。
Here, the present invention provides an apparatus capable of calculating a secondary flux linkage vector from an inverter output voltage and a secondary current, and controlling a magnetic field vector, that is, a magnetic field orientation, by using the inductor itself as an oscillator. That purpose.

第1図は、本発明の一実施例の構成を示すブロツク図で
ある。
FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention.

第1図において、i、x、3.u、sは減算器、MET
/、MUコは乗算器、ADは加算器、N は速度指令、
ANは速度アンプ、ムエは電流増幅器、00Mは在較器
、OONはダイオード整流器8よりからなるコンバータ
、INVはGTRからなるインバータ、OTは変流器、
テは誘導機、10はタコゼネ、6は誘導機の2次漏れイ
ンダクタンス分l、係数器、7は1次インビータンス分
係数器(PIは誘導機の1次抵抗、1.は1次漏れイン
ダクタンス、pは微分演算子1、ffはその定数■、・
′ H,+LIF  なる1次おくれフィルタ(Mは誘導機
の7次2次相互インダクタンス、L8は7次自己インダ
クタンス)、OPはλ次m交磁束ベクトル演算器、//
は磁束開平器、A、は比例積分増幅器、■、はトルク電
流指令、工、Bは2次電流指令ベクトル(なお、符号の
上に付しれ印はベクトル普であることを示す)、:[1
Bは1次電流指令ベクトル、I 、は1次電流ベクトル
、凱は1次電圧ベクトル、EIGは無角荷時誘導!Il
km子電圧ベクトル、小。ギャップ磁束ベクトル、i、
はコ次釧交磁束ベクトル、io8は励it流指令ベクト
ル、Φ は日 磁束指令、fヨはキャリア周波である。
In FIG. 1, i, x, 3. u, s are subtractors, MET
/, MU is a multiplier, AD is an adder, N is a speed command,
AN is a speed amplifier, MUE is a current amplifier, 00M is a comparator, OON is a converter consisting of a diode rectifier 8, INV is an inverter consisting of a GTR, OT is a current transformer,
te is the induction machine, 10 is the tachogenerator, 6 is the induction machine's secondary leakage inductance component l, a coefficient multiplier, 7 is the primary impedance component coefficient machine (PI is the primary resistance of the induction machine, 1. is the primary leakage Inductance, p is differential operator 1, ff is its constant ■, ・
' H, +LIF (M is the seventh-order secondary mutual inductance of the induction machine, L8 is the seventh-order self-inductance), OP is the λ-th m alternating magnetic flux vector calculator, //
is a magnetic flux squarer, A is a proportional-integral amplifier, ■ is a torque current command, B is a secondary current command vector (the mark above the symbol indicates that the vector is normal), : [ 1
B is the primary current command vector, I is the primary current vector, Kai is the primary voltage vector, and EIG is the non-angle loading induction! Il
km child voltage vector, small. gap magnetic flux vector, i,
is the next magnetic flux vector, io8 is the excitation current command vector, Φ is the daily magnetic flux command, and fyo is the carrier frequency.

さて、速度指令N8が与えられると、減詣器lでタコゼ
ネIOからの速度帰還で減IX畑れ、その速度偏差が速
度7ンプAMを介してトルク電流指令工、となる。そし
て第コの乗算器MUJKよシ、−次鎖交磁束φ、と掛算
されてλ次電流指令i1を作る。この一次電流指令’I
ceは加シ器ADで励磁電流指令i。Sと加算され、1
次電流指令i、8を溝用し、減算器コで/次電流士、を
それから減算し、その電流倖差はt流増帖゛器A工を鮭
て比較器00Mへ与えられ、キャリヤ周波数と比較して
インバーターNVを制御し、誘導機tを駆重;、する。
Now, when the speed command N8 is given, the speed feedback from the tachogen IO is reduced by the reducer I, and the speed deviation becomes the torque current command through the speed 7 amplifier AM. Then, it is multiplied by the -th order magnetic flux φ by the fourth multiplier MUJK to create the λ-th order current command i1. This primary current command 'I
ce is the excitation current command i from the booster AD. Added to S, 1
The next current command i, 8 is used as a groove, and the subtracter subtracts the next current command, and the current difference is applied to the comparator 00M through the current multiplier A, and the carrier frequency is In comparison, the inverter NV is controlled and the induction machine t is driven.

ぞして、1次電圧止、と(R,+4.P)の会数器りを
経た2次指令電流fISが沖算器3で演算され:::1
゜ て無負荷時端子電圧り。となり、それが定数R,+L、
Pの7次おくれフィルターを経過してギャップ磁束ふ。
Then, the secondary command current fIS which has passed through the primary voltage stop and the multiplication of (R, +4.P) is calculated by the offset calculator 3:::1
゜The terminal voltage is at no load. So, it becomes constant R, +L,
The gap magnetic flux passes through the 7th order delay filter of P.

となり、これから1.の保数器tを釘たλ次指令電流i
tsを減算して、2次釦交磁束i、を得ている。
So, from now on, 1. The λ-order command current i that passes the keeper t of
By subtracting ts, the secondary button exchange magnetic flux i is obtained.

一方、磁束(振幅、)指令Φ が#調器!へ与えられて
おり、それから2次鎖交磁束i2を磁束開平器//によ
り演算して得た一次鎖交磁束の絶対値+ o、 lを減
算して比例積分増幅器A。を介し第7の乗算器MU/に
入力し、2次釦交磁束小、と乗壊して励磁電流指令1(
lsiを導出している。
On the other hand, the magnetic flux (amplitude,) command Φ is #regulated! The absolute value of the primary magnetic flux linkage + o, l obtained by calculating the secondary magnetic flux linkage i2 using a magnetic flux squarer // is subtracted from the proportional-integral amplifier A. is input to the seventh multiplier MU/ through
lsi is derived.

すなわち、この実施例は1次電圧i、と一次電流指令i
、8から誘導機ツの2次釦交磁束ホ、を演算する一次鎖
交磁束ベクトル演算回路opと、コ次欽交磁束もの絶対
値1Φ、1を磁束指令Φ8に負帰還してき束を定格値に
制御する回路とを中心として、速度指令N ヘタコゼネ
10からの誘導機速度Nh(を負帰還?せ、速度アンプ
声、を介して速度制徊!シ、その速度アンプAヨの出力
をトルク11流指令工、とする磁界オリエント制御を構
成している。
That is, in this embodiment, the primary voltage i and the primary current command i
, 8, the primary interlinkage magnetic flux vector calculation circuit OP calculates the secondary exchange magnetic flux of the induction machine, and the absolute value 1Φ of the exchange magnetic flux, 1 is negatively fed back to the magnetic flux command Φ8 to set the flux to the rated value. Centering around the circuit that controls the speed command N, the induction motor speed Nh (from the hetakogenerator 10) is given negative feedback, and the speed is controlled via the speed amplifier voice, and the output of the speed amplifier A is set to the torque 11. It constitutes a magnetic field orientation control with flow direction control.

とこで、2次舒交磁束ベクトル演算について触れておく
By the way, let us touch on the calculation of the secondary flux vector.

かコN(は、誘導機の等flIi晒路である。kakoN( is the exposed path of the induction machine.

hは2次電流、i、は一次電圧、hは一次抵抗、10は
励磁電流である。
h is a secondary current, i is a primary voltage, h is a primary resistance, and 10 is an exciting current.

W、1図においてBB  a i、を16*I2で表わ
すと次式が起り立つ Kt−(Ftt+L+P)No +(RI +”L+p
)It・・・・・・(1式) 11  wm M P  X6 −1tp工1    
    −−  (コ式)(1式)より励磁電流i。が
得られる。
W, In Figure 1, when BB a i is expressed as 16*I2, the following equation arises: Kt-(Ftt+L+P)No +(RI+"L+p
) It・・・・・・(1 set) 11 wm M P X6 -1tp engineering 1
-- (Formula 1) Exciting current i from (Formula 1). is obtained.

io = a、 + L、、、 (”t −(RI” 
”1p) io )・・・・・(3式) %式% 1         ・・・・・・(参式)でbるから
、これらを(コ式)に代入してot1″耳葺1m−(”
+”l+p)±2)−11!!・・・・・・(3式) そこで、i、を誘導機デの端子電圧から導入し、iを一
次を流指令i2sから演算して、(3式)によシコ次如
交硅東i、を導出している。
io = a, + L,,, ("t - (RI"
``1p) io )...(3 formula) % formula% 1......(3 formula) is b, so substitute these into (ko formula) to get ot1'' ear roof 1m-( ”
+"l+p)±2)-11!!...(Formula 3) Therefore, i is introduced from the terminal voltage of the induction machine, i is calculated from the primary flow command i2s, and (3 (Formula), we derive the following formula.

第3図は、本発明の他の実施例の結成を示すプロック図
である。
FIG. 3 is a block diagram showing the formation of another embodiment of the invention.

この他の実施例は電流方形波インバータに適用する場合
で、lコは電流開平器、111B+は1次電流指令の絶
対値、R8は移相器、LDoは直流リアクトル、pcは
通電幅変換器、FAはパルス増幅aである。
This other embodiment is applied to a current square wave inverter, where l is a current squarer, 111B+ is the absolute value of the primary current command, R8 is a phase shifter, LDo is a DC reactor, and pc is a conduction width converter. , FA is the pulse amplification a.

コンバータCONおよびインバータエNYはそれぞれS
CRをもって形成される。
Converter CON and inverter NY are each S
Formed with CR.

その他の磁束演算は第1図のそれと同じである。Other magnetic flux calculations are the same as those in FIG.

かくして本発明によれば、従来装艮での再記ベクトルフ
ィルタが除かれる、つまりインバータ出力電圧(/?X
:11圧ict  )と2送電、流(一送電流指令工y
s lから一次釦交磁束小、を演11LIてt)るので
リップルが少なく誘導機デ自身を発振器として利用し、
ベクトルフィルタを省略することができる。
Thus, according to the present invention, the rewriting vector filter in the conventional arrangement is eliminated, that is, the inverter output voltage (/?X
: 11 voltage ict) and 2 power transmission, current (1 transmission current command y
Since the primary exchange magnetic flux is small from s l, ripple is small and the induction machine itself is used as an oscillator,
The vector filter can be omitted.

そして、磁束の演算をイン/<・−夕臣1路で行なうの
で、実用・十有利で汎用に適する。
Since the magnetic flux is calculated in a single path of in/<.--Yuomi, it is practical and advantageous and suitable for general use.

かつ、原理的に磁界オリエント制御であるから、ト密な
タコゼネは不要で乏シ、スリップ周波数に関して無訴整
で良いから、その訓、整上有利である。
Moreover, since magnetic field orientation control is used in principle, there is no need for a dense tachogenerator, and the slip frequency can be adjusted without complaint, which is advantageous in terms of adjustment.

なお、界磁の訓整も容易である。Furthermore, field training is also easy.

また、(5式)による2次鎖交磁束6.の演算にR1が
和われないから、2次抵抗F、の温度変化の影蕃がない
Also, secondary magnetic flux linkage 6 according to (5 formula). Since R1 is not added to the calculation of , there is no effect of temperature change on the secondary resistance F.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一ツ施例の構成を示すブロック図、第
2図は誘導機の等価回路図、w3図は本発明の他の実施
例のブロック図である。 Ns−・・速度指令、t、2.3.11.s;−f4算
器、AM・・・速度アンプ1.MU/、MUJ・・・乗
tB。 AD・・・加算器、A工・・・V流増幅器、COM・・
・比較6、CON・・・コンバータ、工NV・・・イン
7< −p、OT・・変i器、6・・・2次漏れインダ
クタンス分係数器、7・・・1次インピーダンス分優数
器、g・・・定数□の1次お゛くれフィルタ、!・・・
誘導機、R,+L1p 10・・・タコゼネ、l/・・・磁束開平器、/コ・・
・電流開平器、A、・・・比例積分増幅器、工。・・・
初期励磁指令、fH・・・キャリア旋波、2日・・・移
相器、PC・・・通電幅変換器、Pム・・・パルス増幅
器、工、・・・トルク電流指令、i!p・・・−送電流
指令、凱6・・・1次電流指令、il・ 7次を流、i
、・・・1次電圧、止、0・・・無狼荷時訪導機端子電
圧、io・・・2次紅交磁束。 i06  励磁電流指令、NM・・・計導機速度。
FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of an induction machine, and FIG. W3 is a block diagram of another embodiment of the present invention. Ns--Speed command, t, 2.3.11. s;-f4 calculator, AM... speed amplifier 1. MU/, MUJ... multiplied by tB. AD...Adder, A...V flow amplifier, COM...
・Comparison 6, CON...Converter, Engineering NV...In7<-p, OT...Transformer, 6...Secondary leakage inductance fractionator, 7...Primary impedance fractionator vessel, g...first-order deflection filter with constant □,! ...
Induction machine, R, +L1p 10...Tachogenerator, l/...Magnetic flux flattener, /co...
・Current square squarer, A, Proportional-integral amplifier, Engineering. ...
Initial excitation command, fH...carrier rotation, 2nd...phase shifter, PC...current width converter, Pmu...pulse amplifier, engineering...torque current command, i! p...-transmission current command, Gai6...primary current command, il/7th order flow, i
, . . . Primary voltage, stop, 0 . . . Terminal voltage during unloading, io . . . Secondary magnetic flux. i06 Excitation current command, NM...meter speed.

Claims (1)

【特許請求の範囲】 インバータで駆動される誘導機の1次端子電圧ベクトル
iと2次電流指令ベクトルi2gとを入力してλ次佃交
磁束ベクトル0.を演算導出するλ次鎖交磁束ベクトル
演算器と、罰記コ次鎖交磁束ベクトルi2の振幅信号と
磁束指令信号との偏差量を入力する比例積分増幅器と、
前記比例積分増幅器の出力と前記λ次鎖交磁束ベクトル
i!とを掛けて励磁電流指令ベクトルi。eを導出する
第1の乗算器と、前記誘導機の回転速度を検出する回転
速度検出器からの速度フィードバック信号と速度指令信
号との偏差を比例積分増幅して得られるトルク電流指令
工 と前記コ次鎖交磁束ペクトτ ルΦ、とを掛けて前記2次電流指令ベクトル11sを出
力する第2の乗算器と、前記励磁電流指令ベクトルi(
1gと廊、記2次電流指令ベクトルエ!8とを加算して
1次を流指令ベクトルi、8を導出する加算器とを備え
、前記誘導機の磁界オリエント制御を行なうようにした
ことを%徴とする誘導機の制御装置。
Scope of Claims: By inputting the primary terminal voltage vector i and the secondary current command vector i2g of an induction machine driven by an inverter, the λ-th cross magnetic flux vector 0. a λ-order flux linkage vector calculator that calculates and derives the λ-order flux linkage vector; a proportional-integral amplifier that inputs the deviation amount between the amplitude signal of the λ-order flux linkage vector i2 and the magnetic flux command signal;
The output of the proportional-integral amplifier and the λ-order interlinkage magnetic flux vector i! is multiplied by the excitation current command vector i. a first multiplier that derives e, and a torque current command value obtained by proportional-integral amplification of the deviation between the speed feedback signal from the rotational speed detector that detects the rotational speed of the induction machine and the speed command signal; a second multiplier that outputs the secondary current command vector 11s by multiplying the secondary current command vector 11s by the second order magnetic flux linkage vector τ
1g and corridor, secondary current command vector e! 8 and an adder for deriving a first-order flow command vector i, 8, and controlling the magnetic field orientation of the induction machine.
JP57003621A 1982-01-13 1982-01-13 Controller for induction machine Granted JPS58123393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57003621A JPS58123393A (en) 1982-01-13 1982-01-13 Controller for induction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57003621A JPS58123393A (en) 1982-01-13 1982-01-13 Controller for induction machine

Publications (2)

Publication Number Publication Date
JPS58123393A true JPS58123393A (en) 1983-07-22
JPH0343862B2 JPH0343862B2 (en) 1991-07-04

Family

ID=11562561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57003621A Granted JPS58123393A (en) 1982-01-13 1982-01-13 Controller for induction machine

Country Status (1)

Country Link
JP (1) JPS58123393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395879A (en) * 1986-10-09 1988-04-26 Mitsubishi Electric Corp Speed & flux controlling device for induction motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395879A (en) * 1986-10-09 1988-04-26 Mitsubishi Electric Corp Speed & flux controlling device for induction motor

Also Published As

Publication number Publication date
JPH0343862B2 (en) 1991-07-04

Similar Documents

Publication Publication Date Title
US8450955B2 (en) Alternating-current motor control apparatus
EP0082303B1 (en) Method and apparatus for controlling induction motor
US6321606B1 (en) Apparatus for calculating torque generated by induction motor
JPH0250718B2 (en)
JP2010273400A (en) Device for control of induction motor
JPS58123393A (en) Controller for induction machine
JP3381465B2 (en) Control method of power converter
JP2001204196A (en) Variable speed driving system of ac motor
JP3129173B2 (en) AC motor control device
JPH01248985A (en) Method for computing flux of induction motor
JP2687062B2 (en) Motor control device
JP3736551B2 (en) Induction motor speed control method
Ouadi et al. Backstepping control of saturated induction motors
JP3302854B2 (en) Induction motor control device
JP2003102177A (en) Method of controlling power converter
JP3990044B2 (en) Inverter device
JPS6042709B2 (en) induction motor control device
JPH05207776A (en) Vector controller for induction motor
JP2017153273A (en) Control device for induction motor
JPH0412698A (en) Control method for voltage type pwm inverter
SU1432711A1 (en) A.c. electric drive
JP2792025B2 (en) Vector controller for induction motor
JPH01107692A (en) Vector controller for induction motor
JPH03218291A (en) Controller for induction motor
JPS59201690A (en) Controller of ac motor