JPS5812324A - Liquid epitaxial growing method - Google Patents

Liquid epitaxial growing method

Info

Publication number
JPS5812324A
JPS5812324A JP56110213A JP11021381A JPS5812324A JP S5812324 A JPS5812324 A JP S5812324A JP 56110213 A JP56110213 A JP 56110213A JP 11021381 A JP11021381 A JP 11021381A JP S5812324 A JPS5812324 A JP S5812324A
Authority
JP
Japan
Prior art keywords
single crystal
solvent metal
compound semiconductor
epitaxial growth
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56110213A
Other languages
Japanese (ja)
Inventor
Yasuo Idei
出井 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56110213A priority Critical patent/JPS5812324A/en
Publication of JPS5812324A publication Critical patent/JPS5812324A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To allow controlling the impurity concentration in a thin film formed by liquid epitaxial growth at high accuracy and good reproducibility, by contacting a solvent metal under a supersaturated state on a semiconductor substrate formed of the same compound semiconductor as a single crystal compound semiconductor, thus performing a single crystal growth. CONSTITUTION:The rate of the single crystals previously added with dopants such as sulphur for the total amount of single crystals can be set easily to a fixed value in the range of the impurity density 3X10<16>-1X10<18>cm<-3> in an N type epitaxial layer by appropriately setting in the range of 0-1 as illustrated. The epitaxial growing layer wherein the impurity density is set to a low density (<1X10<17>cm<-3>) and constant value can be easily formed by performing liquid epitaxial growth on a semiconductor substrate by a solvent metal wherein such a single crystal is solved.

Description

【発明の詳細な説明】 本発明は、液相エピタキシャル成長法に関する。[Detailed description of the invention] The present invention relates to a liquid phase epitaxial growth method.

一般に、半導体装置の製造工程では、液相エピタキシャ
ル成長法を用いて、半導体基板上に所定の導電型の薄膜
形成が行われている。
Generally, in the manufacturing process of semiconductor devices, a thin film of a predetermined conductivity type is formed on a semiconductor substrate using a liquid phase epitaxial growth method.

従来の液相エビタキVヤル成長法では1例えばガリウム
溶液等の溶媒金属中に所定の不純物元素をドーパントと
して厘接添加し、この溶媒金員な用いて薄膜形成な行っ
ている。しかしながら、高i下での液相エピタキシャル
成長の際に、溶媒金属からドーパントが蒸発するため。
In the conventional liquid phase epitaxial growth method, a predetermined impurity element is added as a dopant to a solvent metal such as a gallium solution, and a thin film is formed using this solvent metal. However, due to the evaporation of dopants from the solvent metal during liquid phase epitaxial growth under high i.

薄膜中の不純物濃度を高い再現性で制御できない欠点が
あった。また、ドーパントである不純できない問題があ
った。
The drawback was that the impurity concentration in the thin film could not be controlled with high reproducibility. In addition, there was a problem that the dopant could not be impure.

本発明は、かかる点に鑑みてなされたもので。The present invention has been made in view of this point.

液相エピタキシャル成長によって形成する薄膜中の不純
物濃度を高い精度で、しかも再現性よく制御することが
できる液相エピタキシャル成長法を見出したものである
We have discovered a liquid phase epitaxial growth method that allows the impurity concentration in a thin film formed by liquid phase epitaxial growth to be controlled with high precision and good reproducibility.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

予め所定濃度の不純物元素をドーパントとして添加した
化合物半導体の単結晶を溶媒金属中に所定濃度まで溶解
させる。次いで、この溶媒金属を単結晶の化合物半導体
と同じ化合物半導体で形成された半導体基板上に過飽和
状態で接触せしめ、単結晶の成長を行って半導体基板上
に所定導電塩の薄膜を形成せしめる。
A single crystal of a compound semiconductor to which a predetermined concentration of an impurity element has been added as a dopant is dissolved in a solvent metal to a predetermined concentration. Next, this solvent metal is brought into contact in a supersaturated state on a semiconductor substrate made of the same compound semiconductor as the single crystal compound semiconductor, and a single crystal is grown to form a thin film of a predetermined conductive salt on the semiconductor substrate.

ここで1本発明方法を適用する半導体基板は。Here, the semiconductor substrate to which the method of the present invention is applied is as follows.

Gap、GaAs、Ga^sP、等の厘−V族化合物半
導体で形成されたもの、或はZnTa、CdTe等のn
−■族化合物半導体で形成されたもの等である。従って
、予めドーパントを添加しておく単結晶は、同様にI−
V族化合物半導体からなるもの、或は1−Vl族化合物
半導体からなるものを使用する。また、この単結晶中に
予め添加しておく不純物元素の種類及び濃度は、本発明
方法を適用して製造する半導体装置の仕様に応じて適宜
設定するのが望ましい。例えば。
Gap, GaAs, Ga^sP, etc., made of Rin-V group compound semiconductors, or ZnTa, CdTe, etc.
-Those formed from a ■group compound semiconductor, etc. Therefore, a single crystal to which a dopant is added in advance is similarly I-
A semiconductor made of a V group compound semiconductor or a 1-Vl group compound semiconductor is used. Further, it is desirable that the type and concentration of the impurity element added in advance to the single crystal be appropriately set according to the specifications of the semiconductor device to be manufactured by applying the method of the present invention. for example.

GaP緑色発光ダイオードを製造する場合には。When manufacturing GaP green light emitting diodes.

GaP単結晶内にドーパントとして硫黄(8)を3 X
 IQ”cIIL−’添加し、とのGaP単結晶をガリ
ウムからなる溶媒金属中に3.5重量%溶解させビタキ
シャルj−を形成する。然る後、このNWエピタキシャ
ル層上に不純物濃度が0.5 X 10”1−1のPg
エピタキシャル層を形成すると、第1図に示す如き、濃
度プロファイルを有するGaP緑色発光ダイオードが得
られる。同図から明らかなように、このGaP緑色発光
ダイオードでは、N型エピタキシャル層中の不純物濃度
は極めて高い精度で3 X 10”an−”の値に設定
され、しかもP−N接合部でlXl0”!。−畠以上の
高111Fに急便な立ち上がりで不純物濃度が変化して
いる。その結果、極めて高い発光効率が得られる。
3X sulfur (8) as a dopant in GaP single crystal
IQ"cIIL-' is added to form a bitaxial j- by dissolving 3.5% by weight of a GaP single crystal in a solvent metal consisting of gallium. After that, an impurity concentration of 0.5% is formed on this NW epitaxial layer. 5 x 10” 1-1 Pg
After forming the epitaxial layer, a GaP green light emitting diode having a concentration profile as shown in FIG. 1 is obtained. As is clear from the figure, in this GaP green light emitting diode, the impurity concentration in the N-type epitaxial layer is set to a value of 3 x 10"an-" with extremely high accuracy, and moreover, the impurity concentration at the P-N junction is ! - The impurity concentration changes quickly to a high 111F higher than Hatake.As a result, extremely high luminous efficiency can be obtained.

つまり1本発明方法によれば、ガリウム等の溶媒金属中
に溶解せしめるGaP等の単結晶の割合を、溶媒金属中
で単結晶が完全に溶解せずに単結晶の状態で残存するよ
うに3.5t1%以上に設定し、この単結晶の全量に対
する硫黄(S)等のドーパントを予め添加した単結晶の
割合を第2図に示す如く、o〜1の範囲で適宜設定する
ことにより、N型エピタキシャル層中の不純物濃度ヲ3
 X 10’〜lXl0”cIL−”ノ範囲テ所定値に
容易に設定することができる。換言すれば。
In other words, according to the method of the present invention, the ratio of the single crystal such as GaP to be dissolved in the solvent metal such as gallium is adjusted to 3 so that the single crystal does not completely dissolve in the solvent metal and remains in a single crystal state. By setting the ratio of the single crystal to which a dopant such as sulfur (S) has been added in advance to the total amount of the single crystal in the range of o to 1 as shown in Figure 2, the N Impurity concentration in the type epitaxial layer 3
The range from X10' to lX10"cIL-" can be easily set to a predetermined value. In other words.

所定濃度のドーパントを予め添加しておいた単結慕を、
ドーパントを全く添加していない単結晶との合計した全
単結晶に対して所定の割合に設定して、このような単結
晶を溶解した溶媒金属で半導体基板上に液相エピタキシ
ャル成長を施すことにより、不純物濃度が低濃度(<I
×10cm)でかつ一定値に設定されたエピタキシャル
成長層を容易に形成することができる。
A single bond to which a predetermined concentration of dopant has been added is
By performing liquid phase epitaxial growth on a semiconductor substrate using a solvent metal in which such a single crystal is dissolved, the ratio is set to a predetermined ratio to the total total single crystal including the single crystal to which no dopant is added. The impurity concentration is low (<I
x 10 cm) and set to a constant value can be easily formed.

しかも、予めドーパントを添加しておいた単結晶を溶媒
金属に溶解させたものでエピタキシャル成長を行うので
、エピタキシャル成長層を形成する際にドーパントが蒸
発するのを防止することができる。その結果、エピタキ
シャル成長層中の不純物濃度を高い再現性の下で制卸す
ることができる。
Moreover, since epitaxial growth is performed using a single crystal to which a dopant has been added in advance and dissolved in a metal solvent, it is possible to prevent the dopant from evaporating when forming an epitaxially grown layer. As a result, the impurity concentration in the epitaxially grown layer can be controlled with high reproducibility.

因に%前述のようにして製造したGaP緑色発光ダイオ
ードに電流2011Aを流したところ。
Incidentally, when a current of 2011 A was passed through the GaP green light emitting diode manufactured as described above.

発電効率は0.2%を越えた。しかも同一のウニへのみ
ならず成長ロッド間でも高い再現性の下に同様の高発光
効率を得ることができた。これと比較するために、溶媒
金属中に溶解させるamf’jp結晶中に予めドーパン
トを添加していない点以外は1本発明方法と同様の条件
下で、直接金属溶媒中にドーパントを添加してエピタキ
シャル成長を施して製造したGaP発光ダイオードのl
1all!プロフアイル1kl&Iべたところ第3図に
示す結果を得た。同図から明らかなように。
Power generation efficiency exceeded 0.2%. Furthermore, we were able to obtain similar high luminous efficiency not only for the same sea urchin but also for growth rods with high reproducibility. For comparison, the dopant was directly added to the metal solvent under the same conditions as the method of the present invention, except that the dopant was not added in advance to the amf'jp crystal dissolved in the metal solvent. l of GaP light emitting diode manufactured by epitaxial growth
1all! When the profile 1kl&I was completed, the results shown in FIG. 3 were obtained. As is clear from the figure.

N81工ピタキシヤル層の不純物111度は、一定値に
設定することができなかった。また、電流20馬ムを流
した際の発光効率は0.15%以下であり、同一ウニへ
内及び成長ロッド間でも再現性の良い発光効率を得るこ
とができなかった。
The impurity level of 111 degrees in the N81 pitaxial layer could not be set to a constant value. Furthermore, the luminous efficiency when a current of 20 horsem was applied was 0.15% or less, and it was not possible to obtain luminous efficiency with good reproducibility within the same sea urchin or between growth rods.

以上説明した如く1本発明に係る液相エピタキシャル成
長法によれば、エピタキシャル成長ぽ二よって形成され
る薄膜中の不純物濃度を高い精度で、しかも再現性よく
制御することができる等の顕著な効果を奏するものであ
る。
As explained above, the liquid phase epitaxial growth method according to the present invention has remarkable effects such as being able to control the impurity concentration in the thin film formed by epitaxial growth with high precision and good reproducibility. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

m1図は1本発明方法を適用して製造された発光ダイオ
ードの濃度プロファイルを示す特性図、第25!3は、
ドーパントを添加した単結晶のミ闇 り製造された発光ダイオードの濃度プロファイルを示す
特性図である。 出−人代理人 弁理士 鈴 江 武 彦第3図    
  第1図
Figure m1 is a characteristic diagram showing the concentration profile of a light emitting diode manufactured by applying the method of the present invention, and Figure 25!3 is
FIG. 2 is a characteristic diagram showing the concentration profile of a dopant-doped single crystal light-emitting diode manufactured in a dim light. Representative Patent Attorney Takehiko Suzue Figure 3
Figure 1

Claims (1)

【特許請求の範囲】[Claims] 予め所定一度の不純物元素をドーパントとして添加した
化合物半導体の単結晶を溶媒金属中に所定濃度まで溶解
させた後、該溶媒金属を前記化合物半導体からなる半導
体&11=過飽和状態で接触せしめて前記単結晶°を成
長させることを特徴とする液相エビタケシャル成長法。
A single crystal of a compound semiconductor to which a predetermined amount of an impurity element has been added as a dopant is dissolved in a solvent metal to a predetermined concentration, and then the solvent metal is brought into contact with the semiconductor made of the compound semiconductor in a supersaturated state &11 = the single crystal A liquid phase epitaxy growth method characterized by growing °.
JP56110213A 1981-07-15 1981-07-15 Liquid epitaxial growing method Pending JPS5812324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110213A JPS5812324A (en) 1981-07-15 1981-07-15 Liquid epitaxial growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110213A JPS5812324A (en) 1981-07-15 1981-07-15 Liquid epitaxial growing method

Publications (1)

Publication Number Publication Date
JPS5812324A true JPS5812324A (en) 1983-01-24

Family

ID=14529924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110213A Pending JPS5812324A (en) 1981-07-15 1981-07-15 Liquid epitaxial growing method

Country Status (1)

Country Link
JP (1) JPS5812324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134417A (en) * 1983-12-23 1985-07-17 Stanley Electric Co Ltd Liquid phase growth method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134417A (en) * 1983-12-23 1985-07-17 Stanley Electric Co Ltd Liquid phase growth method
JPH0231492B2 (en) * 1983-12-23 1990-07-13 Stanley Electric Co Ltd

Similar Documents

Publication Publication Date Title
US3703671A (en) Electroluminescent device
US4904618A (en) Process for doping crystals of wide band gap semiconductors
US3676228A (en) Method of making a p-n junction device
KR0135610B1 (en) Epitaxial wafer
JPH055191B2 (en)
JPS5812324A (en) Liquid epitaxial growing method
US3619304A (en) Method of manufacturing gallium phosphide electro luminescent diodes
US5751026A (en) Epitaxial wafer of gallium arsenide phosphide
EP0516162A1 (en) Semiconductor light emitting device
US3934260A (en) Red light-emitting gallium phosphide device
US3669767A (en) Doping profile for gap diodes improved electroluminescent efficiency
US3959036A (en) Method for the production of a germanium doped gas contact layer
JPH0897466A (en) Light emitting device
JPH08139358A (en) Epitaxial wafer
JP2001226200A (en) LOW RESISTANCE p-TYPE SINGLE CRYSTAL ZnS AND ITS PRODUCING METHOD
JPS61216316A (en) Manufacture of semiconductor device
DE2030368C3 (en) PNPN semiconductor element
JPS63213378A (en) Manufacture of semiconductor light emitting element
JPS61276384A (en) Blue light emitting element
JPS584833B2 (en) Method for manufacturing G↓aA↓s light emitting diode
JPH0712093B2 (en) Light emitting semiconductor device substrate and manufacturing method thereof
JP2804093B2 (en) Optical semiconductor device
CN113690374A (en) Perovskite thin film homojunction micro-nano PN junction processing method based on controllable ion redistribution
JPH0476913A (en) Manufacture of iii-v compound semiconductor element
JPH0351674B2 (en)