JPH0476913A - Manufacture of iii-v compound semiconductor element - Google Patents

Manufacture of iii-v compound semiconductor element

Info

Publication number
JPH0476913A
JPH0476913A JP19017390A JP19017390A JPH0476913A JP H0476913 A JPH0476913 A JP H0476913A JP 19017390 A JP19017390 A JP 19017390A JP 19017390 A JP19017390 A JP 19017390A JP H0476913 A JPH0476913 A JP H0476913A
Authority
JP
Japan
Prior art keywords
iii
compound semiconductor
growing
type
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19017390A
Other languages
Japanese (ja)
Inventor
Yujiro Ueki
植木 勇次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19017390A priority Critical patent/JPH0476913A/en
Publication of JPH0476913A publication Critical patent/JPH0476913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the dispersion in luminance in a III-V compound semicon ductor element having the hetrojunction by depositing a III-V three-component compound on a III-V compound semiconductor substrate whose carrier density is kept at 2.0-3.5 X10<19> atom/cm<3> by liquid-base growing. CONSTITUTION:The carrier concentration of a III-V compound semiconductor substrate for epitaxially growing a group III-V compound is limited to 2.0-3.5 X10<19> atom/cm<3>. A GaAs substrate 1 wherein the specified carrier concentra tion is kept is inputted into a reaction tube. After gas substitution, the tempera ture is increased to 900-1,000 deg.C. This state is maintained for 30-120 minutes. A growing source is uniformly dissolved. Then, the temperature is decreased at the constant speed. Growing solution is brought into contact with the sub strate 1 in the order of a (p) type or an (n) type. Liquid-phase epitaxial growing is performed, and a (p)-type GaAlAs layer 2 and an (n)-type GaAlAs layer 3 are deposited. A pellet for a III-V compound semiconductor light emitting element is completed after specified steps. Thus, the dispersion of luminance is decreased to about a half. The element can be utilized in the dot matrix which requires the constant luminance.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は■−V族化合物例えばGaAQAsの液相エピ
タキシャル(Ep i t ax i aQ)成長に使
用するGaAs基板に係わり、特にそのキアリア(Ca
 r r i ea)濃度に好適なものである。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Application Field) The present invention relates to a GaAs substrate used for liquid phase epitaxial (EpitaxiaQ) growth of -V group compounds such as GaAQAs; Especially that Chiaria (Ca
r r i ea) suitable for concentration.

(従来の技術) 最近はへテロ(Hetero)接合を備えた■−■族化
合物半導体素子発光素子が多用されているが、シングル
へテロ(SingQe)構造のGaAQAsは、不純物
としてZn亜鉛をドープ(Dope)してキャリア濃度
が1〜4X1019Atom/cm ”のGaAs基板
i: m −V族化合物例えばGaAQAsを液相エピ
タキシャル成長させた後、電極形成及びダイシング(D
icing)工程を経てベレット(PeQQet)が製
造されているのが一般的である。
(Prior art) Recently, ■-■ group compound semiconductor light-emitting devices equipped with heterojunctions have been widely used, but GaAQAs with a single heterojunction (SingQe) structure is doped with Zn zinc as an impurity ( After liquid phase epitaxial growth of a m-V group compound such as GaAQAs, electrode formation and dicing (D
Generally, pellets (PeQQet) are manufactured through the icing process.

このGaAQAsは第1図に明らかなようにGaAs基
板1にはp型GaAQAs層2、及びp型クラッド層n
型GaAlAs層3を液相エピタキシャル成長法により
堆積して造られる。この各層における不純物濃度及び厚
さは機種により違っているものの第2図に示すようにp
型GaA−QAsクラッド層2ではp型不純物として亜
鉛(Zn)を5〜7×1017AtoIlc113含有
して厚さが20〜25μmに抑えられる。これに対して
ここに積重ねるn型GaAQAs層2は濃度2×10 
〜3X1018Atom/cm3程度に維持され、厚さ
としては30〜40μmに形成するのが一般的である。
As shown in FIG. 1, this GaAQAs has a p-type GaAQAs layer 2 and a p-type cladding layer n
A type GaAlAs layer 3 is deposited by liquid phase epitaxial growth. The impurity concentration and thickness of each layer differ depending on the model, but as shown in Figure 2,
The GaA-QAs type cladding layer 2 contains zinc (Zn) as a p-type impurity in an amount of 5 to 7×10 17 AtoIlc 113 to suppress the thickness to 20 to 25 μm. On the other hand, the n-type GaAQAs layer 2 stacked here has a concentration of 2×10
It is generally maintained at about 3×10 18 Atom/cm 3 and formed to have a thickness of 30 to 40 μm.

(発明が解決しようとする課題) このようなヘテロ接合を備えたm−V族化合物半導体素
子では当然一定の範囲内に収まった輝度が要求されるが
、第3図に示すようにバラツキRが大きい欠点があり、
それは液相エピタキシャルプロセス(Process)
に起因すると考えられていた。
(Problems to be Solved by the Invention) In an m-V group compound semiconductor device equipped with such a heterojunction, brightness is naturally required to be within a certain range, but as shown in FIG. There are major drawbacks,
It is a liquid phase epitaxial process.
It was thought to be caused by.

本発明はこのような事情により成されたもので、特に、
ヘテロ接合を備えた■−v族化合物半導体素子における
輝度のバラツキを抑制することを目的とするものである
The present invention was made under these circumstances, and in particular,
The purpose of this invention is to suppress variations in brightness in a ■-v group compound semiconductor element having a heterojunction.

[発明の構成] (課題を解決するための手段) キャリア濃度を2.0〜3. ” X 1019Ato
m/C■3に保持した■−V族化合物半導体基板に■−
■族3元化合物を液相成長により堆積してヘテロ接合を
形成することを特徴とする■−v族化合物半導体素子の
製造方法 (作用) 本発明者はへテロ接合を備えた■−V族化合物半導体素
子における輝度のバラツキを調査したところ、■液相エ
ピタキシャルプロセスに起因するものと、■■−v族化
合物半導体基板のキャリア濃度特性に原因があるものと
に大別される事実を見出だし、これに基ずいて本発明は
完成したものである。その背景としては、■=v族化合
物半導体基板内におけるキャリア濃度、比抵抗、結晶欠
陥及び移動度と輝度との相関関係を調べたところ結晶欠
陥については全く相関かなく、移動度と比抵抗について
はほぼ相関関係が弱いのに対して。
[Structure of the invention] (Means for solving the problem) The carrier concentration is set to 2.0 to 3. ”X 1019Ato
■-V group compound semiconductor substrate held at m/C■3■-
■Method for manufacturing a ■-V group compound semiconductor device characterized by depositing a group ternary compound by liquid phase growth to form a heterojunction (function) When we investigated the variations in brightness in compound semiconductor devices, we found that they can be roughly divided into two types: 1) those caused by the liquid phase epitaxial process, and 2) those caused by the carrier concentration characteristics of the -V group compound semiconductor substrate. Based on this, the present invention has been completed. The background to this is that when we investigated the correlation between carrier concentration, specific resistance, crystal defects, mobility, and brightness in the ■ = V group compound semiconductor substrate, there was no correlation at all for crystal defects, and that for mobility and specific resistance. whereas the correlation is almost weak.

■−■族化合物半導体基板内におけるキャリア濃度に関
しては判然とした相関関係があることが判明した。この
調査の対象になったのは■−v族化合物半導体基板即ち
GaAs基板であり、不純物としては亜鉛を拡散したも
のである。
It has been found that there is a clear correlation with respect to the carrier concentration in the ■-■ group compound semiconductor substrate. The object of this investigation was a ■-v group compound semiconductor substrate, ie, a GaAs substrate, in which zinc was diffused as an impurity.

即ち、前記不純物である亜鉛の添加量を1019Ato
a+/cTA3オーダ(Order)で増加した場合輝
度かりニヤー(Linear)に増加するものと判断し
ていたところ、案に相違して途中から輝度が飽和して逆
に減少することが、縦軸に相対輝度、横軸に不純物濃度
を採った第3図に明瞭に示されている。勿論輝度に関与
する液相エピタキシャルプロセスにより堆積する厚さに
よる要因を一定に固定して第3図の曲線が得られており
、キヤリア濃度が2. 〜3.   X 1019At
ota/cm ”の範囲内では極めて一定の相対輝度が
得られていることがはっきりしている。
That is, the added amount of zinc, which is the impurity, is 1019Ato
We had assumed that the brightness would increase linearly when increasing on the order of a+/cTA3, but it turned out that the brightness saturates midway through the plan and actually decreases on the vertical axis. The relative brightness is clearly shown in FIG. 3, where the horizontal axis represents the impurity concentration. Of course, the curve shown in FIG. 3 was obtained by fixing the factor of the thickness deposited by the liquid phase epitaxial process, which is related to brightness, to a constant value, and the carrier concentration was 2. ~3. X 1019At
It is clear that a very constant relative brightness is obtained within the range of .ota/cm.sup.2".

しかも、■−■族化合物半導体からなりシーングルへテ
ロ接合を形成した発光素子の複数個をドツトマトリック
ス(Dot  Matrix)状に配置して利用するこ
とが多いので、一定の相対輝度を示す製品を需要者から
強く求められている。この観点から前を己のキャリア濃
度を備えた■−v族化合物半導体基板に■−v族化合物
を液相エピタキシャル成長させる製造方法が極めて実用
的なことが分った。本発明はこのような知見を基に完成
したもので、■−v族化合物を液相エピタキシャル成長
させる■−V族化合物半導体基板のキャリア濃度を2.
 〜3.   X 10  AtoIIlom 3i:
限定するものである。
Moreover, since multiple light-emitting elements made of ■-■ group compound semiconductors and forming scene group heterojunctions are often arranged in a dot matrix, there is a demand for products that exhibit a constant relative brightness. strongly demanded by people. From this point of view, it has been found that the manufacturing method of liquid-phase epitaxial growth of a ■-V group compound on a ■-V group compound semiconductor substrate having its own carrier concentration is extremely practical. The present invention was completed based on such knowledge, and the carrier concentration of the ■-V group compound semiconductor substrate on which the ■-V group compound is grown by liquid phase epitaxial growth is 2.
~3. X 10 AtoIIlom 3i:
It is limited.

なおn型■−■族化合物液相エピタキシャル成長層即ち
Zn含何GaAlAs層の厚さは20〜25μmでキャ
リア濃度は約5〜7 X 1. O17AtoIl/c
rA3に維持し、n型■−V族化合物液相エピタキシャ
ル成長層即ちTe含有GaAlAs層の厚さは30〜4
0μmでキャリア濃度は2X 1017〜3×1018
^to11/cα3程度を保持する。
The thickness of the n-type ■-■ group compound liquid phase epitaxially grown layer, that is, the Zn-containing GaAlAs layer is 20 to 25 μm, and the carrier concentration is approximately 5 to 7×1. O17AtoIl/c
rA3, and the thickness of the n-type ■-V group compound liquid phase epitaxial growth layer, that is, the Te-containing GaAlAs layer is 30 to 4.
At 0μm, the carrier concentration is 2X 1017 to 3x1018
Maintain approximately ^to11/cα3.

(実施例) 本発明に係わる実施例即ち■−v族化合物半導体発光素
子を以下に示すが、その構造は第1図のペレット構造と
同しくm−v族化合物例えばGaAS基板1に■−V族
化合物液相エピタキシャル成長層例えばp型GaAlA
s層2とn型GaAQAs層3を堆積してシングルへテ
ロ接合からなるものである。この実施例における各層の
キャリア濃度や厚さを以下の表1にまとめた。
(Example) An example of the present invention, that is, a ■-v group compound semiconductor light emitting device is shown below, and its structure is the same as the pellet structure shown in FIG. Group compound liquid phase epitaxial growth layer such as p-type GaAlA
A single heterojunction is formed by depositing an s layer 2 and an n-type GaAQAs layer 3. The carrier concentration and thickness of each layer in this example are summarized in Table 1 below.

(以下余白) このような実施例によりシングルへテロ接合を形成した
ペレットにより■−V族化合物半導体発光素子を形成し
たところ、輝度の揃った製品が得られドツトマトリック
スに利用することが可能となった。
(Left below) When a ■-V group compound semiconductor light-emitting device was formed using pellets in which a single heterojunction was formed in this example, a product with uniform brightness was obtained and it became possible to use it in a dot matrix. Ta.

前記実施例を行うのには所定のキャリア濃度を維持した
GaAs基板1を反応管に入れてガス置換(必要に応じ
て真空引きを行う)してから900℃〜1000℃に昇
温し30〜120分間保持する。これにより反応管と一
体に設置した成長溶液内に充填した成長ソース(Sou
rce)を均一に溶解し、引続いて一定速度0.3〜2
.0℃/分で降温させながらGaAs基板1にp型また
はn型の順に成長溶液をGaAs基板1に接触させて液
相エピタキシャル成長を行ってp型GaAQAs層2と
n型GaAQAs層3を堆積後、必要な電極形成工程や
ダイシング工程を経てm−v族化合物半導体発光素子用
ベレットを完成する。
To carry out the above example, a GaAs substrate 1 with a predetermined carrier concentration maintained is placed in a reaction tube, gas is replaced (evacuated if necessary), the temperature is raised to 900°C to 1000°C, and the temperature is raised to 30°C to 1000°C. Hold for 120 minutes. As a result, the growth source (Sou) filled in the growth solution installed integrally with the reaction tube.
rce) and then at a constant rate of 0.3-2
.. After depositing a p-type GaAQAs layer 2 and an n-type GaAQAs layer 3 by performing liquid phase epitaxial growth by bringing p-type or n-type growth solutions into contact with the GaAs substrate 1 in this order while lowering the temperature at 0° C./min, A pellet for an m-v group compound semiconductor light emitting device is completed through necessary electrode forming steps and dicing steps.

[発明の効果] このように本発明方法による■−v族化合物半導体素子
の製造方法では第4図aに示した従来技術と相違して第
4図すに明らかにしたように輝度のバラツキが約半分程
度に縮小したので、一定の輝度が必要なトッドマトリッ
クスに利用することが可能になった。
[Effects of the Invention] As described above, the method for manufacturing a ■-V group compound semiconductor device according to the method of the present invention is different from the prior art shown in FIG. 4a, and as shown in FIG. Since it has been reduced to about half, it has become possible to use it for Todd matrices that require constant brightness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の■−v族化合物半導体発光素子の要部を
示す断面図、第2図は従来の■−v族化合物半導体発光
素子の各部の不純物濃度と厚さの関係を示す図、第3図
は本発明に係わる■−V族化合物半導体発光素子が利用
する■−v族化合物基板のキャリア濃度と相対輝度の関
係を示す曲線図、第4図aSbはm−V族化合物半導体
発光素子により得られる輝度のバラツキを従来技術と本
発明と比較した図である。 1:III−V族化合物半導体基板、 2 : III−V族化合物半導体p型GaAQAs層
、3 : DI−V族化合物半導体n型GaAQAs層
。 代理人  弁理士  大 胡 典 夫 第 図 一繁 X3  (1,I”) 第 図
FIG. 1 is a cross-sectional view showing the main parts of a conventional ■-V group compound semiconductor light-emitting device, and FIG. 2 is a diagram showing the relationship between impurity concentration and thickness of each part of the conventional ■-V group compound semiconductor light-emitting device. Figure 3 is a curve diagram showing the relationship between the carrier concentration and relative brightness of the ■-V group compound substrate used in the ■-V group compound semiconductor light emitting device according to the present invention, and Figure 4 aSb is the m-V group compound semiconductor light emitting device. FIG. 3 is a diagram comparing the variation in brightness obtained by the elements with the prior art and the present invention. 1: III-V group compound semiconductor substrate, 2: III-V group compound semiconductor p-type GaAQAs layer, 3: DI-V group compound semiconductor n-type GaAQAs layer. Agent Patent Attorney Nori Ogo Figure 1 X3 (1, I”) Figure

Claims (1)

【特許請求の範囲】[Claims] キャリア濃度を2.^0〜3.^5×10^1^9At
om/cm^3に保持したIII−V族化合物半導体基板
にIII−V族3元化合物を液相成長により堆積してヘテ
ロ接合を形成することを特徴とするIII−V族化合物半
導体素子の製造方法
The carrier concentration was set to 2. ^0~3. ^5×10^1^9At
Manufacture of a III-V compound semiconductor device characterized by depositing a III-V ternary compound by liquid phase growth on a III-V compound semiconductor substrate held at 0m/cm^3 to form a heterojunction. Method
JP19017390A 1990-07-18 1990-07-18 Manufacture of iii-v compound semiconductor element Pending JPH0476913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19017390A JPH0476913A (en) 1990-07-18 1990-07-18 Manufacture of iii-v compound semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19017390A JPH0476913A (en) 1990-07-18 1990-07-18 Manufacture of iii-v compound semiconductor element

Publications (1)

Publication Number Publication Date
JPH0476913A true JPH0476913A (en) 1992-03-11

Family

ID=16253657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19017390A Pending JPH0476913A (en) 1990-07-18 1990-07-18 Manufacture of iii-v compound semiconductor element

Country Status (1)

Country Link
JP (1) JPH0476913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001577T5 (en) 2006-06-27 2009-05-07 Mitsubishi Electric Corp. Elevator group control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001577T5 (en) 2006-06-27 2009-05-07 Mitsubishi Electric Corp. Elevator group control apparatus

Similar Documents

Publication Publication Date Title
US4960728A (en) Homogenization anneal of II-VI compounds
JP2010225870A (en) Semiconductor element
JP3326704B2 (en) Method of manufacturing III / V compound semiconductor device
JPH08335715A (en) Epitaxial wafer and its manufacture
US4268327A (en) Method for growing semiconductor epitaxial layers
JPH0476913A (en) Manufacture of iii-v compound semiconductor element
JPH02260628A (en) Manufacture of semiconductor device
US3619304A (en) Method of manufacturing gallium phosphide electro luminescent diodes
JPH09205101A (en) Production method for bipolar transistor
JP4211897B2 (en) Liquid phase epitaxial growth method
JPS63213378A (en) Manufacture of semiconductor light emitting element
JP3057503B2 (en) Compound semiconductor growth method
JPH0563235A (en) Manufacture of semiconductor element
JP3120436B2 (en) Method of manufacturing epitaxial crystal for semiconductor device
JPH0442898A (en) Crystal growth of compound semiconductor
JP3097587B2 (en) Epitaxial wafer for light emitting semiconductor device
JP2853292B2 (en) Method and apparatus for liquid phase epitaxial growth of semiconductor crystal
JP3106526B2 (en) Compound semiconductor growth method
JPS5812324A (en) Liquid epitaxial growing method
JPS60126876A (en) Light-emitting element
JPS6291490A (en) Liquid-phase epitaxial growth method for thin semiconductor film
JPS63190329A (en) Thin film crystal growth method
JP2004241676A (en) Method of manufacturing compound semiconductor, semiconductor material, and semiconductor device
JPS6027687A (en) Method for growing compound semiconductor single crystal of groups iii[v
JPH11251329A (en) Semiconductor wafer and manufacture thereof