JPS58123068A - Absorption type cold and hot water machine - Google Patents

Absorption type cold and hot water machine

Info

Publication number
JPS58123068A
JPS58123068A JP666182A JP666182A JPS58123068A JP S58123068 A JPS58123068 A JP S58123068A JP 666182 A JP666182 A JP 666182A JP 666182 A JP666182 A JP 666182A JP S58123068 A JPS58123068 A JP S58123068A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water
load
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP666182A
Other languages
Japanese (ja)
Other versions
JPH0355748B2 (en
Inventor
洋司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP666182A priority Critical patent/JPS58123068A/en
Publication of JPS58123068A publication Critical patent/JPS58123068A/en
Publication of JPH0355748B2 publication Critical patent/JPH0355748B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 不発明は吸収式冷温水機に圓し、特に吸収式冷凍機の1
&収−および畿−−で温水【加熱して取出し、磯発器で
冷水を冷却して壜出すようにした吸収式冷温水機に関す
る。
[Detailed Description of the Invention] The invention relates to an absorption type water chiller/heater, and particularly to an absorption type chiller/heater.
This relates to an absorption type water chiller/heater that heats and takes out hot water in the water storage and water supply, and then cools and bottles the cold water with a rock generator.

従来では、温水負荷に一定流閂の温水ケ与えるように運
転しているので、温水負荷が軽減されると、前記温水負
性の入口および出口間における温度差が小となる。その
ため温水負荷に与えるための温水温度を一定に制御しよ
うとすると、温水負荷の減少に応じて温水負荷から吸収
式冷凍機にもとる温水の温度が尚くなり、それによって
吸収器の温度が上昇するので、冷水側の効率が着しく低
下する。さらに吸収式冷凍機に戻される温水の温度會一
定に制御すると、温水負荷に与えるための温度が低下し
、したがって温水の利用価値が下がってしまう。
Conventionally, the system is operated so as to supply a constant flow of hot water to the hot water load, so when the hot water load is reduced, the temperature difference between the negative hot water inlet and outlet becomes small. Therefore, if you try to control the hot water temperature given to the hot water load at a constant level, the temperature of the hot water taken from the hot water load to the absorption chiller will increase as the hot water load decreases, which will cause the absorber temperature to rise. As a result, the efficiency of the cold water side decreases considerably. Furthermore, if the temperature of the hot water returned to the absorption chiller is controlled to be constant, the temperature applied to the hot water load will decrease, and the utility value of the hot water will therefore decrease.

本発明は上述の技術的課賠を解決し、温水の流量音制御
することにより冷水側の効率t’ai持するとともに温
水のオU用価値の低下全防止した吸収式冷温水機全提供
することを目的とする。
The present invention solves the above-mentioned technical problems and provides an absorption type water chiller/heater that maintains the efficiency of cold water by controlling the flow rate sound of hot water and completely prevents the deterioration of the utility value of hot water. The purpose is to

以下、図面によって本発明の実施例を貌明する。Embodiments of the present invention will be explained below with reference to the drawings.

纂1図は本発明の一実施例の系統図である。このV&収
式冷温水機においては、二重効用吸収式冷凍慎lがヒー
トポンプとして機能しており、蒸発器2で冷却でれた冷
水が冷水循環回路11を介して/’&房憬15に与えら
れ、淑収器3および凝縮器4で加熱され友温水が温水循
環回路16を介して暖房機20に与えられる。
Figure 1 is a system diagram of an embodiment of the present invention. In this V& receptacle type water chiller/heater, the dual-effect absorption type chiller/heater functions as a heat pump, and the cold water cooled by the evaporator 2 is passed through the chilled water circulation circuit 11 to the /'& chamber 15. The heated water is heated in the extractor 3 and the condenser 4 and is supplied to the heater 20 via the hot water circulation circuit 16.

二][効用吸収式冷凍機lは、蒸発器2、吸収器3、高
温り生動5、低温再生器6、凝縮器番および熱交換器7
.8などから構成される。高温再生器5には、流電制御
弁9を備える管路loを介してたとえば都市ガスなどの
燃料が供給され、その燃焼熱が二重効用吸収式冷凍fa
11の態動熱源とされる。
2] [Effective absorption refrigerating machine l consists of an evaporator 2, an absorber 3, a high temperature generator 5, a low temperature regenerator 6, a condenser number and a heat exchanger 7.
.. It consists of 8 etc. Fuel, such as city gas, is supplied to the high temperature regenerator 5 via a pipe line lo equipped with a current control valve 9, and the combustion heat is transferred to the double-effect absorption refrigeration fa.
It is said to be a source of 11 kinetic heat.

冷水循環回路11において、各冷房機15の入口は冷水
供給ヘッダ13に共通に接続され、また各冷房4115
の出口は冷水択シヘッダ14に共通に接続される。冷水
戻りヘッダ″14と蒸発@2’内に設けられたコイル2
aの一端部とは、ポンプ12を備える菅路11mによっ
て連結されており、コイル2aの他熾部と冷水供給ヘッ
ダ13とは管16tibによって連結される。このよう
な冷水循環回路llにおいて、コイル2aで冷却された
冷水は、冷水供給ヘッダ13から谷冷房愼15に供給さ
れて放冷し、放冷後の水はポンプ12によってコイル2
&に循環して冷却される。
In the chilled water circulation circuit 11, the inlet of each air conditioner 15 is commonly connected to the chilled water supply header 13, and each air conditioner 4115 is connected in common to the chilled water supply header 13.
The outlets of the two are commonly connected to the cold water selector header 14. Coil 2 installed in cold water return header ″14 and evaporator @2′
The coil 2a is connected to one end of the coil 2a by a pipe 11m that includes the pump 12, and the other end of the coil 2a is connected to the cold water supply header 13 by a pipe 16tib. In such a cold water circulation circuit 11, the cold water cooled by the coil 2a is supplied from the cold water supply header 13 to the valley cooling chamber 15 and left to cool, and the water after being cooled is sent to the coil 2 by the pump 12.
& cooled by circulation.

温水o/I塊回路16において、各暖房機2oの人口は
温水供給ヘッダ18に共通に接続され、また各暖房機2
0の出口は温水戻りヘッダ19に共通に接続される。温
水FC#)ヘッダ19は、ポンプ17を備える管路16
ai介して、吸収器3内のコイル3alC接続される。
In the hot water o/I bulk circuit 16, the population of each heater 2o is commonly connected to the hot water supply header 18, and each heater 2o is connected in common to the hot water supply header 18.
0 outlets are commonly connected to the hot water return header 19. The hot water FC#) header 19 connects the pipe line 16 with the pump 17.
The coil 3alC in the absorber 3 is connected through the ai.

このコイル3aはに:細動4内(7):2イル4a[接
続されており、コイル4aは管路16に+’i介して温
水供給ヘッダ18に接続される。温水m塊回路16にお
いては、コイル3a、4aで加熱された温水が温水供給
ヘッダ18から各暖房機20に供給されて放熱し、放熱
佐の水は温水戻りヘッダ19からポンプ17によってコ
イル31LK循環される。
This coil 3a is connected to: in the fibrillation 4 (7): 2 coil 4a, and the coil 4a is connected to the hot water supply header 18 via the conduit 16 +'i. In the hot water m-block circuit 16, hot water heated by the coils 3a and 4a is supplied from the hot water supply header 18 to each heater 20 and radiates heat, and water from the heat radiator is circulated through the coil 31LK from the hot water return header 19 by the pump 17. be done.

温水O/i塊回路16におけるV貼16aの途中にtr
iバイバx管M40が接続されており、このバイパス1
路40と’111M16aとが三方弁25’i介して接
続されている。バイパス管路4oは、温水模擬負荷とし
ての熱交換器28内に設けられており、熱交換器28に
は冷却塔29およびポンプ30t−順に備える冷却水循
環11略41が接続される。この冷却水循環回路41に
お−ては、熱交換器28内でバイパス管路40から放熱
された熱を冷却塔29において放熱する〇 冷水循環回路11において、コイル2aと冷却水供給ヘ
ッダ13との間の管路llbの途中には、q水出口m[
検出巻35が設けられ、この冷水出口温度検出器35に
よる検出信号は冷水温度調節器36に人力される。ま友
温水循環回路16において電路16aの途中にはjlg
lの温水戻り温度検出522が設けられ、とのIIlの
温水戻シ温度検出器22による検出信号は温水温[l1
1M節器37K人力される。さらに、高温再生tit5
には温度検惰器31が設けられ、この温度検出益31に
よる検出信号は丹生動臘度調節器38に入力される。各
温度調節器36,37.38からの信号は、偏号遇択勧
32に与えられておシ、この慎号選択器32は各温度′
FAt@器36,37.38からの伯号奮辿択し、その
選択給米に基づいて菅路lOにおける流量制御弁9の開
度全調節する。
In the middle of the V paste 16a in the hot water O/I block circuit 16, there is a tr
An i-viber x-pipe M40 is connected, and this bypass 1
The passage 40 and '111M16a are connected via a three-way valve 25'i. The bypass pipe line 4o is provided in a heat exchanger 28 as a hot water simulating load, and the heat exchanger 28 is connected to a cooling water circulation 11 approximately 41 provided in order of a cooling tower 29 and a pump 30t. In this cooling water circulation circuit 41, the heat radiated from the bypass pipe 40 in the heat exchanger 28 is radiated in the cooling tower 29. In the middle of the pipe llb between, there is a q water outlet m[
A detection winding 35 is provided, and a detection signal from this cold water outlet temperature detector 35 is manually inputted to a cold water temperature regulator 36. In the Mayu hot water circulation circuit 16, there is a jlg in the middle of the electric line 16a.
A hot water return temperature detector 522 is provided, and the detection signal from the hot water return temperature detector 22 is determined to be the hot water temperature [l1
It takes 1M and 37K manpower. Furthermore, high temperature playback tit5
A temperature sensor 31 is provided, and a detection signal from this temperature detection gain 31 is inputted to a temperature regulator 38 . The signals from each temperature controller 36, 37, 38 are given to a partial signal selector 32, which
The FAT @ machine 36, 37, and 38 are carefully selected, and the opening of the flow rate control valve 9 at the Kanro IO is fully adjusted based on the selected rice supply.

冷水温度調節器36においては、第2図+11に示すよ
うに、冷水出口温度が上昇するのに応じてたとえは比例
的に出力信号が大とされる。また冷水出口温度の設置値
はたとえは90に設定され、9±lOの範囲で比例帯が
設定される。温水偏度調節器37においては、第2図(
2)で示すように温水戻り温度が上昇するのに応じて出
力信号がたとえは比例的に大とされる。この温水戻り温
度の設置値はたとえば390に設定され、比例帯は設定
値±20に運ばれている。さらに再生器温度−節器38
1Cおいては、第2図(3)で示すように再生器の温度
が低下するにつれて出力信号かたとえは比例的に大とさ
れる。再生器温度の設定値はたとえば15.50に選ば
れており、比IIl帯は設置値±50の範囲に辿はれて
いる。
In the chilled water temperature regulator 36, as shown in FIG. 2+11, the output signal is increased proportionally as the chilled water outlet temperature rises. Further, the set value of the cold water outlet temperature is set to, for example, 90, and a proportional band is set in the range of 9±1O. In the hot water eccentricity regulator 37, as shown in FIG.
As shown in 2), the output signal increases proportionally as the hot water return temperature increases. The set value of this hot water return temperature is set to 390, for example, and the proportional band is carried to the set value ±20. In addition, regenerator temperature - moderator 38
At 1C, as the temperature of the regenerator decreases, the output signal increases proportionally, as shown in FIG. 2(3). The set value of the regenerator temperature is selected to be, for example, 15.50, and the ratio IIl band is traced within the range of ±50 of the set value.

1!!号洒択養32は第2図(4)で示すようにハイセ
レクタ32aおよびローセレクタ32b’に1jqえる
1! ! As shown in FIG. 2(4), the number selection 32 is divided into a high selector 32a and a low selector 32b'.

ハイセレクタ32aにおいては、a嵐論iil′I器3
6゜37からの1−号のうち燃焼量が大となる万の信号
會辿択する。この選択された信号は次のローセレクタ3
21)において再生S温tpjtj!J赫38からの信
号と比軟され、ここで燃焼量が小となる方の信号?選択
して、その信号tt’を焼制御信号として出力し、それ
によって流量制御弁9が制御される。
In the high selector 32a, a storm logic iil'I device 3
Among No. 1- from 6°37, the ten thousand signal station with the largest combustion amount is selected. This selected signal is passed to the next low selector 3.
In 21), the reproduction S temperature tpjtj! Is it a signal that is softer compared to the signal from J-38 and has a smaller combustion amount? The selected signal tt' is outputted as a firing control signal, and the flow rate control valve 9 is controlled thereby.

すなわち尚温再生祷5における燃焼量の制御は、++4
温丹生梅5の設足値たとえば155°0よりも充分に低
い場合には、冷水側および温水餉の各燃焼簀*賞の大な
る方の信号によって制御される。また冷水側または温水
−からの燃焼要求量が大きい一合でも17h温丹生!!
7iI5の温度が155°Cを超える鍋い状態にめり、
かり再生動温度調節器38の出力@号の万が前記各燃焼
要求量に比べて小さけれは、仮置制御弁9の一度は再生
器温皺幽節器38からの1g号によって制御される。す
なわち、信号返択器32は燃焼量のリミッタとして動作
することになる。
In other words, the control of the combustion amount in still temperature regeneration step 5 is ++4
When the setting value of the warm water level 5 is sufficiently lower than, for example, 155°0, it is controlled by the signal of the greater of the cold water side and warm water side burner *award. In addition, even if the amount of combustion required from the cold water side or hot water is large, it can be heated for 17 hours! !
The temperature of 7iI5 reaches a hot pot state exceeding 155°C,
If the output of the regenerative dynamic temperature controller 38 is smaller than the required combustion amount, the temporary control valve 9 is controlled by the output of the regenerator temperature controller 38. In other words, the signal returner 32 operates as a combustion amount limiter.

第2図ill〜第2図(4)會再び参照して、冷水温度
vI4節器36からは径照符aで示す1♂号、温水温度
調節器37からは疹照符すでボす信号、丹生命温度調w
J器38からQよe前行Cで示す信号がそれぞれ信号選
択器32に人力されている状態全想Wする。このような
状態は冷水負荷主体の運転状塾でるる。このようにする
と、信号選択器32のハイセレクタ32aにおいては、
出力信号a、bのうち大なる方の信号a((選択し、ロ
ーセレクタ32bにおいてa侶+5a、0のうち小なる
方の信号a全選択する。したがって信号選択器32がら
は(8号aが選択されて出力され、この信号aによって
流量制御弁9の一度が制御てれる。なお流量制御弁9は
出力信号が20mAで全りであり、4mムで全閉となる
Referring again to Fig. 2 ill to Fig. 2 (4), the cold water temperature vI4 controller 36 sends a 1♡ signal indicated by the diameter reference a, and the hot water temperature regulator 37 sends a signal indicating the reference number a. , Tansei Temperature Control lol
Let us imagine a state in which the signals shown in the preceding row C from the J device 38 are input to the signal selector 32, respectively. In such a situation, the driving condition of the chilled water load will be determined. In this way, in the high selector 32a of the signal selector 32,
The signal a(((()) which is the larger of the output signals a and b is selected, and the signal a(((No. is selected and output, and the flow control valve 9 is controlled once by this signal a.The flow control valve 9 is fully closed when the output signal is 20 mA, and is fully closed when the output signal is 4 mm.

このように信号選択器32によって各温度叱細器36,
37.38からのイg号を選択して可し1制御弁9の翔
FJL?f″調節することにより、冷水負値生体および
温水負荷生体の制御の切保が自動的にかつ連続的に行な
われる。そのため谷貝向が裏側したとしても七の1I4
tJに対して安定して充分に対応することかでさる。し
かも高温再生器5の温度を検出して燃焼量の上@量制御
するので、高温再生−5における燃焼it−はぼ最大能
力まで制御することができる。さらに運転開始時におい
て高温再生−5内の水温が低い場合には、通常の冷凍サ
イクルの定格点までに燃焼させることができるので、暖
機時間を短くすることが可能となる。
In this way, each temperature reducer 36,
37. Is it OK to select Ig from 38? 1 control valve 9 Sho FJL? By adjusting f'', the control of the cold water negative value living body and the hot water load living body is automatically and continuously performed.Therefore, even if Tanigai Mukai is on the other side, the 7th 1I4
The key is whether it can respond stably and sufficiently to tJ. Moreover, since the temperature of the high-temperature regenerator 5 is detected to control the combustion amount, the combustion it- in the high-temperature regenerator 5 can be controlled to almost the maximum capacity. Furthermore, if the water temperature in the high-temperature regeneration-5 is low at the start of operation, combustion can be achieved up to the rated point of the normal refrigeration cycle, making it possible to shorten the warm-up time.

温水循環回路16における管路16aの途中には、第2
の温水戻り温度検出器34が設けられ、この温水戻り温
度検出@3Aによる検出信号は温度差調節器23に入力
される。また管路16m)の途中には、温水送り温度検
出器24が設けられており、この温水送り温度検出器2
4による検出値は温度差調節器23に与えられる。さら
に管路16aの途中には温水流量制御弁21が設けられ
ており、この温水流量制御弁21のgjA&は温度差調
節器ム23で制御されるoしかも温度差y4鋤巻23は
温水戻り温度検出器34と温水送り温度検出器24との
各検出温度差が一定となるように温水流量制御弁21の
開度timaする。
In the middle of the pipe line 16a in the hot water circulation circuit 16, there is a second
A hot water return temperature detector 34 is provided, and a detection signal from this hot water return temperature detection @3A is input to the temperature difference regulator 23. In addition, a hot water supply temperature detector 24 is provided in the middle of the pipe line 16m.
4 is given to the temperature difference regulator 23. Furthermore, a hot water flow rate control valve 21 is provided in the middle of the pipe 16a, and gjA & of this hot water flow rate control valve 21 is controlled by a temperature difference regulator 23. The opening degree of the hot water flow rate control valve 21 is adjusted so that the detected temperature difference between the detector 34 and the hot water feed temperature detector 24 is constant.

第3図t−奈照して、たとえば温度差調節器23におい
て、温度差Δt=40に設足し、比?11佑を20とす
る。しかも流量制御弁9會温水尿り癲展で制御すること
とし、その比例伶(z20にしたとすれば、温水負荷に
対して温水送り温には褐3凶fi+の直紡ムで示され、
温水戻り温度は圓#Bで示される。また温水frL、警
は第3図(2)のm1Noで万くされる。第3図から明
らかなように、温水の送り1度および戻り温度ともに比
較的温度が安定することになり、冷水側の効率が充分に
維持される0また温水温には比戦的筒温度に保たれたま
まであるのでオリ用価値が充分にるる。なお径考のため
に、従来のように温水を一定流量で流した一合の温水送
り温度を示すと、第3図(1)の一点頼糾で示すように
なり、温水負企Iの阪少につれて温水送り温度が低下す
る。
3. For example, in the temperature difference regulator 23, set the temperature difference Δt=40 and set the ratio? Let 11 yu be 20. Moreover, the flow rate control valve is controlled by the warm water flow rate, and its proportional value (if set to z20, the hot water feed temperature with respect to the hot water load is shown by the direct spinning of brown 3 fi +,
The hot water return temperature is indicated by circle #B. In addition, hot water frL and hot water are determined by m1No in Figure 3 (2). As is clear from Figure 3, the temperature is relatively stable at both the sending and returning temperatures of the hot water, and the efficiency of the cold water side is maintained sufficiently. Since it has been preserved, it has sufficient value for storage. For the sake of discussion, if we show the hot water supply temperature for one unit when hot water is supplied at a constant flow rate as in the past, it becomes as shown by the single point in Figure 3 (1). As the temperature decreases, the hot water supply temperature decreases.

何ひ第1図を奈トして、冷水温度劇節福36および温水
温度論fiJ器37からの信号は、佃号比載b33に入
力される。この15号比IP9km 33は、両信号の
太/11を比軟し、冷水負荷主体であるか漏水負向主体
でるるかを区別して、三方弁25を制御するための信号
を調節器27に入力する。また調節器27には、管路1
6mにおける三方弁25よりも下fL1111Kwiけ
られた温度検出器26からの検出g!+5が与えられて
いる。
Continuing from FIG. 1, the signals from the cold water temperature controller 36 and the hot water temperature controller 37 are inputted to the tsukugo hiba b 33. This No. 15 ratio IP9km 33 softens the ratio of thick/11 of both signals, distinguishes whether the cold water load is mainly or the water leakage is mainly in the negative direction, and sends a signal to the regulator 27 for controlling the three-way valve 25. input. The regulator 27 also includes a pipe line 1.
Detection g from the temperature sensor 26 which is lower than the three-way valve 25 at 6 m fL1111Kwi! +5 is given.

v14節益2フは、侶号比較儀33からの信号が温水主
体運転でめることを示す場合には、三方弁25を制御し
てバイパス管路40に温水が流入しないようにする。ま
た冷水負荷主体運転の場合には、三方弁25は温度検出
器26による検出温度に応じて制御され、一部の温水は
I[負荷としての熱交候拠28で放熱する。なお、冷却
水循環回路41におけるポンプ30は、温水負荷主体運
転でろってかつ三方弁25がバイパス管路40への温水
の流入を開拓するために開弁し始めたとき、調節器27
からの信号によって駆動される。それKよりポンプ30
の無駄な運転が防止される。
v14 saver 2f controls the three-way valve 25 to prevent hot water from flowing into the bypass pipe line 40 when the signal from the water heater 33 indicates that the hot water main operation is not possible. In addition, in the case of cold water load-based operation, the three-way valve 25 is controlled according to the temperature detected by the temperature detector 26, and some of the hot water radiates heat at the heat exchange base 28 as the load. It should be noted that when the pump 30 in the cooling water circulation circuit 41 is mainly operated with a hot water load and the three-way valve 25 starts to open in order to open the inflow of hot water to the bypass pipe 40, the regulator 27
is driven by a signal from Pump 30 from that K
This prevents unnecessary operation.

このように模豪負荷としての熱交換器28で放熱するこ
とにより、吸収式冷温水機l全体の熱収支は第4図のよ
うになる。すなわち、^温再生鮨5への人熱蓋Q、lと
、魚発器2への入熱量Q2とが全体人熱倉Q3となり、
その一部のPfAiai:Q4か温水負荷に与えられ、
残余の熱量Q5か撲保貝向に与えられることになる。こ
のようK M 擬貝何に放熱することにより、8145
図での斜線でだす広い範囲にわたって吸収式冷温水機1
を運転することが可能となる。
By dissipating heat through the heat exchanger 28 as a heavy load in this way, the heat balance of the entire absorption type water chiller/heater l is as shown in FIG. 4. In other words, the human heat lid Q, l to the heated regenerated sushi 5 and the amount of heat input Q2 to the fish generator 2 become the entire human heat warehouse Q3,
Part of it is given to PfAiai:Q4 or hot water load,
The remaining energy will be given to Q5 or Uhobo Kai. In this way, by dissipating heat to the K M artificial shell, 8145
Absorption type water chiller/heater 1 spreads over a wide range indicated by diagonal lines in the diagram.
It becomes possible to drive.

上述の実施例では二l効用吸収式冷凍情を用いたが、本
発明は他の吸収式冷凍機に関連しても実施することがで
きる。また暖房機20に代えて帖湯用熱交換器を設けて
もよい。さらに、局温丹生動5に与える熱は、燃料の燃
焼熱でなくてもよく、電力付勢わるいは高温の廃ガスを
導入するようにしてもよい。なお電力付勢する一合には
、流量制御弁9に代えて゛電力付勢tを制御する手取を
6ければよい。
Although the embodiment described above uses a two-l effect absorption refrigeration system, the invention can be practiced in conjunction with other absorption refrigeration machines. Further, instead of the heater 20, a hot water heat exchanger may be provided. Furthermore, the heat given to the local temperature generator 5 does not have to be the combustion heat of the fuel, and may be supplied by electric power or by introducing high-temperature waste gas. In addition, in order to apply electric power, in place of the flow rate control valve 9, it is sufficient to use a device 6 for controlling the electric power applied t.

上述のごとく本発明によれば温水循環回路における温水
に量が温水負荷前後の温度差をほぼ一厘とするように制
御されるので、温水負荷11)恢の各温鼓がほぼ−にと
なって安定し、したがって温水負荷が低減したとしても
冷水側の効率が低下することはなく、また温水は比軟的
高温度に保たれたままでろるので利用価値が低下するこ
とはない0
As described above, according to the present invention, the amount of hot water in the hot water circulation circuit is controlled so that the temperature difference before and after the hot water load is approximately 1 liter, so that each hot water drum in the hot water load 11) becomes approximately -. Therefore, even if the hot water load is reduced, the efficiency of the cold water side will not decrease, and the hot water will remain at a relatively high temperature, so its utility value will not decrease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図、第2図は各温度w
14m器36〜38および信号選択益32の動作t−説
明するための図、第3図は温水の変流量制御を説明する
ための−、第4幽は熱収支を示す凶、第5図は温水負荷
および冷水負荷に対応した運転範囲を示すグラフでるる
。 l・・・二1効用吸収式冷凍機、2・・・蒸発益、3・
・・吸収器、4・・・凝縮器、5・・・高温再生益、l
l・・・冷水循環回路、15・・・冷房機、16・・・
温水循環回路、20・・・暖房機、21・・・流量制御
弁、23・・・温度差調節ム、24.34・・・温直検
出養 代地人   5f海士 西教圭一部 第3図 温水両萄(0ム) 温水鋤循(0ム) w!4図 第5図 冷水―肩(’/、)
Figure 1 is a system diagram of an embodiment of the present invention, and Figure 2 is a diagram of each temperature w.
Figure 3 is a diagram for explaining the operation of the 14m meters 36 to 38 and the signal selection gain 32. Figure 3 is a diagram for explaining variable flow rate control of hot water. Figure 4 is a diagram showing the heat balance. A graph showing the operating range corresponding to hot water load and cold water load is displayed. l...21 effect absorption refrigerator, 2...evaporation gain, 3.
...Absorber, 4...Condenser, 5...High temperature regeneration profit, l
l...Cold water circulation circuit, 15...Air conditioner, 16...
Hot water circulation circuit, 20...Heater, 21...Flow rate control valve, 23...Temperature difference adjustment, 24.34...Temperature detection feeder 5f Ama Nishikyo Kei part Figure 3 Warm water ryoshu (0mu) Warm water plow circulation (0mu) lol! Figure 4 Figure 5 Cold water - shoulder ('/,)

Claims (1)

【特許請求の範囲】 吸収式?IIt凍機の吸収器および皺縮器で温水を加熱
して温水負荷に与えるようにした温水循環回路と、蒸発
すで冷水を冷却して冷水負荷に与えるようにした検水循
環回路とt備える吸収式冷温水機において、 FilJ記温水儂塚回路には、流量制御弁が設けられ、
前記―水負荷の入口および出口における温度をそれぞれ
検出するための各fi1m検出器による温度検出WLk
よ、それらの温度差が予め設定した値となるように前記
流量制御弁tW御する温度差調節器にそれぞれ入力され
ることを**とするa収式冷温水伽。
[Claims] Absorption type? A hot water circulation circuit that heats hot water using the absorber and crimper of the IIt refrigerator and supplies it to the hot water load, a test water circulation circuit that cools the cold water through evaporation and supplies it to the cold water load, and an absorption system that includes In the type cold/hot water machine, the FilJ warm water circuit is equipped with a flow rate control valve.
Temperature detection WLk by each fi1m detector for detecting the temperature at the inlet and outlet of the water load, respectively;
(a) A retractable hot and cold water tank, in which input is made to a temperature difference regulator controlled by the flow rate control valve TW so that the temperature difference therebetween becomes a preset value.
JP666182A 1982-01-18 1982-01-18 Absorption type cold and hot water machine Granted JPS58123068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP666182A JPS58123068A (en) 1982-01-18 1982-01-18 Absorption type cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP666182A JPS58123068A (en) 1982-01-18 1982-01-18 Absorption type cold and hot water machine

Publications (2)

Publication Number Publication Date
JPS58123068A true JPS58123068A (en) 1983-07-22
JPH0355748B2 JPH0355748B2 (en) 1991-08-26

Family

ID=11644558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP666182A Granted JPS58123068A (en) 1982-01-18 1982-01-18 Absorption type cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS58123068A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243706A (en) * 2008-03-28 2009-10-22 Sanyo Electric Co Ltd Absorption heat pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665363U (en) * 1979-10-25 1981-06-01
JPS56157533U (en) * 1980-04-24 1981-11-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665363U (en) * 1979-10-25 1981-06-01
JPS56157533U (en) * 1980-04-24 1981-11-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243706A (en) * 2008-03-28 2009-10-22 Sanyo Electric Co Ltd Absorption heat pump

Also Published As

Publication number Publication date
JPH0355748B2 (en) 1991-08-26

Similar Documents

Publication Publication Date Title
US4589262A (en) Absorption type air conditioning system
JP2001241735A (en) Air conditioning system and its controlling method
JPH0721362B2 (en) Waste heat recovery power generator
JPS58123068A (en) Absorption type cold and hot water machine
JPH11108486A (en) Double effect absorption water cooler/heater
JP3319662B2 (en) Heat storage type cooling / heating device and control method thereof
JP3062565B2 (en) Cooling water inlet temperature control method for refrigerator in water heat storage system
JPS58123069A (en) Absorption type cold and hot water machine
JP3112596B2 (en) Absorption refrigerator and control method thereof
JP2906507B2 (en) Heat pump water heater
JPH0355752B2 (en)
JP2654009B2 (en) Absorption refrigerator
JP3270272B2 (en) Control system for heat source system for air conditioning
JPS631508B2 (en)
JP2924381B2 (en) Heat transfer device
JP2780546B2 (en) Heat transfer device
JP3280261B2 (en) Absorption refrigeration equipment
JP3892608B2 (en) Heat pump hot water supply air conditioner
JPS6330946Y2 (en)
JP3401864B2 (en) Heat pump water heater
JPS629735B2 (en)
JPH0668893A (en) Fuel cell type generator
JPH09119738A (en) Absorption chilled and warm water generator
JPS63161340A (en) Controller for cooling and heating system
JPS58203358A (en) Controller for absorption type cold and hot water machine utilizing solar heat