JPS58118974A - Radar device - Google Patents

Radar device

Info

Publication number
JPS58118974A
JPS58118974A JP57001632A JP163282A JPS58118974A JP S58118974 A JPS58118974 A JP S58118974A JP 57001632 A JP57001632 A JP 57001632A JP 163282 A JP163282 A JP 163282A JP S58118974 A JPS58118974 A JP S58118974A
Authority
JP
Japan
Prior art keywords
antenna
distribution
transmitter
antenna beam
opening surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57001632A
Other languages
Japanese (ja)
Other versions
JPH0142392B2 (en
Inventor
Natsuki Kondo
夏樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57001632A priority Critical patent/JPS58118974A/en
Publication of JPS58118974A publication Critical patent/JPS58118974A/en
Publication of JPH0142392B2 publication Critical patent/JPH0142392B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To elevate the serching distance performance, by executing a necessary control in accordance with whether an antenna beam is irradiated in the upper direction or the lower direction. CONSTITUTION:A radar computer 7 decides whether an antenna beam is irradiated in the upper direction or the lower direction, in accordance with an antenna beam directional angle signal from the computer itself and an aeroplane attitude from an inertia navigating device 9. At the time of the irradiation in the upper direction in case when there is no influence by the ground, etc., and a side lobe clutter level is low, a transmitter 11 of all antenna elements 15... is turned on by a command from the computer 7, the output is made maximum, the opening surface distribution of a phased array antenna 4 is made uniform, and the antenna gain is made maximum. At the same time, the attenuation quantity of a receiver 19 of the element 5 is made minimum. In case of the lower direction, on-and-off of the transmitter is controlled so that the opening surface distribution of the antenna becomes a density distribution, to be converted to a low side lobe, also the opening surface is converted to a vibration taper distribution by an attenuation quantity controller 18, and a side lobe in case of receiving is reduced. By an optimum control corresponding to these states, the distance serch-performance is elevated.

Description

【発明の詳細な説明】 この発明け、送受信機能および移相シフト機能を有する
多数のアンテナ素子で構成されたフェーズド・アレイ・
アンテナを用いた航空機搭載用パルス・ドツプラ・レー
ダ装置に係り、アンテナ・サイドローブで受信する大地
或いは海面からの反射信号(以下「サイドローブ・クラ
ッタ」と呼ぶ、、)のレベルに応じて送信電力。
[Detailed Description of the Invention] The present invention provides a phased array antenna consisting of a large number of antenna elements having transmitting/receiving functions and phase shift functions.
Regarding aircraft-mounted pulse Doppler radar equipment that uses an antenna, the transmission power is determined according to the level of the reflected signal from the ground or sea surface (hereinafter referred to as "sidelobe clutter") received by the antenna sidelobe. .

アンテナ・サイドロープ特性およびアンテナ利得を制御
するように構成したレーダ装置に関するものである。
The present invention relates to a radar device configured to control antenna sidelobe characteristics and antenna gain.

とζろで、レーダノPRF (Pulse Repet
itionIPrequency )がそのレーダを搭
載する航空機の速度によって生じるドツプラ周波数よシ
低いパルス・ドツプラ・レーダ装置において、アンテナ
、ビームが下方を照射する場合には、%にレベルの高い
第1および第2サイドローブ等で受信する強勢なサイド
ローブ・クラッタと移動目標からの反射信号が重なり合
う、従って、 V −ダ探知距離性能の向上を計るには
アンテナ利得を犠牲にしても低サイドロープ・アンテナ
を用いる必要がある。しかし、アンテナ・パターン特性
を制御することができない従来の機械的駆動によるアン
テナを用いていると、アンテナ・ビームが上方を照射し
サイドローブ・クラッタのレベルが低い場合においても
上記低サイドロープ・アンテナを用いなければならず、
その低い利得がレーダ探知距離性能を制限することにな
る。
And ζro, Radano PRF (Pulse Repet
In a pulsed Doppler radar system, where the antenna and beam irradiate downward, the first and second side lobes with high levels are The strong sidelobe clutter received by the radar and the reflected signal from the moving target overlap, so it is necessary to use a low sidelobe antenna even at the expense of antenna gain in order to improve the V-da detection range performance. be. However, when using conventional mechanically driven antennas in which the antenna pattern characteristics cannot be controlled, even when the antenna beam illuminates upward and the level of sidelobe clutter is low, the low sidelobe antenna must be used,
The low gain will limit radar detection range performance.

又、従来の7エーズド・プレイ・アンテナでは、送信電
力を最大にするため、或いは各アンテナ素子の送信電力
を最小にするために、すべてのアンテナ素子から同一レ
ベルで送信し均一分布の開口面を形成し、−万、受信時
には上記各アンテナ素子で受信した信号の振幅を制御し
て開口面に振幅テーバ分布を形成し低サイドローブ化を
計っていtoしかし、送信時が均一分布であると送受績
アンテナ・サイドロープ・レベルは受信時のサイドロー
ブを低くしても、ある値以下にけ小さくできない欠点が
ある。
In addition, in the conventional 7 aided play antenna, in order to maximize the transmission power or minimize the transmission power of each antenna element, all antenna elements transmit at the same level and have a uniformly distributed aperture surface. During reception, the amplitude of the signal received by each of the above antenna elements is controlled to form an amplitude Taber distribution on the aperture surface to achieve low sidelobes. However, if the distribution is uniform during transmission, The antenna sidelobe level has the disadvantage that it cannot be reduced below a certain value even if the sidelobe at the time of reception is lowered.

この発明は、これらの問題点の改善を計っtもので、航
空機の姿勢およびアンテナ・ビーム指向角からアンテナ
・ビームが上方を照射してい、るのか、或いは下方を照
射しているのかを識別し、各々の場合に適合した送信電
力、アンテナ・サイドロープ特性お↓びアンテナ利得を
上記アンテナ素子に内蔵L7’e送信機の0N10FF
制御および受信機の利得側−を行うことにより実現し、
レーダ探知距離性能の改善を計ったレーダ装置を提供せ
んとするものである。
This invention aims to improve these problems by identifying whether the antenna beam is irradiating upward or downward based on the attitude of the aircraft and the antenna beam directivity angle. , the transmission power, antenna side rope characteristics, and antenna gain suitable for each case are built into the above antenna element.
This is achieved by performing the control and gain side of the receiver.
The present invention aims to provide a radar device with improved radar detection distance performance.

以下9図によってこの発明の詳細な説明する。The present invention will be explained in detail with reference to FIG. 9 below.

第1図(a)および第1図(b)は、それぞれ四−のパ
ルス・ドツプラ・レーダを航空機に搭載し。
FIGS. 1(a) and 1(b) each show four pulse Doppler radars mounted on an aircraft.

アンテナ・ビームで下方を照射した場合および上方を照
射しt0場合の受信信号の周波数スペクトルを示したも
のであり、+zl!メインロープ・クラッタ・スペクト
ル、(21けサイドローブ・クラッタ・スペクトル、(
3)は目S信号スペクトルである。又、上記受信信号の
周波数スペクトルはpRFで繰り返すため第1図(a)
および(b)には一周期分のみ示しである。
This shows the frequency spectrum of the received signal when the antenna beam illuminates the lower side and when the antenna beam illuminates the upper side at t0, +zl! Main rope clutter spectrum, (21-digit sidelobe clutter spectrum, (
3) is the eye S signal spectrum. Also, since the frequency spectrum of the above received signal is repeated by pRF, the frequency spectrum of the above received signal is as shown in Fig. 1(a).
And (b) shows only one cycle.

メインロープ・クラッタ・スペクトル(1)はアンテナ
・ビームのメインロープで受信される受信信号のうち大
地或いは海面で散乱された信号のドツプラ・スペクトル
であり、同様にサイドローブ・クラッタ・スペクトル(
2)はアンテナ・ビームのサイドローブで受信される大
地或いは海面で散乱された信号のドツプラ・スペクトル
である。
The main rope clutter spectrum (1) is the Doppler spectrum of the signal received by the main rope of the antenna beam that is scattered on the ground or sea surface, and the sidelobe clutter spectrum (1) is the Doppler spectrum of the signal that is scattered on the ground or sea surface.
2) is the Doppler spectrum of the signal scattered on the ground or sea surface that is received by the sidelobes of the antenna beam.

第1図(a)およびφ)から分かる様に、パルス・ドツ
プラ・レーダにおいては目標信号をサイドローブ・クラ
ッタと周波数領域で重なり合う状態で検出しなけれdな
らない。又、アンテナ・ビームが下方を照射する場合の
サイドローブ。
As can be seen from FIGS. 1(a) and φ), in the pulsed Doppler radar, the target signal must be detected in a state where it overlaps with the sidelobe clutter in the frequency domain. Also, side lobes when the antenna beam illuminates downward.

クラッタ・スペクトル(2)の方が上方を照射する場合
に比べて、そのレベルが非常に高い。従って、アンテナ
・ビームが下方を照射する場合には低サイドロープ・ア
ンテナを、父上方を照射する場合には高利得アンテナを
用いることによりレーダ探知距離性能の向上を計ること
ができる。
The level of clutter spectrum (2) is much higher than that in the case of upward irradiation. Therefore, the radar detection range performance can be improved by using a low side rope antenna when the antenna beam illuminates downward, and by using a high gain antenna when the antenna beam illuminates upward.

第2図社、この発明の実施例を示す図であり。FIG. 2 is a diagram showing an embodiment of the present invention.

フェーズド・アレイ・アンテナ(4)にす、 多数のア
ンテナ素子(ωが内蔵されているが、これらは全く同一
のものである大め一つのアンテナ素子(5)のみを示し
た。
The phased array antenna (4) has a number of built-in antenna elements (ω), but only one larger antenna element (5), which is completely identical, is shown.

まず、アンテナ・ビーム走査法について説明する。移相
量側−器(6)ハレーダ計算機(71からのアンテナ・
ビーム指向角信号に基づいて各アンテナ素子(2)の移
相量を算出し移相器(8)にセットする。この動作を定
められたビーム走査パターンに従って繰シ返す。
First, the antenna beam scanning method will be explained. Phase shift amount side device (6) Harada computer (antenna from 71)
The amount of phase shift of each antenna element (2) is calculated based on the beam direction angle signal and set in the phase shifter (8). This operation is repeated according to a determined beam scanning pattern.

この時、慣性航法装f(9)からの航空機の炎勢信号と
レーダ計算機(7)自身が出力しているアンテナ・ビー
ム指向角信号とによりアンテナ・ビームが上方を照射し
ていると判断すると、レーダ計算機(71#:を送信機
制御器a〔に対してすべてのアンテナ素子内の送j@機
Qllを動作(、ON )させ穴ように指令することに
よって、基準信号発生器α2で発生した高周波パルス信
号が、送受切換器α3.給電回路Q4.移相G (81
、サーキュレータ(至)。
At this time, it is determined that the antenna beam is irradiating upward based on the aircraft's flame signal from the inertial navigation device f (9) and the antenna beam direction angle signal output by the radar computer (7) itself. , by instructing the radar computer (71#: to turn on the transmitter Qll in all antenna elements to the transmitter controller a), the signal is generated by the reference signal generator α2. The high-frequency pulse signal sent to the transmitter/receiver switch α3.Power supply circuit Q4.Phase shift G (81
, circulator (to).

アンテナ素子内の送信機CIl+およびアンテナ素子内
の送受切換器αeを介してすべてのアンテナ素子の放射
器面から空間に放射される。このようにすると送信出力
は最大になると同時に7エーズド・アレイ・アンテナ(
4)の開口面分布が均一分布となるので最大のアンテナ
利得が得られる。
It is radiated into space from the radiator surfaces of all antenna elements via the transmitter CIl+ in the antenna element and the transmitter/receiver switch αe in the antenna element. In this way, the transmitting power is maximized and at the same time the 7 aided array antenna (
4) Since the aperture distribution is uniform, the maximum antenna gain can be obtained.

同様にして減衰量制御器部がすべてのアンテナ素子内の
受信機(2)に内蔵された減衰器の減衰量を最小値にす
ると放射器(2)、アンテナ素子内の送受切換器αGを
介してアンテナ素子内の受信機(2)に入力された受信
信号は最小の減衰しか受けず受信時も等測的に最大のア
ンテナ利得が得られる。
Similarly, when the attenuation controller unit sets the attenuation of the attenuator built in the receiver (2) in all antenna elements to the minimum value, The received signal input to the receiver (2) in the antenna element undergoes only minimal attenuation, and the maximum antenna gain is obtained isometrically during reception.

アンテナ素子内の受信機(至)の出力信号はサーキュレ
ータ(至)、移相器(8)を介して給電回路Iに入力さ
れ、すべてのアンテナ素子(団の出力信号が合成される
。この信号は、送受切換器(至)を介して受信器Iを介
して受信機(1)に入力され、増幅されて信号処理器(
2)で目標の情報が検出される。この目標情報汀レーダ
計算機(7)を介して表示器(2)に表示される。
The output signal of the receiver (to) in the antenna element is input to the feeder circuit I via the circulator (to) and the phase shifter (8), and the output signals of all the antenna elements (group) are combined. is input to the receiver (1) via the receiver I via the transmitter/receiver switcher (to), is amplified and sent to the signal processor (
In 2), target information is detected. This target information is displayed on the display (2) via the radar computer (7).

次に、アンテナ・ビームが下方を照射しているとレーダ
計算機(7)が判断すると、送信機制御器部に対してフ
ェーズド アレイ・アンテナ(41の低サイドロープ化
のため、その開口面分布が密度分布になるように各アン
テナ素子内の送信根囲を0N10XPFiilJ$41
することを指令すると同時に、減衰量制御器alに指令
して、各アンテナ素子内の受信機(至)に内蔵されてい
る減衰器の減衰量を7エーズド・アレイ・アンテナ(4
1の開口面分布が振幅テーパ分布になるように制(財)
する。
Next, when the radar computer (7) determines that the antenna beam is irradiating downward, it sends a message to the transmitter controller that the phased array antenna (41) has a low siderope, so its aperture distribution is Set the transmission radius within each antenna element to 0N10XPFiilJ$41 so that it has a density distribution.
At the same time, it also commands the attenuation controller al to adjust the attenuation of the attenuator built in the receiver (to) in each antenna element to the 7-axis array antenna (4
Control the aperture surface distribution of 1 to have an amplitude taper distribution.
do.

このようにすると、送信時および受信時のアンテナ・サ
イドロープを大幅に減少させることができる。尚、アン
テナ制御以外の機能はアンテナ・ビームが上方を照射し
ている場合と同一であるため説明は省略する。
In this way, antenna side lobes during transmission and reception can be significantly reduced. Note that the functions other than antenna control are the same as those when the antenna beam is irradiating upward, so a description thereof will be omitted.

以上に述べたようKこの発明によれば、航空機の姿勢す
よびアンテナ・ビーム指向角からアンテナ・ビームが上
方を照射しているのか、或いは下方を照射しているのか
を識別し、各々の場合に適合した送信電力、アンテナ・
サイドロープ特性およびアンテナ利得をアンテナ素子に
内蔵した送信機のQN10FF制御および受信機の利得
制御を行うことにより実現し、レーダ探知距離性能の向
上を計ることができる。
As described above, according to the present invention, it is possible to identify whether the antenna beam is irradiating upward or downward based on the attitude of the aircraft and the antenna beam direction angle, and in each case. transmit power, antenna and
The side lobe characteristics and antenna gain are realized by QN10FF control of the transmitter built into the antenna element and gain control of the receiver, and it is possible to improve radar detection distance performance.

尚、この発明の実施例として第2図に構成例を示し六が
、この発明の要旨を逸脱しない範囲において種々の変形
がある。
A configuration example is shown in FIG. 2 as an embodiment of the present invention, but various modifications may be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) /fjアンテナ・ビームが下方を照射し
た場合の受信信号の周波数スペクトルを示す図。 第1図(b)はアンテナ・ビームが上方を照射した場合
の受信信号の周波数スペクトルを示す図。 第2図はこの発明の構成例を示す図でToシ2図中、(
lltfメインロープ・クラッタ・スペクトル。 f21 Fiサイドロープ・クラッタ・スペクトル、(
3)は目標信号スペクトル、(41tjフエーズド・ア
レイ・アンテナ、(5iuアンテナ素子、(61Fi移
相量制御器、(7)はレーダ計算機、(8)け移相器、
(9)け慣性航法装置1.noは送信機制御器、 (I
llはアンテナ素子内の送信機、 Q2は基準信号発生
器、α3に送受切換器、aaij給電回路、αSはサー
キュレータ、αeはアンテナ素子内の送受切換J G?
lは放射器、a時は減衰量制御器、@はアンテナ素子内
の受信機、勾は受信機、(2)は信号処理器、0は表示
器である。 尚2図中、同−或いは相当部分には同一番号を付しであ
る。 代理人 葛 野 信 −
FIG. 1(a) is a diagram showing the frequency spectrum of a received signal when the /fj antenna beam irradiates downward. FIG. 1(b) is a diagram showing the frequency spectrum of a received signal when the antenna beam irradiates upward. Figure 2 is a diagram showing an example of the configuration of this invention.
lltf main rope clutter spectrum. f21 Fi siderope clutter spectrum, (
3) is the target signal spectrum, (41tj phased array antenna, (5iu antenna element, (61Fi phase shift controller), (7) is the radar computer, (8) is the phase shifter,
(9) Inertial navigation device 1. no is the transmitter controller, (I
ll is the transmitter in the antenna element, Q2 is the reference signal generator, α3 is the transmission/reception switch, aaij feeding circuit, αS is the circulator, and αe is the transmission/reception switch in the antenna element.
l is a radiator, a is an attenuation controller, @ is a receiver in the antenna element, gradient is a receiver, (2) is a signal processor, and 0 is a display. In the two figures, the same numbers are given to the same or corresponding parts. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 送受信機能および移相シフト機能を有する多数のアンテ
ナ素子で構成されたフェーズド・プレイ・アンテナを用
い、アンテナ・サイドロープで受信する大地或いは海面
からの反射信号と周波数領域で重表シ合う移動目標から
の反射信号を検出する航空機搭載用レーダ*鮒において
。 大地或いは海面に対するアンテナ・ビーム照射角を検出
する手段と、上記アンテナ素子に内蔵した送信機の0N
10FF制御および受信機の利得制御を各アンテナ素子
毎に独立して実施する手段を用いて、上記アンテナ・サ
イドローブで受信する大地或いは海面からの反射信号レ
ベルに応じて送信電力、アンテナ・サイドロープ特性お
よびアンテナ利得を制御するように構成したことを特徴
とするレーダ装置。
[Claims] A phased play antenna consisting of a large number of antenna elements having transmitting/receiving functions and a phase shift function is used to overlap signals received by the antenna side ropes from the earth or sea surface in the frequency domain. An airborne radar that detects reflected signals from moving targets that match the surface of the carp. Means for detecting the antenna beam irradiation angle with respect to the earth or sea surface, and 0N of the transmitter built in the antenna element.
By using means for independently performing 10FF control and receiver gain control for each antenna element, the transmission power and antenna sidelobe are adjusted according to the level of the signal reflected from the ground or sea surface received by the antenna sidelobe. A radar device characterized by being configured to control characteristics and antenna gain.
JP57001632A 1982-01-08 1982-01-08 Radar device Granted JPS58118974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57001632A JPS58118974A (en) 1982-01-08 1982-01-08 Radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57001632A JPS58118974A (en) 1982-01-08 1982-01-08 Radar device

Publications (2)

Publication Number Publication Date
JPS58118974A true JPS58118974A (en) 1983-07-15
JPH0142392B2 JPH0142392B2 (en) 1989-09-12

Family

ID=11506901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57001632A Granted JPS58118974A (en) 1982-01-08 1982-01-08 Radar device

Country Status (1)

Country Link
JP (1) JPS58118974A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276476A (en) * 1985-09-30 1987-04-08 Nec Corp Synthetic aperture radar equipment
JPS6276477A (en) * 1985-09-30 1987-04-08 Nec Corp Synthetic aperture radar equipment
JPH05107335A (en) * 1991-10-19 1993-04-27 Nec Corp Active phased array radar aerial device
JP2011153878A (en) * 2010-01-27 2011-08-11 Nec Corp Radar system, and active phased array antenna device and transmission module used therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276476A (en) * 1985-09-30 1987-04-08 Nec Corp Synthetic aperture radar equipment
JPS6276477A (en) * 1985-09-30 1987-04-08 Nec Corp Synthetic aperture radar equipment
JPH05107335A (en) * 1991-10-19 1993-04-27 Nec Corp Active phased array radar aerial device
JP2011153878A (en) * 2010-01-27 2011-08-11 Nec Corp Radar system, and active phased array antenna device and transmission module used therefor

Also Published As

Publication number Publication date
JPH0142392B2 (en) 1989-09-12

Similar Documents

Publication Publication Date Title
US3971020A (en) Three dimensional radar system with integrated PPI presentation
US4034374A (en) Sequential lobing track-while-scan radar
US4942403A (en) Phased-array radar
US3971022A (en) Phased-array antenna employing an electrically controlled lens
CN108363058A (en) Frequency controls the signal parameter design method of battle array imaging radar
JPS58118974A (en) Radar device
US3648284A (en) Two-face phased array
GB2050744A (en) Secondary surveillance radar
JP2595354B2 (en) Radar equipment
JPH09127241A (en) Radar apparatus
JPH07280924A (en) Pseudo-target-signal generation apparatus
JP3442624B2 (en) Guided flying object equipped with proximity target detection device
RU2680850C1 (en) Method of forming elliptic directional pattern of active inphase antenna array on basis of set of microsatellites with application of superregenerative transceiver devices
JP2668966B2 (en) Radar equipment
JP2605957B2 (en) Airborne radar equipment
JPS5883285A (en) Radar device
JPS58204379A (en) Radar device
JPS5661670A (en) Synthetic aperture radar device
JPS6082875A (en) Decoy device for radar
JPS6057281A (en) Radar equipment
JPH0149905B2 (en)
JPH01313785A (en) Radar simulator system
JPH04249784A (en) Antenna of active phased array radar
JPS6022307B2 (en) radar device
JP2687528B2 (en) Electronic scanning secondary surveillance radar device