JP2605957B2 - Airborne radar equipment - Google Patents

Airborne radar equipment

Info

Publication number
JP2605957B2
JP2605957B2 JP2328005A JP32800590A JP2605957B2 JP 2605957 B2 JP2605957 B2 JP 2605957B2 JP 2328005 A JP2328005 A JP 2328005A JP 32800590 A JP32800590 A JP 32800590A JP 2605957 B2 JP2605957 B2 JP 2605957B2
Authority
JP
Japan
Prior art keywords
signal
circuit
transmission
reception beams
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2328005A
Other languages
Japanese (ja)
Other versions
JPH04198790A (en
Inventor
誠司 菅沼
夏樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2328005A priority Critical patent/JP2605957B2/en
Publication of JPH04198790A publication Critical patent/JPH04198790A/en
Application granted granted Critical
Publication of JP2605957B2 publication Critical patent/JP2605957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,航空機が低空飛行する際,障害物の高度
差の検出時間を短縮する航空機搭載用レーダ装置に関す
るものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radar device mounted on an aircraft, which shortens the time required to detect a height difference between obstacles when the aircraft flies at a low altitude.

〔従来の技術〕[Conventional technology]

第5図は従来の航空機搭載用レーダ装置の構成を示す
図であり,図中,(1)は送信機,(2)は送受切換
器,(3)はモノパルスアンテナ,(4)はモノパルス
アンテナ(3)から出力される和信号Σ及び差信号Δ
にそれぞれ接続された受信機,(5)は信号処理器,
(6)は表示器,(7)はモノパルスアンテナ(3)を
駆動するアンテナ駆動器である。
FIG. 5 is a diagram showing a configuration of a conventional radar device mounted on an aircraft, wherein (1) is a transmitter, (2) is a transmission / reception switch, (3) is a monopulse antenna, and (4) is a monopulse antenna. Sum signal 0 0 and difference signal Δ output from (3)
0 , a receiver connected to each of the signals 0 , (5) is a signal processor,
(6) is a display, and (7) is an antenna driver for driving the monopulse antenna (3).

第6図は従来の航空機搭載用レーダ装置の構成品であ
る信号処理器(5)の構成を示す図であり,図中,
(8)はバツフア回路,(9)は信号検出器,(10)は
割算器,(11)は高度差検出器である。
FIG. 6 is a diagram showing a configuration of a signal processor (5), which is a component of a conventional airborne radar device.
(8) is a buffer circuit, (9) is a signal detector, (10) is a divider, and (11) is an altitude difference detector.

次に動作について説明する。 Next, the operation will be described.

送信機(1)では,一定のパルス繰り返し周期を持つ
た送信パルス信号が発生され,送受切換器(2)を介し
て,モノパルスアンテナ(3)から外部空間に放射され
る。そして障害物からの反射信号はモノパルスアンテナ
(3)で受信され,和信号Σ及び差信号Δに変換さ
れる。さらに受信機(4)はモノパルスアンテナ(3)
で変換された和信号Σ及び差信号Δをそれぞれビデ
オ信号に変換する。
In the transmitter (1), a transmission pulse signal having a constant pulse repetition period is generated and radiated from the monopulse antenna (3) to the external space via the transmission / reception switch (2). The signal reflected from the obstacle is received by the monopulse antenna (3) and converted into a sum signal 0 0 and a difference signal Δ 0 . The receiver (4) is a monopulse antenna (3)
The converted sum signal 0 0 and difference signal Δ 0 are each converted into a video signal.

次いで信号処理器(5)中のバツフア回路(8)はビ
デオ信号に変換された和信号Σ及び差信号Δをレンジビ
ン毎に格納して,和信号Σを信号検出器(9)に出力
し,和信号Σ及び差信号Δを割算器(10)に出力する。
信号検出器(9)は入力された和信号ΣからCFAR(Cons
tant False Alarm Rate)回路等により信号を検出し,
後段の高度差検出器(11)で処理すべきレンジビンの範
囲を判別し,そのレンジビン番号を高度差検出器(11)
に出力する。一方割算器(10)は入力した和信号Σ及び
差信号Δを和信号Σに対する差信号Δの比Δ/Σに変換
し,高度差検出器(11)に出力する。
Next, a buffer circuit (8) in the signal processor (5) stores the sum signal Σ and the difference signal Δ converted into the video signal for each range bin, and outputs the sum signal Σ to the signal detector (9). The sum signal Σ and the difference signal Δ are output to the divider (10).
The signal detector (9) converts the sum signal Σ into a CFAR (Cons
tant False Alarm Rate)
The range bin to be processed is determined by the altitude difference detector (11) at the subsequent stage, and the range bin number is determined by the altitude difference detector (11).
Output to On the other hand, the divider (10) converts the input sum signal Σ and difference signal Δ into a ratio Δ / Σ of the difference signal Δ to the sum signal Σ, and outputs the ratio to the altitude difference detector (11).

次いで高度差検出器(11)の動作を第7図を用いて説
明する。
Next, the operation of the altitude difference detector (11) will be described with reference to FIG.

第7図は高度差検出器(11)の処理概念図であり,図
中,(12)は航空機,(13)は障害物である。この図は
高度H0の航空機(12)に搭載された航空機搭載用レーダ
装置から前方の障害物(13)の高度差を検出していると
ころを示している。ここで,信号検出器(9)から出力
されたレンジビンの範囲のうち,あるレンジビン番号i
番目に存在する点Aについて処理内容を説明する。点A
のアンテナ中心軸からの角度Δθは割算器(10)から
出力された和信号Σに対する差信号Δの比Δi
を用いて,以下に示す式によつて算出することができ
る。
FIG. 7 is a conceptual diagram of the processing performed by the altitude difference detector (11), in which (12) is an aircraft and (13) is an obstacle. This figure shows the place where detecting the altitude difference of the front obstacle (13) from the airborne radar device on board the aircraft (12) of altitude H 0. Here, of the range bin range output from the signal detector (9), a certain range bin number i
The processing content of the second point A will be described. Point A
Angle [Delta] [theta] i ratio of the difference signal delta i is for the sum signal sigma i output from the divider (10) Δ i / Σ i from the antenna center axis
Can be calculated using the following equation.

Δθ=Km・Δi ……(1) ここで, Km=誤差感度 また,レンジビン番号i番目に存在する点の距離Ri
以下に示す式によつて算出できる。
Δθ i = Km ・ Δ i / Σ i (1) where Km = error sensitivity The distance R i of the i-th point in the range bin number can be calculated by the following equation.

Ri=i・ΔR ……(2) ここで, ΔR=レンジビン幅 (1)式及び(2)式より点Aのアンテナ中心軸から
の高度差ΔHiは以下の式により算出される。
R i = i · ΔR (2) Here, ΔR = range bin width From formulas (1) and (2), the altitude difference ΔH i of the point A from the antenna center axis is calculated by the following formula.

ΔHi=Ri・tanΔθ =i・ΔR・tan(Km・Δi) ……(3) そして信号検出器(9)から出力されたレンジビンの
範囲についてレンジビン毎に(1)式,(2)式及び
(3)式で表わされる処理を繰返すことにより障害物の
高度差を検出する。さらに以上の処理はある方位方向に
ついての処理であり,モノパルスアンテナ(3)を機械
的に駆動させるアンテナ駆動器(7)によつて所望の覆
域内を方位方向にビーム走査し,それぞれの方位方向で
同一の処理を行うことによつて,所望の覆域内の障害物
の高度差を検出することができる。この高度差を輝度情
報に変換し,表示器(6)に出力させて方位方向及びレ
ンジに対応した高度差を画面に表示する。
ΔH i = R i · tan Δθ i = i · ΔR · tan (Km · Δ i / Σ i ) (3) And the range bin range output from the signal detector (9) is expressed by the following formula (1) for each range bin. , (2) and (3) are repeated to detect an altitude difference between obstacles. Further, the above processing is processing in a certain azimuth direction. The antenna driver (7) for mechanically driving the monopulse antenna (3) scans the beam in the desired coverage in the azimuth direction. By performing the same processing in the above, it is possible to detect a difference in altitude of an obstacle in a desired covered area. This altitude difference is converted into luminance information and output to the display (6) to display the altitude difference corresponding to the azimuth direction and the range on the screen.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の航空機搭載用レーダ装置は以上のように構成さ
れているので,前方の障害物の高度差を検出する際,所
望の領域内を一本のビームで機械的に走査し,障害物か
らの反射信号を一本の受信ビームで取得しているので,
障害物の高度差を検出する時間が長くなるという課題が
あつた。
Since the conventional aircraft radar system is configured as described above, when detecting the altitude difference of the obstacle ahead, it mechanically scans the desired area with a single beam and scans from the obstacle. Since the reflected signal is acquired with one receiving beam,
There is a problem that the time required to detect the height difference between obstacles becomes longer.

この発明は上記のような課題を解消するためになされ
たもので,複数の素子アンテナで受信した受信デジタル
信号を一旦バツフアメモリに格納し,さらにその受信デ
ジタル信号をフーリエ変換することによりパルス繰返し
周期(以下「PRI」と呼ぶ。)の間に複数の受信ビーム
を形成して,各方位方向毎に障害物の高度差を検出する
ことにより,障害物の高度差の検出時間を短縮できる航
空機搭載用レーダ装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and temporarily stores received digital signals received by a plurality of element antennas in a buffer memory, and further Fourier-transforms the received digital signals to obtain a pulse repetition period ( (Hereinafter referred to as "PRI"). For aircraft-mounted systems that can reduce the time required to detect obstacle height differences by forming multiple reception beams during each direction and detecting the height difference between obstacles in each azimuth direction. An object is to obtain a radar device.

また,この発明の別の発明は,上記目的に加えて,送
信パルス信号を複数のサブパルスに分割し,送信ビーム
指向方向にそれらのサブパルスをそれぞれ対応させて狭
ビームでビーム走査することによつて,信号対雑音比を
改善させることができる航空機搭載用レーダ装置を得る
ことを目的とする。
According to another aspect of the present invention, in addition to the above objects, a transmission pulse signal is divided into a plurality of sub-pulses, and the sub-pulses are respectively scanned in a transmission beam directing direction by a narrow beam. It is an object of the present invention to provide an airborne radar device capable of improving a signal-to-noise ratio.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係わる航空機搭載用レーダ装置は,所望の
覆域内にフアンビームを送信することができる送信装置
を設け,方位角が同一で高低角の異なる一対の受信ビー
ムを1PRIの間に時分割で異なる方位方向に複数本形成で
きるビーム形成回路を設け,その後段に一対の受信ビー
ムで受信した信号の和と差を算出するモノパルス演算回
路を設けたものである。
The airborne radar device according to the present invention is provided with a transmission device capable of transmitting a fan beam within a desired coverage area, and a pair of reception beams having the same azimuth and different elevation angles are time-divided between 1PRI. A beam forming circuit capable of forming a plurality of beams in different azimuth directions is provided, and a monopulse arithmetic circuit for calculating a sum and a difference of signals received by a pair of receiving beams is provided at a subsequent stage.

また,この発明の別の発明に係わる航空機搭載用レー
ダ装置は,上記送信装置の代わりに,任意の方向に指向
する送信ビームを形成するために送信パルス信号の位相
を制御する移相器と,この移相器の出力信号を増幅する
増幅器と,送信パルス信号を複数のサブパルスに分割し
て各移相器に供給する送信パルス変調回路と,上記各サ
ブパルスを放射する方位方向を制御するビーム制御回路
と,これら各サブパルスの放射方向に送信ビームを形成
するために必要な移相量を算出する移相量算出回路を設
けたものである。
An aircraft-mounted radar device according to another aspect of the present invention includes a phase shifter that controls a phase of a transmission pulse signal in order to form a transmission beam directed in an arbitrary direction, instead of the transmission device. An amplifier for amplifying the output signal of the phase shifter, a transmission pulse modulation circuit for dividing the transmission pulse signal into a plurality of sub-pulses and supplying the sub-pulses to each phase shifter, and a beam control for controlling the azimuthal direction in which the sub-pulses are radiated And a phase shift amount calculating circuit for calculating a phase shift amount necessary for forming a transmission beam in the radiation direction of each of these sub-pulses.

〔作用〕[Action]

この発明においては,複数の素子アンテナを介して受
信した障害物からの反射信号をデジタル化した受信デジ
タル信号を一旦バツフアメモリに格納し,この受信デジ
タル信号をビーム形成回路で時分割にフーリエ変換する
ことにより,1PRIの間に異なる方位方向を指向する複数
の受信ビームを形成し,受信ビーム毎に受信信号を処理
することによつて障害物の高度差を検出する時間を短縮
できる。
According to the present invention, a received digital signal obtained by digitizing a reflected signal from an obstacle received via a plurality of element antennas is temporarily stored in a buffer memory, and the received digital signal is time-divisionally Fourier transformed by a beam forming circuit. Accordingly, a plurality of reception beams pointing in different azimuth directions are formed during one PRI, and the reception signal is processed for each reception beam, thereby shortening the time required to detect a height difference between obstacles.

また,この発明の別の発明においては,上記作用に加
えて,送信機で発生した送信パルス信号を複数のサブパ
ルスに分割し,複数の素子アンテナに対応して設けられ
た増幅器及び移相器を用いて空間合成した狭ビームを方
位方向に走査しながら,送信パルス信号のパルス幅内
に,上記複数のサブパルスを順次方位角の異なる方向に
放射することによつて,有効放射電力を増大させ,信号
対雑音電力比を改善することができる。
In another embodiment of the present invention, in addition to the above-described operation, a transmission pulse signal generated by a transmitter is divided into a plurality of sub-pulses, and an amplifier and a phase shifter provided corresponding to a plurality of element antennas are provided. The effective radiation power is increased by sequentially radiating the plurality of sub-pulses within the pulse width of the transmission pulse signal in the directions having different azimuth angles while scanning the narrow beam spatially synthesized using the azimuth direction, The signal to noise power ratio can be improved.

〔実施例〕〔Example〕

以下,この発明の一実施例を図について説明する。な
お,従来技術と同一の構成要素については,同一番号を
付して,その説明を省略する。
An embodiment of the present invention will be described below with reference to the drawings. Note that the same components as those in the prior art are denoted by the same reference numerals, and description thereof will be omitted.

第1図はこの発明の一実施例の構成を示す図で,図
中,(14)は送信アンテナ,(15)は送信アンテナ(1
4)及び送信機(1)とから構成される送信装置,(1
6)は素子アンテナ,(17)は複数の素子アンテナ(1
6)から構成されるアレイアンテナ,(18)はバツフア
メモリ,(19)はビーム形成回路,(20)はモノパルス
演算回路である。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, in which (14) is a transmitting antenna, and (15) is a transmitting antenna (1).
4) and a transmitter (1).
6) is an element antenna, (17) is a multiple element antenna (1
An array antenna composed of 6), (18) a buffer memory, (19) a beam forming circuit, and (20) a monopulse operation circuit.

次に動作を第1図及び第2図を用いて説明する。 Next, the operation will be described with reference to FIG. 1 and FIG.

第2図はこの発明の航空機搭載用レーダ装置の受信ビ
ームの形成方法を示す図であり,図中,(21)はこの発
明の航空機搭載用レーダ装置,(22)は所望の覆域,Bj1
あるいはBj2(ここでjは自然数である。)は各々の受
信ビームである。送信機(1)で発生した送信パルス信
号は,送信アンテナ(14)を介して,第2図に示すよう
な所望の覆域(22)をカバーするようなフアンビームに
よつて送信される。
FIG. 2 is a diagram showing a method of forming a reception beam of the aircraft-mounted radar device of the present invention, wherein (21) is an aircraft-mounted radar device of the present invention, (22) is a desired coverage area, B j1
Alternatively, B j2 (where j is a natural number) is each received beam. The transmission pulse signal generated by the transmitter (1) is transmitted via a transmission antenna (14) by a fan beam that covers a desired coverage area (22) as shown in FIG.

次いで複数の素子アンテナ(16)で構成されているア
レイアンテナ(17)は障害物からの反射信号を受信し,
各素子アンテナ(16)に接続された受信機(4)にそれ
ぞれ出力する。各々の受信機(4)は入力した受信信号
を増幅・検波後デジタル化し,この受信デジタル信号を
バツフアメモリに出力する。そしてバツフアメモリ(1
8)は入力した受信デジタル信号をビーム形成回路(1
9)に出力し、次のように計算される。例えば、N個の
素子アンテナ(17)の並んでいる方向をX軸、電波の到
来方向とX軸とのなす角度を電波の到来角度θ、素子ア
ンテナ(17)の間隔をd、波長をλとすると、隣り合っ
た素子アンテナ(17)で受信される受信信号の位相差
は、 2π(dsinθ)/λ ・・・・(4) となるから、第j番目のビームBjは、次式 を計算することによって、θj=sin-1(jλ/Nd)に最
大利得を有するビームをN本形成することができる。但
し、(5)式において、Wkはサイドロープ抑圧のための
重み係数である。以上の計算は、X軸のみで考えたが、
X−Yの2軸でも同様の計算である。このようにして、
第2図に示すように各々方位角の異なつた一対の受信ビ
ームを形成する。なお,一対の受信ビームBj1とBj2のビ
ーム中心の間隔は,後段のモノパルス演算回路(20)で
モノパルス演算を行うため,当該分野の技術者には周知
の通り,ビーム幅をθbとすると0.3・θb程度であ
る。
Next, an array antenna (17) composed of a plurality of element antennas (16) receives a reflected signal from an obstacle,
Output to the receiver (4) connected to each element antenna (16). Each of the receivers (4) amplifies and detects the input received signal, digitizes the signal, and outputs the received digital signal to a buffer memory. And buffer memory (1
8) converts the input received digital signal into a beam forming circuit (1
9) and is calculated as follows: For example, the direction in which the N element antennas (17) are arranged is the X axis, the angle between the arrival direction of the radio wave and the X axis is the arrival angle θ of the radio wave, the interval between the element antennas (17) is d, and the wavelength is λ. Then, the phase difference between the received signals received by the adjacent element antennas (17) is 2π (dsinθ) / λ (4), so that the j-th beam Bj is expressed by the following equation. Is calculated, N beams having the maximum gain at θj = sin −1 (jλ / Nd) can be formed. However, in equation (5), Wk is a weighting factor for side-rope suppression. Although the above calculation was considered only for the X axis,
The same calculation is performed for the two axes XY. In this way,
As shown in FIG. 2, a pair of reception beams having different azimuth angles are formed. The interval between the beam centers of the pair of reception beams B j1 and B j2 is determined by a mono-pulse calculation circuit (20) at the subsequent stage, and the beam width is assumed to be θb, as is well known to those skilled in the art. It is about 0.3 · θb.

そしてモノパルス演算回路(20)は一対の受信ビーム
Bj1及びBj2で得られた受信信号を入力し,それらの受信
信号を加算して,和信号Σを算出する。さらにそれら
の受信信号を減算し,差信号Δを算出する。このよう
にして,複数のモノパルス演算回路(20)はそれぞれの
方位方向の和信号Σ及び差信号Δを算出し,信号処
理器(5)に出力する。
And the monopulse operation circuit (20) is a pair of reception beams
The received signals obtained at B j1 and B j2 are input, and the received signals are added to calculate a sum signal Σ j . Further subtracts those received signals, calculates a difference signal delta j. In this manner, a plurality of monopulse arithmetic circuit (20) calculates a sum signal sigma j and the difference signal delta j of the respective azimuth directions, and outputs the signal processor (5).

次いで信号処理器(5)は入力された方位方向毎の和
信号Σ及び差信号Δをバツフア回路(8)に格納
し,方位方向毎に従来の航空機搭載用レーダ装置と同一
の処理を行うことによつて,障害物の高度差が得られ
る。
Next, the signal processor (5) stores the input sum signal j j and difference signal Δ j for each azimuth direction in a buffer circuit (8), and performs the same processing as the conventional aircraft-mounted radar device for each azimuth direction. By doing so, an altitude difference between obstacles can be obtained.

次いでこの発明の別の発明の一実施例を図について説
明する。
Next, another embodiment of the present invention will be described with reference to the drawings.

第3図はこの発明の別の発明の航空機搭載用レーダ装
置の構成を示す図である。図において,(2),
(4),(16)〜(20)及び(5)〜(6)までは上記
この発明の航空機搭載用レーダ装置と全く同一であり,
(23)は送受信モジユール,(24)は増幅器,(25)は
位相器であり,送受信モジユール(23)は受信機
(4),送受切換器(2),増幅器(24)及び移相器
(25)から構成されている。(1)は送信機,(26)は
全ての移相器(25)に接続されている送信パルス変調回
路,(17)はビーム制御回路,(28)は全ての移相器
(25)に接続されている移相量算出回路である。
FIG. 3 is a diagram showing a configuration of an aircraft-mounted radar device according to another invention of the present invention. In the figure, (2),
(4), (16) to (20) and (5) to (6) are completely the same as the above-described aircraft mounted radar apparatus of the present invention.
(23) is a transmission / reception module, (24) is an amplifier, (25) is a phase shifter, and the transmission / reception module (23) is a receiver (4), a transmission / reception switch (2), an amplifier (24) and a phase shifter ( 25). (1) is a transmitter, (26) is a transmission pulse modulation circuit connected to all phase shifters (25), (17) is a beam control circuit, and (28) is all phase shifters (25). It is a connected phase shift amount calculation circuit.

次に動作について第3図及び第4図を用いて説明す
る。
Next, the operation will be described with reference to FIG. 3 and FIG.

第4図(a)はこの発明の別の発明の航空機搭載用レ
ーダ装置の送信ビームの走査方向及び受信ビームの形成
方法を示す図であり,第4図(b)はこの発明の別の発
明の航空機搭載用レーダ装置の送信タイミングを示す図
である。図中,(29)はこの発明の別の発明の航空機搭
載用レーダ装置,Bj1あるいはBj2(ここでjは自然数で
ある。)は各々の受信ビームであり,上記この発明の航
空機搭載用レーダ装置で形成される各々の受信ビームと
同一である。またBjは送信ビーム,θは送信ビームBj
の指向方向の方位角であり,送信ビームBjの形状は,受
信ビームBj1とBj2を合成したものと同一である。まず,
送信機(1)で発生した送信パルス信号は送信パルス変
調回路(26)に入力される。送信パルス変調回路(26)
では送信パルス信号を第4図(b)に示すような送信タ
イミングで複数のサブパルスに分割し,さらに分配して
複数の移相器(25)に入力される。また,ビーム制御回
路(27)は各サブパルスを放射する方位方向θを指示
し,移相量算出回路(28)はこれら各サブパルスの放射
方向θに送信ビームを形成するために必要な各移相器
(25)の移相量φ〜φを算出し,移相器(25)に出
力する。このようにして,移相器(25)に入力した各々
のサブパルスはビーム制御回路(27)で制御されたビー
ム指向方向に,増幅器(24),送受切換器(2)を介し
てアレイアンテナ(17)から放射される。
FIG. 4 (a) is a diagram showing a scanning direction of a transmitting beam and a method of forming a receiving beam of an airborne radar apparatus according to another embodiment of the present invention, and FIG. 4 (b) is another embodiment of the present invention. FIG. 3 is a diagram showing transmission timings of the aircraft-mounted radar device. In the figure, (29) is an aircraft-mounted radar device according to another embodiment of the present invention, and B j1 or B j2 (where j is a natural number) are the respective receiving beams. It is the same as each reception beam formed by the radar device. B j is the transmission beam, θ j is the transmission beam B j
A azimuth angle of orientation of the shape of the transmitted beam B j are the same as those obtained by combining the received beam B j1 and B j2. First,
The transmission pulse signal generated by the transmitter (1) is input to the transmission pulse modulation circuit (26). Transmit pulse modulation circuit (26)
In FIG. 4, the transmission pulse signal is divided into a plurality of sub-pulses at the transmission timing as shown in FIG. The beam control circuit (27) instructs the azimuth direction theta j which emits the sub-pulses, the phase shift amount calculating circuit (28) each required to form a transmission beam in the radial direction theta j of each sub-pulse calculating a phase shift amount phi 1 to [phi] m of the phase shifter (25), and outputs to the phase shifter (25). In this way, each sub-pulse input to the phase shifter (25) passes through the amplifier (24) and the transmission / reception switch (2) in the beam direction controlled by the beam control circuit (27). Radiated from 17).

以上のように,送信ビームBjは送信パルス信号のパル
ス信号のパルス幅内でB1,B2……と順次ビーム走査を行
いながら,各々のサブパルスを所望の覆域内(22)に放
射する。
As described above, transmit beam B j is while B 1, B 2 ...... sequentially beam scanned within a pulse width of the pulse signal of a transmission pulse signal, to emit respective sub-pulses to a desired covering region (22) .

次いでアレイアンテナ(17)は障害物からの反射信号
を受信し,送受切換器(2)を介して,受信機(4)に
出力する。各々の受信機(4)は入力した受信信号を増
幅・検波後デジタル化し,この受信デジタル信号をバツ
フアメモリ(18)に出力する。そして受信デジタル信号
はビーム形成回路(19)に出力され,ビーム形成回路
(19)は入力した受信デジタル信号をフーリエ変換する
ことにより各サブパルスを放射した方位方向θ毎に高
低角の異なる一対の受信ビームBj1及びBj2を1PRIの間に
時分割で複数個形成する。そしてモノパルス演算回路
(20)及び信号処理器(5)は上記この発明の航空機搭
載用レーダ装置と同一の処理を行つて,障害物の高低差
を検出する。
Next, the array antenna (17) receives the reflected signal from the obstacle and outputs it to the receiver (4) via the transmission / reception switch (2). Each receiver (4) amplifies and detects the input received signal, digitizes the signal, and outputs the received digital signal to a buffer memory (18). The received digital signal is output to a beam forming circuit (19), and the beam forming circuit (19) performs a Fourier transform on the input received digital signal to emit a pair of signals having different elevation angles for each azimuth direction θ j in which each sub-pulse is emitted. A plurality of reception beams B j1 and B j2 are formed in a time division manner between 1PRI. Then, the monopulse arithmetic circuit (20) and the signal processor (5) perform the same processing as that of the above-mentioned aircraft-mounted radar apparatus of the present invention to detect a height difference of an obstacle.

〔発明の効果〕〔The invention's effect〕

以上のようにこの発明によれば,各素子アンテナに各
々受信機を接続し,1PRIの間に時分割で多数の受信ビー
ムが得られるようにバツフアメモリ及びビーム形成回路
を設けたので,1PRIの間に障害物からの受信信号を得る
ことができ,障害物の高度差を検出する処理時間を短縮
することができる。さらにバッファメモリを設けること
により、方位角が同一で高低角の異なる一対の受信ビー
ムを時分割で形成するため、上記一対の受信ビーム毎に
モノパルス演算回路及び信号処理器を複数個設ける必要
がなくなり、装置の容積・質量を低減化することができ
る。
As described above, according to the present invention, a receiver is connected to each element antenna, and a buffer memory and a beam forming circuit are provided so that a large number of reception beams can be obtained in a time-division manner during one PRI. Thus, a signal received from an obstacle can be obtained, and the processing time for detecting a height difference between obstacles can be reduced. Further, by providing the buffer memory, a pair of reception beams having the same azimuth angle but different elevation angles are formed in a time division manner, so that it is not necessary to provide a plurality of monopulse arithmetic circuits and signal processors for each of the pair of reception beams. In addition, the volume and mass of the device can be reduced.

またこの発明の別の発明によれば,上記効果に加え
て,送信パルス信号を複数のサブパルスに分割し,送信
パルス信号のパルス幅内に各サブパルスを狭ビームで順
次方位角の異なる方向に放射することによつて,有効放
射電力を増大させ,信号対雑音電力比の改善が図れる。
According to another aspect of the present invention, in addition to the above effects, the transmission pulse signal is divided into a plurality of sub-pulses, and each sub-pulse is radiated in a narrow beam within the pulse width of the transmission pulse signal in the direction having a different azimuth sequentially. By doing so, the effective radiation power can be increased and the signal-to-noise power ratio can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による航空機搭載用レーダ
装置の構成図,第2図はこの発明の航空機搭載用レーダ
装置の受信ビームの形成方法を示す図,第3図はこの発
明の別の発明の一実施例による航空機搭載用レーダ装置
の構成図,第4図(a)はこの発明の別の発明の航空機
搭載用レーダ装置の送信ビームの走査方向及び受信ビー
ムの形成方法を示す図,第4図(b)はこの発明の別の
発明の航空機搭載用レーダ装置の送信タイミングを示す
図,第5図は従来の航空機搭載用レーダ装置の構成図,
第6図は従来の航空機搭載用レーダ装置の構成品である
信号処理器の構成図,第7図は高度を検出する処理概念
図である。 図中,(1)は送信機,(2)は送受切換器,(3)は
モノパルスアンテナ,(4)は受信機,(5)は信号処
理器,(6)は表示器,(7)はアンテナ駆動器,
(8)はバツフア回路,(9)は信号検出器,(10)は
割算器,(11)は高度差検出器,(12)は航空機,(1
3)は障害物,(14)は送信アンテナ,(15)は送信装
置,(16)は素子アンテナ,(17)はアレイアンテナ,
(18)はバツフアメモリ,(19)はビーム形成回路,
(20)はモノパルス演算回路,(21)(29)はこの発明
の航空機搭載用レーダ装置,(22)は所望の覆域,(2
3)は送受信モジユール,(24)は増幅器,(25)は移
相器,(26)は送信パルス変調回路,(27)はビーム制
御回路,(28)は移相量算出回路である。 なお,図中,同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram of an airborne radar apparatus according to an embodiment of the present invention, FIG. 2 is a view showing a method of forming a reception beam of the airborne radar apparatus of the present invention, and FIG. FIG. 4 (a) is a diagram showing a scanning direction of a transmitting beam and a method of forming a receiving beam of an aircraft-mounted radar device according to another embodiment of the present invention. FIG. 4 (b) is a diagram showing the transmission timing of an airborne radar device according to another invention of the present invention, FIG. 5 is a configuration diagram of a conventional airborne radar device,
FIG. 6 is a configuration diagram of a signal processor which is a component of a conventional aircraft-mounted radar device, and FIG. 7 is a conceptual diagram of processing for detecting altitude. In the figure, (1) is a transmitter, (2) is a transmission / reception switch, (3) is a monopulse antenna, (4) is a receiver, (5) is a signal processor, (6) is a display, (7) Is the antenna driver,
(8) is a buffer circuit, (9) is a signal detector, (10) is a divider, (11) is an altitude difference detector, (12) is an aircraft, (1)
3) is an obstacle, (14) is a transmitting antenna, (15) is a transmitting device, (16) is an element antenna, (17) is an array antenna,
(18) is a buffer memory, (19) is a beam forming circuit,
(20) is a monopulse arithmetic circuit, (21) and (29) are the radar devices mounted on an aircraft of the present invention, (22) is a desired coverage area, (2)
3) is a transmission / reception module, (24) is an amplifier, (25) is a phase shifter, (26) is a transmission pulse modulation circuit, (27) is a beam control circuit, and (28) is a phase shift amount calculation circuit. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アレイアンテナの各素子アンテナで受信し
た受信信号より、方位角が同一で高低角の異なる一対の
受信ビームを複数本形成して、前方の障害物の高度差を
検出する航空機搭載用レーダ装置において、所望の覆域
内にファンビームを用いて送信パルス信号を放射する送
信装置と、上記覆域内にある目標からの反射信号を受信
する複数の素子アンテナと、この各素子アンテナにそれ
ぞれ接続され、上記受信信号を増幅・検波後デジタル化
する複数の受信機と、この複数の受信機の出力信号を格
納するバッファメモリと、このバッファメモリの出力信
号を入力し、フーリエ変換することにより上記一対の受
信ビームを任意の方位方向にレンジビン毎に複数本形成
するビーム形成回路と、上記一対の受信ビームで受信し
た信号から和信号と差信号を一対の受信ビーム毎に算出
するモノパルス演算回路と、このモノパルス演算回路の
出力信号から上記障害物の角度と距離をレンジビン毎に
算出することにより、障害物の高度差を求める信号処理
器とを具備した航空機搭載用レーダ装置。
1. An aircraft mounted for detecting a difference in altitude of an obstacle ahead by forming a plurality of pairs of reception beams having the same azimuth angle and different elevation angles from reception signals received by each element antenna of an array antenna. In a radar device for use, a transmitting device that emits a transmission pulse signal using a fan beam in a desired coverage area, a plurality of element antennas that receive a reflected signal from a target in the coverage area, and each of these element antennas A plurality of receivers that are connected and amplify and detect and digitize the received signal, a buffer memory that stores output signals of the plurality of receivers, and an output signal of the buffer memory that is input and subjected to Fourier transform. A beam forming circuit for forming a plurality of the pair of reception beams in each azimuth direction for each range bin, and a sum signal from signals received by the pair of reception beams; A monopulse calculation circuit for calculating a difference signal for each pair of reception beams, and a signal processor for calculating an altitude difference of the obstacle by calculating an angle and a distance of the obstacle for each range bin from an output signal of the monopulse calculation circuit An aircraft-mounted radar device comprising:
【請求項2】アレイアンテナの各素子アンテナで受信し
た受信信号より方位角が同一で高低角の異なる一対の受
信ビームを複数本方位方向に形成して、前方の障害物の
高度差を検出する航空機搭載用レーダ装置において、あ
る一定のパルス繰返し周期で送信パルス信号を発生する
送信機と、この送信機に接続され、出力された送信パル
ス信号を複数のサブパルスに分割して後述の複数の移相
器にそれぞれ供給する送信パルス変調回路と、この各々
のサブパルスが、方位方向に複数本並んだ一対の受信ビ
ームをカバーするような方位方向へそれぞれ放射される
ように送信ビームを制御するビーム制御回路と、このビ
ーム制御回路に接続され、上記各サブパルスの放射方向
に送信ビームを形成するために必要な上記各移相器の移
相量を算出する移相量算出回路と、上記各素子アンテナ
に対応して設けられ、上記送信パルス変調回路からの送
信パルス信号と上記移相量算出回路からの移相量を入力
して、送信パルス信号の位相を変化させる移相器と、こ
の移相器の出力信号を増幅する増幅器と、この増幅器か
らの出力信号を上記ビーム制御回路で制御された送信ビ
ームの指向方向に放射し、目標からの反射信号を受信す
る複数の素子アンテナと、上記各素子アンテナに対応し
て設けられ、受信信号を増幅・検波後ディジタル化する
複数の受信機と、この複数の受信機の出力信号を格納す
るバッファメモリと、このバッファメモリの出力信号を
入力し、フーリエ変換することにより上記一対の受信ビ
ームをレンジビン毎に複数本形成するビーム形成回路
と、この一対の受信ビームで受信した信号から和信号と
差信号を一対の受信ビーム毎に算出するモノパルス演算
回路と、このモノパルス演算回路の出力信号から上記障
害物の角度と距離をレンジビン毎に算出することによ
り、障害物の高度差を求める信号処理器とを具備した航
空機搭載用レーダ装置。
2. A plurality of pairs of reception beams having the same azimuth angle but different elevation angles are formed in a plurality of azimuth directions from reception signals received by each element antenna of the array antenna, and an altitude difference of an obstacle in front is detected. In an airborne radar device, a transmitter that generates a transmission pulse signal at a certain pulse repetition period, and a transmission pulse signal that is connected to the transmitter and output is divided into a plurality of sub-pulses and a plurality of sub-pulses described below. A transmission pulse modulation circuit to be supplied to each phaser, and a beam control for controlling the transmission beams such that each of the sub-pulses is radiated in an azimuth direction covering a pair of reception beams arranged in the azimuth direction. And a phase shifter connected to the beam control circuit for calculating a phase shift amount of each of the phase shifters required to form a transmission beam in a radiation direction of each of the sub-pulses. A phase calculation circuit, provided corresponding to each of the element antennas, receives the transmission pulse signal from the transmission pulse modulation circuit and the phase shift amount from the phase shift amount calculation circuit, and changes the phase of the transmission pulse signal. A phase shifter, an amplifier for amplifying the output signal of the phase shifter, and radiating the output signal from the amplifier in the direction of the transmission beam controlled by the beam control circuit, and receiving the reflected signal from the target. A plurality of element antennas, a plurality of receivers provided corresponding to each of the above element antennas, amplifying and detecting the received signal, and digitizing the received signal; a buffer memory for storing output signals of the plurality of receivers; An output signal of the buffer memory is input, a beam forming circuit that forms a plurality of the pair of reception beams for each range bin by performing Fourier transform, and a signal received by the pair of reception beams. A monopulse arithmetic circuit that calculates a sum signal and a difference signal for each pair of reception beams from the signal, and an angle and distance of the obstacle for each range bin from the output signal of the monopulse arithmetic circuit, thereby obtaining an altitude difference between the obstacles. And a signal processor for obtaining the following.
JP2328005A 1990-11-28 1990-11-28 Airborne radar equipment Expired - Fee Related JP2605957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2328005A JP2605957B2 (en) 1990-11-28 1990-11-28 Airborne radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328005A JP2605957B2 (en) 1990-11-28 1990-11-28 Airborne radar equipment

Publications (2)

Publication Number Publication Date
JPH04198790A JPH04198790A (en) 1992-07-20
JP2605957B2 true JP2605957B2 (en) 1997-04-30

Family

ID=18205447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328005A Expired - Fee Related JP2605957B2 (en) 1990-11-28 1990-11-28 Airborne radar equipment

Country Status (1)

Country Link
JP (1) JP2605957B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018311A (en) * 1998-07-14 2000-01-25 Raytheon Company Noncoherent gain enhancement technique for improved detection-estimation performance
EP1731921A1 (en) * 2005-06-01 2006-12-13 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO Radar system for aircraft

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263579A (en) * 1988-04-14 1989-10-20 Mitsubishi Electric Corp Radar apparatus mounted on airplane

Also Published As

Publication number Publication date
JPH04198790A (en) 1992-07-20

Similar Documents

Publication Publication Date Title
US7737879B2 (en) Split aperture array for increased short range target coverage
JP2651054B2 (en) Polystatic correlation radar
US5929810A (en) In-flight antenna optimization
US3842417A (en) Bistatic radar system
US3825928A (en) High resolution bistatic radar system
EP0110260A1 (en) Pulse radar apparatus
JPH07244158A (en) Evaluation method of image quality of synthetic aperture radar image
US4121209A (en) Two-axis motion compensation for AMTI
RU2316021C2 (en) Multichannel radar system of flight vehicle
GB2041687A (en) Narrow beam scanning radar or lidar
JP2605957B2 (en) Airborne radar equipment
US3392387A (en) Clutter attenuation radar
JP2646880B2 (en) Airborne radar equipment
US11835648B2 (en) Multi-beam multi-function AESA system
JPH11183607A (en) Synthetic aperture radar apparatus
JP3181415B2 (en) Radar equipment
JPH03279885A (en) Airborne radar device
US3568185A (en) Mapping signal display apparatus
JP3335832B2 (en) Radar receiver
JP2001208828A (en) Radar system
JP2980573B2 (en) SRA radar system
JPH04204185A (en) Radar to be carried on aircraft
JPH0713657B2 (en) Bistatic radar device
JPH0142392B2 (en)
JPH03285191A (en) Airborne radar apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees